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Abstract

Background—Heart rate variability (HRV) has emerged as a predictor of later cardiac risk. This 

study tested whether pregnancy complications that may have long-term offspring cardiac sequelae 

are associated with differences in HRV at birth, and whether these HRV differences identify 

abnormal cardiovascular development in the postnatal period.

Methods—98 sleeping neonates had 5-minute electrocardiogram recordings at birth. Standard 

time and frequency domain parameters were calculated and related to cardiovascular measures at 

birth and three months of age.

Results—Increasing prematurity, but not maternal hypertension or growth restriction, was 

associated with decreased HRV at birth as demonstrated by a lower root mean square of the 

difference between adjacent NN intervals (rMSSD), low (LF) and high frequency power (HF) with 

decreasing gestational age (p<0.001, p=0.009 and p=0.007 respectively). We also demonstrated a 

relative imbalance between sympathetic and parasympathetic tone compared to term infants. 

However, differences in autonomic function did not predict cardiovascular measures at either time-

point.
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Conclusions—Altered cardiac autonomic function at birth relates to prematurity rather than 

other pregnancy complications and does not predict cardiovascular developmental patterns during 

the first three months post birth. Long-term studies will be needed to understand relevance to 

cardiovascular risk.

Introduction

Heart rate variability (HRV) analysis provides a non-invasive measure of cardiac autonomic 

function based on variation in the QRS to QRS (RR or normal to normal NN interval) 

interval sequence of the electrocardiogram (ECG). The derived metrics of HRV allow 

evaluation of sympathetic and parasympathetic balance within the autonomic nervous 

system (ANS) and the ability of the sinoatrial node to adapt to extrinsic signals. In a 

multitude of well-designed studies decreased HRV has emerged as a strong predictor of 

cardiac risk in adults and death in patients at increased cardiovascular risk. (1–3) 

Interestingly, attenuation in HRV is also evident in infants born preterm (4) with dysfunction 

being greater in those with higher clinical illness scales (5) or pathological problems such as 

respiratory distress syndrome, (6) birth asphyxia, (6) intraventricular haemorrhage (6) and 

small-for gestational age (7). Pregnancy complications, in particular, preterm birth and 

maternal hypertension, have been found to associate with an increased risk of cardiovascular 

disease in later life (8) and the offspring display a distinct cardiovascular phenotype 

characterised by microvascular rarefaction and cardiac hypertrophy (9–11).

These cardiac and vascular patterns become evident during the first three months of life 

when differences in autonomic function have been identified in preterm infants(10, 12, 13). 

Therefore, we investigated, for the first time, using short ECG recordings in a large cohort of 

newborn infants, whether differences in neonatal HRV relates just to prematurity or are 

found in other pregnancy complications linked with later cardiovascular disease. 

Furthermore, we studied whether altered HRV may be a marker of abnormal in utero or 

postnatal cardiac and vascular development in these infants.

Methods

Study overview

Between 2011 and 2015, 600 mothers being cared for by Oxford University Hospitals NHS 

Foundation Trust were identified by their clinical care team and invited to take part in one or 

more of a portfolio of studies coordinated by the Oxford Cardiovascular Clinical Research 

Facility. These studies were designed to investigate the impact of pregnancy complications 

on cardiovascular development during fetal and neonatal life and used a stratified 

recruitment approach to ensure balanced representation of preterm and term birth as well as 

hypertensive and normotensive pregnancies.

To study heart rate variability, cardiac and microvascular development, we used available 

electrocardiogram (ECG), echocardiographic and in vivo microvascular datasets from birth 

and three months of age (Figure 1) from participants in the EPOCH programme (Effect of 

Pregnancy on Offspring Cardiovascular Health study - approved by South Central Berkshire 

Research Ethics Committee ref. 11/SC/0006, UKCRN/clinical trials ref. NCT01888770).
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All mothers gave written informed consent for involvement of their children in accordance 

with the Declaration of Helsinki, including permission to access maternal and offspring 

clinical records and link data between studies. Mothers below the age of 16 years were 

excluded from the study as were those with chronic cardiovascular conditions prenatally, 

including hypertension. Infants were excluded if they had evidence of congenital 

cardiovascular disease (with the exception of Persistent Ductus Arteriosus and Atrial Septal 

Defect), chromosomal abnormalities or genetic disorders. Prolonged resuscitation at birth, 

intraventricular haemorrhage and ventilatory support during the time of assessment did not 

constitute specific exclusion criteria, although no infants in our cohort fell into these 

categories.

Clinical data collection and characterisation of pregnancy complications

Characterisation of pregnancy complications and perinatal data related to the clinical care of 

the infant was extracted from medical records and questionnaires in a standardised way 

across studies by the same data collection team (CA, ED, YK). Data collection details are 

available from https://clinicaltrials.gov (NCT01888770). Postmenstrual age at time of 

measurements was calculated relative to gestational age defined at first trimester ultrasound. 

Hypertensive pregnancy (HTN) diagnosis (pregnancy induced hypertension, preeclampsia 

(PET)) was defined according to ISSHP guidelines(14). Z-scores for birthweight were 

calculated using the International Standard size at birth reference charts from the 

INTERGROWTH-21st Project(15, 16) using their online application (https://

intergrowth21.tghn.org/global-perinatal-package/intergrowth-21st-comparison-application/). 

Small for gestational age (SGA) was defined as a birthweight below the 10th centile.

Cardiovascular measures

Cardiovascular measurements were performed within four weeks of birth and again at three 

months of age in a temperature-controlled room, with the infant at rest, either in their 

mother’s arms, or in a crib. At both the birth and three month assessments, weight was 

measured using digital scales (Charder Model MS4200) to the nearest 0.01kg with the infant 

fully naked. Head circumference was measured with a tape measure to nearest mm. At birth 

and three months, three blood pressure measurements were recorded on the right calf with 

an automated digital monitor (Dinamap technology® V100) using appropriate sized cuffs 

and were averaged for analysis. Brachial-femoral pulse wave velocity (PWV) in order to 

study arterial stiffness was measured by fitting brachial and femoral cuffs a known distance 

apart using an oscillometry device (Vicorder, Skidmore Medical, Taunton, UK). Methods for 

echocardiography and in vivo microvascular imaging have been published previously and 

can be found in Supplemental Methods (online).(10, 17)

Heart rate variability

Data acquisition—At the birth assessment all babies had a short 5-10 minute ECG taken 

between feeds, lying down without use of a pacifier. The Shimmer® device was used to 

acquire the data which was connected via Bluetooth to an Android mobile smartphone. The 

ECG collected consisted of two-lead signals with a 256Hz sampling frequency and 12bit 

quantization levels. Data was collected through an android app,(18) processed and stored on 
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the phone before being transferred to a server. Details of whether the baby was asleep or 

awake were noted and the recording was stopped if there was excessive restlessness or 

crying.

Data processing—The ECG signals were then processed in order to extract the RR 

interval time-series, but also a Signal Quality Index (SQI). These features were extracted 

using previously published techniques.(19) The SQI was used in order to select the “best” 

five minute segment, and the RR interval time-series from this segment was kept for heart 

rate variability (HRV) analysis.

Heart Rate Variability analysis—The five minute RR interval segment was used to 

extract HRV features. These features were extracted using the HRV toolkit which has been 

validated and is freely available online.(20) Processing included detection and extraction of 

the normal to normal (NN) interval time-series and automated outlier removal for rejection 

of artefactual RR points. Calculated HRV features were based on basic time-domain HRV 

statistics used in the literature, specifically, the standard deviation of the NN intervals 

(SDNN) and root mean square of the difference between adjacent NN intervals (rMSSD). 

The frequency-domain features were extracted using the Lomb periodogram, eliminating the 

need for evenly sampled data in contrast to the traditional Fast Fourier Transformation. The 

benefit of this is that sections of the recordings in which there are gaps or extreme noise in 

the data can be omitted. Parameters included the total spectral power of all NN intervals 

between 0.05 and 0.2 Hz (low frequency power, LF), the total spectral power of all NN 

intervals between 0.2 and 1 Hz (high frequency power, HF) and the ratio of low to high 

frequency power (LF/HF ratio) using cut offs previously suggested in the literature for the 

neonatal population.(21) In order to be able to standardise these measures, only recordings 

during which the babies were asleep throughout were included in analysis.

Statistical Analysis

Statistical analysis was performed using SPSS Version 22 (IBM, Armonk, NY) and 

GraphPad Prism 6.0 (La Jolla, CA). Comparison between groups for continuous variables 

was carried out using a two-tailed, independent samples t-test for normally distributed 

variables and Mann Whitney U test for non-normally distributed data. Bivariate regression 

models were performed using a forced entry method and unstandardized B coefficients and 

95% confidence intervals are reported. The sample size n=33 preterm and n=65 term 

offspring provided us with 80% power at a significance level of α=0.05 to detect a 

difference of at least 0.85 standard deviations between groups. P-values less than 0.05 were 

considered statistically significant.

Results

Study Population Characteristics

The technology for assessment of HRV became available during the course of recruitment to 

the EPOCH study and therefore, out of the 266 infants in the full neonatal cohort, 140 had 

an ECG taken at birth. Of these, 3 were unanalysable due to poor signal quality and 39 were 

excluded as the infant was awake or restless during acquisition. Maternal and offspring 

Aye et al. Page 4

Pediatr Res. Author manuscript; available in PMC 2018 November 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



demographic and anthropometric characteristics in the cohort are presented in Table 1 with 

subgroup characteristics available in Supplemental Table S1 (online).

Pregnancy complications and heart rate variability

Those born preterm had a higher heart rate and lower heart rate variability than those born 

term (Figure 2A). There was a positive association between SDNN, rMSSD, LF and HF and 

gestational age at birth; although the association with SDNN failed to reach significance 

after adjusting for postnatal age at assessment and offspring sex (Table 2). There was a 

negative correlation between LF/HF ratio and gestational age at birth even after adjustment. 

There was no significant difference in heart rate or heart rate variability parameters between 

those born to mothers with or without maternal hypertension (Figure 2B and Table 2). We 

separately analysed those whose mothers had a more severe hypertensive disorder of 

pregnancy, classified as preeclampsia, and found no differences in neonatal heart rate 

variability in this group (Figure 2C). Furthermore, there were no significant associations 

between birthweight z-score and any HRV parameter (Table 2), or any difference between 

those classified as small or appropriate for gestational age (Figure 2D). Due to the small 

numbers of preterm babies in our cohort we were not powered to detect differences between 

subgroups, for example preterm small for gestational age versus preterm appropriate for 

gestational age. We therefore performed additional regression analyses to clarify the lack of 

relationship with pregnancy complications by studying the relationship between rMSSD at 

birth, correcting for postnatal age at assessment, offspring sex as well as gestatinal age at 

birth (Supplemental Table S2 (online)). We found that even after adjusting for physiological 

changes in autonomic balance due to gestational age, there were still no correlations 

between other pregnancy complications with HRV.

We additionally studied whether particular perinatal clinical features, including time on 

ventilation or APGAR score, predicted autonomic dysfunction in those born preterm but 

were not able to identify specific markers of more deranged function except for a borderline 

association between caesarean delivery and a greater rMSSD (Table 3). When subgroup 

analysis was performed on only babies that were born by caesarean section, there was no 

correlation between rMSSD and whether the delivery took place pre or during labour after 

adjusting for offspring sex and postmenstrual age at assessment (B=2.40 95%CI(-3.74-8.52), 

p=0.43)).

Relationship with cardiovascular structure and function at birth and three months of age

We studied whether heart rate variability was a predictor of other cardiovascular 

developmental differences at birth or related to those known to be found in preterm 

offspring, specifically postnatal cardiac hypertrophy and microvascular rarefaction. We 

based analysis on associations with rMSSD at birth, as the HRV parameter with the 

strongest association with gestational age. However, there were no association with these 

parameters (Table 4) even when the cohort was split into preterm and term groups (data not 

shown).
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Discussion

In this study we have demonstrated that heart rate variability parameters derived from short 

length ECG recordings in the first week of life are significantly associated with gestational 

age at birth. HRV is decreased in preterm infants compared to term counterparts with 

reduced parasympathetic activity(22) and a relative imbalance between sympathetic and 

parasympathetic tone compared to term infants.(23) In contrast, we found no association 

between HRV and exposure to maternal hypertension or fetal growth restriction within our 

cohort. We have also found no evidence that HRV at birth associates with patterns of 

cardiovascular development in the early postnatal period that we have previously reported in 

those born preterm.(10, 17)

Our findings are consistent with several previous studies that have also observed reduced 

HRV at birth in those born preterm.(4) These changes could have been established in 

response to specific in utero stressors linked with the preterm birth. Alterations in maternal 

heart rate variability are seen in pathological pregnancies; with preeclampsia having been 

associated with reduced maternal heart rate variability, which worsens as the pregnancy 

progresses.(3) Interestingly, there is evidence that this is of relevance to the child as maternal 

autonomic heart rate modulation relates to fetal heart rate patterns in hypertensive 

pregnancies.(3) However, our data suggests that any links between maternal and fetal heart 

rate do not persist after delivery in those born to hypertensive pregnancies, irrespective of 

the severity or classification of the hypertensive disorder.

Furthermore, even when there is evidence of fetal compromise, with a reduced birthweight 

z-score or classification as small for gestational age (SGA), if there are any in utero 
differences in autonomic function, they are not evident after birth although, interestingly, 

adults born SGA have been shown to have sympathetic nerve hyperactvity.(24) A reason for 

this might be that those in our cohort born SGA were constitutionally small rather than being 

growth restricted and were therefore unlikely to exhibit autonomic dysfunction. Data which 

would have differentiated between SGA and fetal growth restriction was unfortunately not 

available for our cohort. This was because babies were recruited postnatally and problems 

with growth were not suspected prior to birth in the majority of cases. Therefore, in utero 
measures of placental function had not been carried out by their clinical team. An alternative 

explanation for our, and others’, findings in those born preterm is that they merely reflect a 

relative functional immaturity in ANS activity. The fetal autonomic nervous system develops 

progressively throughout pregnancy(25), with more rapid development of the 

parasympathetic branch(26), and therefore differences in ANS function at birth would be 

expected, proportional to gestational age.

Nevertheless, this functional immaturity at birth could still have pathological significance. 

Previous studies have demonstrated deficits in HRV parameters in the preterm population 

may persist after birth up to term equivalent age (27), which suggests normal development 

may require the fetus to remain in utero until term.(7, 26) Another potential hypothesis for 

this delayed or arrested maturation is disordered anatomical and cellular development of the 

nervous system (28) or disruption of neuropeptide synthesis caused by inflammatory events 

(29) which are more common in the preterm population. HRV has been shown to be altered 
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in conditions such as intraventricular haemorrhage(30) as well as being an indicator of the 

severity of clinical conditions such as respiratory distress syndrome (6), and clinical illness 

scales(5). Nutritional,(31) environmental (32) or iatrogenic stress (33) in the ex utero 
environment has also been potentially linked with abnormal ANS development. This may 

explain the borderline association between vaginal delivery and decreased HRV and vaginal 

delivery as a caesarean section may mitigate some of the delivery stress accompanying 

complicated vaginal deliveries. However, there were no significant associations between 

rMSSD and Apgar score at 5 minutes (Table 3) and no correlation between HRV and 

whether the caesarean section was performed pre or during labour.

In our cohort, perinatal conditions were not related to HRV and measures at birth were not 

predictive of cardiac and vascular structure and function at birth or the postnatal changes in 

these parameters we have reported in these preterm offspring. Therefore, altered ANS 

function is unlikely to explain these cardiovascular developmental differences in those born 

preterm. The lack of importance of ANS function may be because our premature subgroup 

had an average gestational age of 34.4 weeks and the frequency of severe clinical postnatal 

conditions was low. The ANS of late preterm infants matures more quickly after birth(34) 

and previous studies that showed continued reduction in HRV at term equivalent age have 

tended to be in the more extreme preterm infants born prior to 32 weeks(35). Therefore it 

remains possible a functional immaturity of the ANS has a greater impact on cardiovascular 

development for the more extreme preterm infant.

An alternative explanation might be that HRV, does not sufficiently assess sympathetic 

function in spite of it being a sensitive measure of overall autonomic imbalance which 

allows for evaluation of a proportion of cardiovagal function. Therefore, predominance of 

pathology in one of the ANS branches might be obscured by compensatory interactions with 

the other ANS branch not captured by HRV analysis. (36) Since our data demonstrate that 

overall cardiac autonomic dysfunction relates to increasing prematurity but appears not to 

associate with altered cardiovascular development it clearly highlights the necessity of 

follow up research to elucidate whether separate assessment of sympathetic and 

parasympathetic functional integrity (including non-cardiac measures) might provide 

additional insights into the mechanisms whereby birth complications such as preterm birth 

affect the development of the cardiovascular system.

Whether the differences in autonomic function we observe at birth in those born preterm 

could be of relevance to the increased risk of hypertension in adulthood, independent of 

changes in cardiac and vascular phenotype,(37) remains to be seen in future studies. HRV 

attenuation has long been implicated in adult cardiovascular disease states such as acute 

myocardial infarction(1) and congestive heart failure (2). However, one longer term study of 

preterm offspring HRV found early differences were attenuated by two years of age and 

equivalent to term born offspring by six to seven years of age(27), suggesting there would 

need to be a re-emergence of HRV differences in adult life.

Studies of ANS function in neonatal populations need to confront several challenges. We 

used state-of-the art, small, remote monitoring technology to capture data but our analysis 

needed to be based on short length recordings. However, the other measures we have derived 
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from these short recordings have previously been shown to correlate well with parameters 

measured from longer recordings in adults.(38) Measurement of HRV is also only an 

indirect measurement of autonomic function but structural measures of the ANS, such as 

skin nerve biopsies, are not feasible in the neonatal population. In addition, specific 

measurements of sympathetic function such as by measuring muscle sympathetic nerve 

activity by microneurography (39) would be technically challenging in this age group which 

might constitute one of the major challenges in future studies of the specific role of the 

integrity of both ANS branches in cardiovascular development. We used data on sleeping 

infants so as to control external conditions and stimulation to make it easier to interpret 

differences in HRV parameters between groups of subjects. However, we did not 

differentiate between active and quiet sleep states using a simultaneous 

electroencephalogram but instead stopped recordings during periods of observed unrest. 

Nevertheless, a previous study has suggested in healthy term neonates that there is no 

difference in HRV measures between groups when divided into behavioural states during 

sleep(25) with a close agreement between low mean heart rate and quiet sleep and high 

mean heart rate and active sleep in infants.(40) Mean respiration rate during the recording 

was also not recorded although, again, a previous study has suggested this may not correlate 

with HRV indices.(25) In summary, heart rate variability at birth is significantly associated 

with gestational age at birth with increasing prematurity resulting in increased differences in 

autonomic function compared to term infants as suggested by reduced time and frequency 

domain heart rate variability parameters. No associations between HRV and maternal 

hypertension or fetal growth restriction were found. In addition, we found no evidence that 

autonomic function at birth had an impact on cardiovascular development in the early 

postnatal period, but whether it in part explains the long-term risk of hypertension in 

offspring exposed to pregnancy complications remains to be seen.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of study design investigating whether (1) pregnancy complications had an effect 

on heart rate variability at birth and (2) if heart rate variability at birth predicted 

cardiovascular development at birth or at 3 months of age as measured by macrovascular, 

microvascular and cardiac assessments in the offspring. HRV indicates heart rate variability; 

SDNN standard deviation of the NN intervals; rMSSD root mean square of the difference 

between adjacent NN intervals; HF high frequency; LF low frequency and LV left 

ventricular.
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Figure 2. 
Boxplots demonstrating (A) a significantly decreased rMSSD and increased heart rate in 

offspring born preterm but no significant difference in those exposed to maternal 

hypertension (B), preeclampsia (C) or those born small for gestational age (D). rMSSD 

indicates root mean square of the difference between adjacent NN intervals; HTN 

hypertensive pregnancy; PET preeclamptic pregnancy; SGA small for gestational age and 

AGA appropriate for gestational age.
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Table 1

Cohort Characteristics

n = 98

Maternal Demographics & Anthropometrics

     Maternal age at delivery, years 33.0±4.6

     BMI at booking, kg/m2 25.4±5.1

     Smokers, n (%) 2 (2)

     Maternal hypertension during pregnancy, n (%) 46 (47)

Offspring Birth Characteristics

     Gestational age at delivery, weeks 37.9±2.9

     Males, n (%) 48 (49)

     Birth ordera 1±1

     Caesarean section, n (%) 36 (37)

     Antenatal steroids, n (%) 28 (29)

Offspring Physiological Measures at Birth

     Head circumference, cms 33.5±2.2

     Birthweight, grams 2964±754

     Birthweight Z-score 0.10±1.0

     sBP, mmHg 81±15

     dBP, mmHg 44±10

     Pulse Wave Velocity, (m/sec) 5.5±1.5

Offspring Physiological Measures at 3 months

     Weight, grams 5763±950

     Head circumference, cms 40.5±1.6

     sBP, mmHg 97±12

     dBP, mmHg 53±13

     Pulse Wave Velocity, (m/sec) 6.5±1.7

Mean±Standard Deviation unless stated otherwise

a
Median±Interquartile range

BMI indicates body mass index; sBP systolic blood pressure and dBP diastolic blood pressure
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Table 2

Multivariable Regression Coefficients for Heart Rate Variability Parameters at Birth and Pregnancy 

Complications

Gestational age at birth (weeks) Maternal Hypertension Birthweight z-score

B 95% CI p-value B 95% CI p-value B 95% CI p-value

SDNN 0.76 -0.13-1.66 0.09 2.30 -2.92-7.53 0.38 -1.92 -4.32-0.47 0.11

rMSSD 0.99 0.43-1.54 0.001 0.24 -3.17-3.65 0.89 -0.41 -1.98-1.17 0.61

LF 23.50 6.02-40.98 0.009 61.16 -42.84-165.16 0.25 -41.59 -89.25-6.07 0.09

HF 19.25 5.51-33.00 0.007 9.28 -73.32-91.87 0.82 -10.85 -48.96-27.27 0.57

LF/HF ratio -0.20 -0.34- -0.06 0.005 0.34 -0.49-1.17 0.42 0.15 -0.23-0.53 0.44

B unstandardized coefficient presented with 95% CI after correcting for postnatal age at assessment and offspring sex SDNN indicates standard 
deviation of the NN intervals; rMSSD root mean square of the difference between adjacent NN intervals; LF low frequency and HF high frequency
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Table 3

Multivariable Regression Coefficients for Perinatal Clinical Features and rMSSD at Birth

rMSSD

B 95% CI p-value

Maternal smoking -3.29 -14.98-8.39 0.58

Antenatal steroids    0.11 -0.02-0.24 0.58

Caesarean section    3.63 -7.16- -0.10 0.04

Apgar score at 5 mins    0.20 -2.06-2.46 0.86

Days of oxygen    0.16 -1.04-1.36 0.80

Postnatal infection    -1.28 -7.69-5.13 0.69

B unstandardized coefficient presented with 95% CI after correcting for postmenstrual age at assessment (gestational age at birth plus age at 
assessment) and offspring sex

rMSSD root mean square of the difference between adjacent NN intervals
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Table 4

Multivariable Regression Coefficients for Cardiovascular Development in Early Postnatal Life and rMSSD at 

Birth

Birth 3 Months

B 95% CI p-value B 95% CI p-value

Macrovascular

     sBP (mmHg) -0.11 -0.47-0.25 0.55 0.07 -0.23-0.38 0.63

     dBP (mmHg) -0.03 -0.27-0.20 0.78 -0.03 -0.34-0.28 0.85

     PWV (m/s) -0.01 -0.05-0.03 0.63 0.01 -0.03-0.05 0.60

Microvascular

     TVD (mm/mm2) -0.04 -0.17-0.09 0.56 0.02 -0.08-0.11 0.75

Cardiac

     Left ventricular mass index 0.00 -0.09-0.09 1.00 -0.04 -0.18-0.12 0.60

     Ejection fraction (%) 0.06 -0.23-0.34 0.69 0.20 -0.05-0.46 0.11

     Lateral E/E’ ratio 0.002 -0.07-0.07 0.96 -0.06 -0.11-0.01 0.07

B unstandardized coefficient presented with 95% confidence intervals (CI) after correcting for postnatal age at assessment and offspring sex 
rMSSD indicates root mean square of the difference between adjacent NN intervals; sBP systolic blood pressure; dBP diastolic blood pressure; 
PWV pulse wave velocity and TVD total vessel density
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