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A Plot TWIST in Pulmonary Arterial Hypertension

The treatment of pulmonary arterial hypertension (PAH) has been
a success story in pulmonary medicine. Major advances in our
understanding of the mechanisms driving PAH have suggested a
complicated interplay of many processes, including endothelial
cell dysfunction, perivascular inflammation, smooth muscle cell
hyperproliferation, and vasoconstriction (1). There are three classes
of drugs that have led to improvements in symptoms and survival.
Despite these advances, median survival is only 6 years (2), with
death typically occurring as a result of cor pulmonale. Existing
therapies for PAH primarily target sustained pulmonary
vasoconstriction (3) despite the presence of several other
pathophysiologic pathways that may be amenable to intervention.

One attractive approach to PAH therapy could be to target the
proproliferative/prosurvival phenotype of pulmonary artery smooth

muscle cells (4). Uncovering the role of a potential “oncogene” in PAH
would certainly fit the bill. In this issue of the Journal, Fan and
colleagues (pp. 1283–1296) report their exciting findings that argue for
the role of the transcription factor TWIST1 in the pathogenesis of
PAH (5). How is TWIST1 relevant to PAH? TWIST1 is a well-known
oncogene implicated in metastasis and resistance to chemotherapy (6).
In idiopathic pulmonary fibrosis, Twist1 transcription has been shown
to be highly upregulated in idiopathic pulmonary fibrosis lungs and to
promote lung fibroblast accumulation by inhibiting apoptosis (7).
Similarly, in PAH, Twist1 has already been shown to be overexpressed
in the lungs and to contribute to so-called endothelial-to-
mesenchymal transition through TGFb–Smad2 signaling (8).
Therefore, TWIST1 may drive this quasineoplastic pulmonary artery
smooth muscle cell (PASMC) phenotype in PAH.

In contrast to data reported in a previous study (9), Fan and
colleagues have shown that TWIST1 expression is increased in
PASMCs from patients with familial PAH. Furthermore, in rodent
models, PASMC-specific loss of twist1 resulted in the attenuation of
pulmonary hypertension. Overexpression of Twist1 drove PASMC
proliferation and migration and overcame the effects of harmine, a
small molecule that is reported to promote TWIST1 degradation (10).

To understand the mechanism behind these findings, the team
turned to familiar targets, including BMPR2, the so-called PAH
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gene (11). Silencing of TWIST1 increased BMPR2 expression, and,
inversely, TWIST1 overexpression decreased Bmpr2 transcription.
Although this finding might suggest that TWIST1 interacts with the
Bmpr2 promoter, this was not observed. Through mass spectrometry
analysis the team identified a physical interaction of TWIST1 with
GATA-6, a transcription factor associated with PASMC growth, and
they confirmed this finding by coimmunoprecipitation. TWIST1
overexpression decreased GATA-6 protein levels despite having no
effect on the level of GATA6 mRNA. This indeed was a surprising
finding. TWIST1 is a transcriptional inhibitor (12). If the effect of
TWIST1 on GATA-6 is not mediated by changes in mRNA levels,
then does it regulate protein stability? Indeed, the authors found that
reduction of GATA-6 levels driven by TWIST1 was mediated by the
ubiquitin E3 ligase activity of MDM2. This reduction in GATA-6
protein levels led to decreased engagement of the BMPR2 promoter,
completing the link between TWIST1 overexpression and decreased
BMPR2 signaling.

This is a plot twist in our understanding of TWIST1. Instead of
showing binding to the promoter regions to reduce transcription of
GATA6 or Bmpr2 as might be expected of a transcription factor,
the authors instead demonstrated a direct interaction between
TWIST1 and GATA-6 proteins, and that this interaction led to
increased proteasomal degradation of GATA-6. Although TWIST1
expression appeared to increase GATA-6–MDM2 interaction
leading to GATA-6 ubiquitination, the exact mechanism by which
TWIST1 promotes this interaction is not entirely clear. TWIST1
does not increase MDM2 expression, but through its interaction
with GATA-6, it might induce a conformational change and
increase the capacity for MDM2 binding and the destabilization of
GATA-6. Further exploration of this relationship could identify a
new druggable target in PAH.

Although transcription factors are notoriously difficult
drug targets, the b-carboline alkaloid compound harmine
has been shown to be a potent TWIST1 inhibitor (10).
However, previous attempts at using harmine as a cancer
therapy have been hampered by significant neurotoxicity, so
the ability to create harmine derivatives with anti-TWIST1
activity and acceptable safety is an open question (13).
In addition, the complete inhibition of TWIST1 may be
inadvisable, as data from our group suggest that the loss of
twist1 in the mesenchymal compartment may increase
inflammation and worsen fibrosis (12). The effect of
TWIST1 activity on the ubiquitination and degradation
of GATA-6 does perhaps unveil a more promising
opportunity for therapy. The ubiquitin–proteasome system
has been associated with many lung diseases (14) and has
been proposed as a potential therapeutic target. Ubiquitin E3
ligases and subunits, each with highly specific substrate–ligase
binding pockets, are potentially amenable to small molecule
inhibitors (15). The development of drugs targeting the ubiquitin
system is an active area of research (16), particularly within
cancer therapeutics. Notably, there are multiple ongoing cancer
clinical trials examining the effects of compounds blocking the
E3-ligase MDM2 (17), which the authors implicate here as being
integral for TWIST1-mediated GATA-6 degradation. Perhaps a

similar approach could be employed to inhibit TWIST1-driven
loss of GATA-6 and reduce PASMC hypertrophy and
proliferation? These exciting findings might identify a new class
of therapies that may synergize with existing success stories in
PAH. n
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