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Abstract

Background: Segmental duplications, or low-copy repeats, are common in mammalian genomes. In the human
genome, most segmental duplications are mosaics comprised of multiple duplicated fragments. This complex
genomic organization complicates analysis of the evolutionary history of these sequences. One model proposed to
explain this mosaic patterns is a model of repeated aggregation and subsequent duplication of genomic
sequences.

Results: We describe a polynomial-time exact algorithm to compute duplication distance, a genomic distance
defined as the most parsimonious way to build a target string by repeatedly copying substrings of a fixed source
string. This distance models the process of repeated aggregation and duplication. We also describe extensions of
this distance to include certain types of substring deletions and inversions. Finally, we provide a description of a
sequence of duplication events as a context-free grammar (CFG).

Conclusion: These new genomic distances will permit more biologically realistic analyses of segmental
duplications in genomes.

Introduction
Genomes evolve via many types of mutations ranging in
scale from single nucleotide mutations to large genome
rearrangements. Computational models of these muta-
tional processes allow researchers to derive similarity
measures between genome sequences and to reconstruct
evolutionary relationships between genomes. For exam-
ple, considering chromosomal inversions as the only
type of mutation leads to the so-called reversal distance
problem of finding the minimum number of inversions/
reversals that transform one genome into another [1].
Several elegant polynomial-time algorithms have been
found to solve this problem (cf. [2] and references
therein). Developing genome rearrangement models that
are both biologically realistic and computationally tract-
able remains an active area of research.
Duplicated sequences in genomes present a particular

challenge for genome rearrangement analysis and often

make the underlying computational problems more dif-
ficult. For instance, computing reversal distance in gen-
omes with duplicated segments is NP-hard [3]. Models
that include both duplications and other types of muta-
tions - such as inversions - often result in similarity
measures that cannot be computed efficiently. Thus,
most current approaches for duplication analysis rely on
heuristics, approximation algorithms, or restricted mod-
els of duplication [3-7]. For example, there are efficient
algorithms for computing tandem duplication histories
[8-11] and whole-genome duplication histories [12,13].
Here we consider another class of duplications: large
segmental duplications (also known as low-copy repeats)
that are common in many mammalian genomes [14].
These segmental duplications can be quite large (up to
hundreds of kilobases), but their evolutionary history
remains poorly understood, particularly in primates. The
mystery surrounding them is due in part to their com-
plex organization; many segmental duplications are
found within contiguous regions of the genome called
duplication blocks that contain mosaic patterns of smal-
ler repeated segments, or duplicons [15]. Duplication
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blocks that are located on different chromosomes, or
that are separated by large physical distances on a chro-
mosome, often share sequences of duplicons [16]. These
conserved sequences suggest that these duplicons were
copied together across large genomic distances. One
hypothesis proposed to explain these conserved mosaic
patterns is a two-step model of duplication [14]. In this
model, a first phase of duplications copies duplicons
from the ancestral genome and aggregates these copies
into primary duplication blocks. Then in a second
phase, portions of these primary duplication blocks are
copied and reinserted into the genome at disparate loci
forming secondary duplication blocks.
In [17], we introduced a measure called duplication

distance that models the duplication of contiguous sub-
strings over large genomic distances. We used duplica-
tion distance in [18] to find the most parsimonious
duplication scenario consistent with the two-step model
of segmental duplication. The duplication distance from
a source string x to a target string y is the minimum
number of substrings of x that can be sequentially cop-
ied from x and pasted into an initially empty string in
order to construct y. We derived an efficient exact algo-
rithm for computing the duplication distance between a
pair of strings. Note that the string x does not change
during the sequence of duplication events. Moreover,
duplication distance does not model local rearrange-
ments, like tandem duplications, deletions or inversions,
that occur within a duplication block during its con-
struction. While such local rearrangements undoubtedly
occur in genome evolution, the duplication distance
model focuses on identifying the duplicate operations
that account for the construction of repeated patterns
within duplication blocks by aggregating substrings of
other duplication blocks over large genomic distances.
Thus, like nearly every other genome rearrangement
model, the duplication distance model makes some sim-
plifying assumptions about the underlying biology to
achieve computational tractability. Here, we extend the
duplication distance measure to include certain types of
deletions and inversions. These extensions make our
model less restrictive - although we still maintain the
restriction that x is unchanged - and permit the con-
struction of more rich, and perhaps more biologically
plausible, duplication scenarios. In particular, our contri-
butions are the following.
Summary of Contributions
Let μ(x) denote the number of times a character appears
in the string x. Let |x| denote the length of x.
1. We provide an O(|y|2|x|μ(x) μ(y))-time algorithm to

compute the distance between (signed) strings x and y
when duplication and certain types of deletion opera-
tions are permitted.

2. We provide an O(|y|2μ(x) μ(y))-time algorithm to
compute the distance between (signed) strings x and y
when duplicated strings may be inverted before being
inserted into the target string.
3. We provide an O(|y|2|x|μ(x)μ(y))-time algorithm to

compute the distance between signed strings x and y
when duplicated strings may be inverted before being
inserted into the target string, and deletion operations
are also permitted.
4. We provide an O(|y|2|x|3μ(x)μ(y))-time algorithm

to compute the distance between signed strings x and y
when any substring of the duplicated string may be
inverted before being inserted into the target string.
Deletion operations are also permitted.
5. We provide a formal proof of correctness of the

duplication distance recurrence presented in [18]. No
proof of correctness was previously given.
6. We show how a sequence of duplicate operations

that generates a string can be described by a context-
free grammar (CFG).

Preliminaries
We begin by reviewing some definitions and notation
that were introduced in [17] and [18]. Let ∅ denote the
empty string. For a string x = x1 . . . xn, let xi, j denote
the substring xixi+1 . . . xj . We define a subsequence S
of x to be a string x x xi i ik1 2

 with i1 <i2 < ... <ik. We
represent S by listing the indices at which the characters
of S occur in x. For example, if x = abcdef, then the
subsequence S = (1, 3, 5) is the string ace. Note that
every substring is a subsequence, but a subsequence
need not be a substring since the characters comprising
a subsequence need not be contiguous. For a pair of
subsequences S1, S2, denote by S1 ∩ S2 the maximal sub-
sequence common to both S1 and S2.
Definition 1. Subsequences S = (s1, s2) and T = (t1, t2)

of a string x are alternating in x if either s1 <t1 <s2 <t2
or t1 <s1 <t2 <s2.
Definition 2. Subsequences S = (s1, . . ., sk) and T =

(t1, . . ., tl) of a string x are overlapping in x if there
exist indices i, i’ and j, j’ such that 1 ≤ i <i’ ≤ k, 1 ≤ j <j’
≤ l, and (si, si’) and (tj, tj’) are alternating in x. See Fig-
ure 1.
Definition 3. Given subsequences S = (s1, . . ., sk) and

T = (t1, . . ., tl) of a string x, S is inside of T if there
exists an index i such that 1 ≤ i <l and ti <s1 <sk <ti+1.
That is, the entire subsequence S occurs in between suc-
cessive characters of T. See Figure 2.
Definition 4. A duplicate operation from x, δx(s, t,

p), copies a substring xs . . . xt of the source string x and
pastes it into a target string at position p. Specifically, if
x = x1 . . . xm and z = z1 . . . zn, then z ∘ δx(s, t, p) = z1 .
. . zp-1xs . . . xtzp. . . zn. See Figure 3.
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Definition 5. The duplication distance from a source
string x to a target string y is the minimum number of
duplicate operations from x that generates y from an
initially empty target string. That is, y = ∅ ∘ δx(s1, t1,
p1) ∘ δx(s2, t2, p2) ∘ ... ∘ δx(sl, tl, pl).
To compute the duplication distance from x to y, we

assume that every character in y appears at least once in
x. Otherwise, the duplication distance is undefined.

Duplication Distance
In this section we review the basic recurrence for com-
puting duplication distance that was introduced in [18].
The recurrence examines the characters of the target
string, y, and considers the sets of characters of y that
could have been generated, or copied from the source
string in a single duplicate operation. Such a set of char-
acters of y necessarily correspond to a substring of the
source x (see Def. 4). Moreover, these characters must
be a subsequence of y. This is because, in a sequence of
duplicate operations, once a string is copied and
inserted into the target string, subsequent duplicate
operations do not affect the order of the characters in
the previously inserted string. Because every character of
y is generated by exactly one duplicate operation, a
sequence of duplicate operations that generates y parti-
tions the characters of y into disjoint subsequences,
each of which is generated in a single duplicate opera-
tion. A more interesting observation is that these

subsequences are mutually non-overlapping. We forma-
lize this property as follows.
Lemma 1 (Non-overlapping Property). Consider a

source string x and a sequence of duplicate operations of
the form δx(si, ti, pi) that generates the final target string
y from an initially empty target string. The substrings
x s ti i, of x that are duplicated during the construction of
y appear as mutually non-overlapping subsequences of y.
Proof. Consider a sequence of duplicate operations δx

(s1, t1, p1), . . ., δx(sk, tk, pk) that generates y from an
initially empty target string. For 1 ≤ i ≤ k, Let zi be the
intermediate target string that results from δx(s1, t1, p1)
∘ ... ∘ δx(si, ti, pi). Note that zk = y. For j ≤ i, let S j

i be
the subsequence of zi that corresponds to the characters
duplicated by the jth operation. We shall show by induc-
tion on the length i of the sequence that S S Sj

i i
i
i, , ...,2

are pairwise non-overlapping subsequences of zi. For the
base case, when there is a single duplicate operation,
there is no non-overlap property to show. Assume now
that Si

1
1 , . . . Si

i


1
1 are mutually non-overlapping subse-

quences in zi -1. For the induction step note that, by the
definition of a duplicate operation, Si

i is inserted as a
contiguous substring into zi-1 at location pi to form zi.
Therefore, for any j, j’ <i, if S j

i1 and S j
i

1 are non over-

lapping in zi-1 then S j
i and S j

i
 , are non overlapping in

zi. It remains to show that for any j <i, S j
i and Si

i are
non-overlapping in zi. There are two cases: (1) the ele-
ments of S j

i are either all smaller or all greater than the
elements of Si

i or (2) Si
i is inside of S j

i in zi

Figure 1 Overlapping. The red subsequence is overlapping with the blue subsequence in x. The indices (si, si’) and (tj, tj’) are alternating in x.

Figure 2 Inside. The red subsequence is inside the blue subsequence T . All the characters of the red subsequence occur between the indices
ti and ti+1 of T.

Figure 3 A duplicate operation. A duplicate operation, denoted δx(s, t, p). A substring xsxs+1 . . xt of the source string x is copied and inserted
into the target string z at index p.
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(Definition 3). In either case, S j
i and Si

i are not over-
lapping in zi as required.
The non-overlapping property leads to an efficient

recurrence that computes duplication distance. When
considering subsequences of the final target string y that
might have been generated in a single duplicate operation,
we rely on the non-overlapping property to identify sub-
strings of y that can be treated as independent subpro-
blems. If we assume that some subsequence S of y is
produced in a single duplicate operation, then we know
that all other subsequences of y that correspond to dupli-
cate operations cannot overlap the characters in S. There-
fore, the substrings of y in between successive characters
of S define subproblems that are computed independently.
In order to find the optimal (i.e. minimum) sequence

of duplicate operations that generate y, we must con-
sider all subsequences of y that could have been gener-
ated by a single duplicate operation. The recurrence is
based on the observation that y1 must be the first (i.e.
leftmost) character to be copied from x in some dupli-
cate operation. There are then two cases to consider:
either (1) y1 was the last (or rightmost) character in the
substring that was duplicated from x to generate y1, or
(2) y1 was not the last character in the substring that
was duplicated from x to generate y1.
The recurrence defines two quantities: d(x, y) and di

(x, y). We shall show, by induction, that for a pair of
strings, x and y, the value d(x, y) is equal to the duplica-
tion distance from x to y and that di(x, y) is equal to the

duplication distance from x to y under the restriction
that the character y1 is copied from index i in x, i.e. xi
generates y1. d(x, y) is found by considering the mini-
mum among all characters xi of x that can generate y1,
see Eq. 1.
As described above, we must consider two possibilities

in order to compute di(x, y). Either:
Case 1: y1 was the last (or rightmost) character in the

substring of x that was copied to produce y1, (see Fig.
4), or
Case 2: xi+1 is also copied in the same duplicate opera-

tion as xi, possibly along with other characters as well
(see Fig. 5).
For case one, the minimum number of duplicate opera-

tions is one - for the duplicate that generates y1 - plus
the minimum number of duplicate operations to generate
the suffix of y, giving a total of 1 + d(x, y2,|y|) (Fig. 4). For
case two, Lemma 1 implies that the minimum number of
duplicate operations is the sum of the optimal numbers
of operations for two independent subproblems. Specifi-
cally, for each j > 1 such that xi+1 = yj we compute: (i) the
minimum number of duplicate operations needed to
build the substring y2, j-1, namely d(x, y2, j-1), and (ii) the
minimum number of duplicate operations needed to
build the string y1yj,|y|, given that y1 is generated by xi
and yj is generated by xi+1. To compute the latter, recall
that since xiand xi+1 are copied in the same duplicate
operation, the number of duplicates necessary to gener-
ate y1yj,|y| using xi and xi+1 is equal to the number of

Figure 4 Recurrence: Case 1. y1 is generated from xi in a duplicate operation where y1 is the last (rightmost) character in the copied substring
(Case 1). The total duplication distance is one plus the duplication distance for the suffix y2,|y|.
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duplicates necessary to generate yj,|y| using xi+1, namely
di+1(x, yj,|y|), (see Fig. 5 and Eq. 2).
The recurrence is, therefore:
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Theorem 1. d(x, y) is the minimum number of dupli-
cate operations that generate y from x. For {i : xi = y1},
di(x, y) is the minimum number of duplicate operations
that generate y from x such that y1 is generated by xi.
Proof. Let OPT(x, y) denote minimum length of a

sequence of duplicate operations that generate y from x.
Let OPTi(x, y) denote the minimum length of a
sequence of operations that generate y from x such that
y1 is generated by xi. We prove by induction on |y| that
d(x, y) = OPT(x, y) and di(x, y) = OPTi(x, y).
For |y| = 1, since we assume there is at least one i for

which xi = y1, OPT (x, y) = OPTi(x, y) = 1. By definition,
the recurrence also evaluates to 1. For the inductive
step, assume that OPT (x, y’) = d(x, y’) and OPTi(x, y’)
= di(x, y’) for any string y’ shorter than y. We first show
that OPTi(x, y) ≤ di(x, y). Since OPT (x, y) = mini OPTi

(x, y), this also implies OPT (x, y) ≤ d(x, y). We describe
different sequences of duplicate operations that generate
y from x, using xi to generate y1:

• Consider a minimum-length sequence of duplicates
that generates y2,|y|. By the inductive hypothesis its
length is d(x, y2,|y|). By duplicating y1 separately
using xi we obtain a sequence of duplicates that gen-
erates y whose length is 1 + d(x, y2,|y|).

• For every {j : yj = xi+1, j > 1} consider a minimum-
length sequence of duplicates that generates yj,|y|
using xi+1 to produce yj, and a minimum-length
sequence of duplicates that generates y2, j-1.

By the inductive hypothesis their lengths are di+1(x, yj,|
y|) and d(x, y2, j-1) respectively. By extending the start
index s of the duplicate operation that starts with xi+1 to
produce yj to start with xi and produce y1 as well, we
produce y with the same number of duplicate
operations.
Since OPTi(x, y) is at most the length of any of these

options, it is also at most their minimum. Hence,

OPT
d

d di
j y x j jj i

( , ) min
( , )

min { ( , )
,| |

{ : , } ,
x y

x y

x y
y




  

1 2

1 2 11 ii j

id










1( , )}

( , ).

,| |x y

x y

y

To show the other direction (i.e. that d(x, y) ≤ OPT (x,
y) and di(x, y) ≤ OPTi(x, y)), consider a minimum-length
sequence of duplicate operations that generate y from x,
using xi to generate y1. There are a few cases:

• If y1 is generated by a duplicate operation that only
duplicates xi, then OPTi(x, y) = 1 + OPT (x, y2,|y|).
By the inductive hypothesis this equals 1 + d(x, y2,|
y|) which is at least di(x, y).
• Otherwise, y1 is generated by a duplicate operation
that copies xi and also duplicates xi+1 to generate
some character yj . In this case the sequence Δ of
duplicates that generates y2, j-1 must appear after the
duplicate operation that generates y1 and yj because
y2, j-1 is inside (Definition 3) of (y1, yj). Without loss
of generality, suppose Δ is ordered after all the other
duplicates so that first y1yj . . . y|y| is generated, and
then Δ generates y2 . . . yj-1 between y1 and yj . Hence,
OPTi(x, y) = OPTi(x, y1yj,|y|) + OPT (x, y2, j-1). Since
in the optimal sequence xi generates y1 in the same

Figure 5 Recurrence: Case 2. y1 is generated from xi in a duplicate operation where y1 is not the last (rightmost) character in a copied
substring (Case 2). In this case, xi+1 is also copied in the same duplicate operation (top). Thus, the duplication distance is the sum of d(x, y2, j-1),
the duplication distance for y2, j-1 (bottom left), and di+1(x, yj, |y|), the minimum number of duplicate operations to generate yj, |y| given that xi+1
generates yj (bottom right).
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duplicate operation that generates yj from xi+1, we
have OPTi(x, y1yj,|y|) = OPTi+1(x, yj,|y|). By the induc-
tive hypothesis, OPT (x, y2, j-1) + OPTi+1(x, yj,|y|) = d
(x, y2, j-1) + di+1(x, yj,|y|) which is at least di(x, y). □

This recurrence naturally translates into a dynamic
programing algorithm that computes the values of d(x,
·) and di(x, ·) for various target strings. To analyze the
running time of this algorithm, note that both y2, j and
yj,|y| are substrings of y. Since the set of substrings of y
is closed under taking substrings, we only encounter
substrings of y. Also note that since i is chosen from
the set {i : xi = y1}, there are O(μ(x)) choices for i,
where μ(x) is the maximal multiplicity of a character in
x. Thus, there are O(μ(x)|y|2) different values to com-
pute. Each value is computed by considering the mini-
mization over at most μ(y) previously computed values,
so the total running time is bounded by O(|y|2μ(x)μ(y)),
which is O(|y|3|x|) in the worst case. As with most
dynamic programming approaches, this algorithm (and
all others presented in subsequent sections) can be
extended through trace-back to reconstruct the optimal
sequence of operations needed to build y. We omit the
details.
Extending to Affine Duplication Cost
It is easy to extend the recurrence relations in Eqs. (1),

(2) to handle costs for duplicate operations. In the above
discussion, the cost of each duplicate operation is 1, so
the sum of costs of the operations in a sequence that
generates a string y is just the length of that sequence.
We next consider a more general cost model for dupli-
cation in which the cost of a duplicate operation δx(s, t,
p) is Δ1 + (t - s + 1) Δ2 (i.e., the cost is affine in the
number of duplicated characters). Here Δ1, Δ2 are some
non-negative constants. This extension is obtained by
assigning a cost of Δ2 to each duplicated character,
except for the last character in the duplicated string,
which is assigned a cost of Δ1 + Δ2. We do that by add-
ing a cost term to each of the cases in Eq. 2. If xiis the
last character in the duplicated string (case 1), we add
Δ1 + Δ2 to the cost. Otherwise xi is not the last dupli-
cated character (case 2), so we add just Δ2 to the cost.
Eq. (2) thus becomes

d
d

di
j y x j jj i

( , ) min
( , )

min { ( , )
,| |

{ : , } ,
x y

x y

x y
y


 

  

 1 2 2

1 2 11
 





 di j1 2( , ) },| |x y y  (3)

The running time analysis for this recurrence is the
same as for the one with unit duplication cost.

Duplication-Deletion Distance
In this section we generalize the model to include dele-
tions. Consider the intermediate string z generated after
some number of duplicate operations. A deletion opera-
tion removes a contiguous substring zi, . . ., zj of z, and
subsequent duplicate and deletion operations are applied
to the resulting string.
Definition 6. A delete operation, τ (s, t), deletes a

substring zs . . . zt of the target string z, thus making z
shorter. Specifically, if z = z1 . . . zs . . . zt . . . zm, then z
∘ τ (s, t) = z1 . . . zs-1zt+1 . . . zm. See Figure 6.
The cost associated with t (s, t) depends on the num-

ber t - s + 1 of characters deleted and is denoted F(t - s
+ 1).
Definition 7. The duplication-deletion distance from

a source string x to a target string y is the cost of a mini-
mum sequence of duplicate operations from x and dele-
tion operations, in any order, that generates y.
We now show that although we allow arbitrary dele-

tions from the intermediate string, it suffices to consider
deletions from the duplicated strings before they are
pasted into the intermediate string, provided that the
cost function for deletion, F(·) is non-decreasing and
obeys the triangle inequality.
Definition 8. A duplicate-delete operation from x, hx

(i1, j1, i2, j2,. . ., ik, jk, p), for i1 ≤ j1 <i2 ≤ j2 < ... <ik ≤ jk
copies the subsequence
x x x x x xi j i j i jk k1 1 2 2
    of the source string x

and pastes it into a target string at position p. Specifi-
cally, if x = x1 . . . xm and z = z1 . . . zn, then z ∘ hx(i1,
j1, . . ., ik, jk, p) =
z z x x x x x x z zp i j i j i j p nk k1 1 1 1 2 2
      .
The cost associated with such a duplication-deletion is

Δ1 + (jk - i1 + 1)Δ2 + ( )i j
k

  
   11

1
1 . The first

two terms in the cost reflect the affine cost of duplicat-
ing an entire substring of length jk - i1 + 1, and the sec-
ond term reflects the cost of deletions made to that
substrings.
Lemma 2. If the affine cost for duplications is non-

decreasing and F (·) is non-decreasing and obeys the tri-
angle inequality then the cost of a minimum sequence of
duplicate and delete operations that generates a target
string y from a source string x is equal to the cost of a
minimum sequence of duplicate-delete operations that
generates y from x.
Proof. Since duplicate operations are a special case of

duplicate-delete operations, the cost of a minimal
sequence of duplicate-delete operations and delete

Figure 6 A delete operation. A delete operation, denoted t (s, t). The substring zs, t is deleted.
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operations that generates y cannot be more than that of
a sequence of just duplicate operations and delete
operations. We show the (stronger) claim that an arbi-
trary sequence of duplicate-delete and delete operations
that produces a string y with cost c can be transformed
into a sequence of just duplicate-delete operations that
generates y with cost at most c by induction on the
number of delete operations. The base case, where the
number of deletions is zero, is trivial. Consider the first
delete operation, τ . Let k denote the number of dupli-
cate-delete operations that precede τ, and let z be the
intermediate string produced by these k operations. For
i = 1, . . ., k, let Si be the subsequence of x that was
used in the ith duplicate-delete operation. By lemma 1,
S1, . . ., Sk form a partition of z into disjoint, non-over-
lapping subsequences of z. Let d denote the substring of
z to be deleted. Since d is a contiguous substring, Si ∩ d
is a (possibly empty) substring of Si for each i. There
are several cases:
1. Si ∩ d = ∅. In this case we do not change any

operation.
2. Si ∩ d = Si. In this case all characters produced by

the ith duplicate-delete operation are deleted, so we
may omit the ith operation altogether and decrease the
number of characters deleted by τ . Since F (·) is non-
decreasing, this does not increase the cost of generating
z (and hence y).
3. Si ∩ d is a prefix (or suffix) of Si. Assume it is a pre-

fix. The case of suffix is similar. Instead of deleting the
characters Si ∩ d we can avoid generating them in the
first place. Let r be the smallest index in Si\d (that is,
the first character in Si that is not deleted by τ). We
change the ith duplicate-delete operation to start at r
and decrease the number of characters deleted by τ .
Since the affine cost for duplications is non-decreasing
and F (·) is non-decreasing, the cost of generating z
does not increase.
4. Si ∩ d is a non-empty substring of Si that is neither

a prefix nor a suffix of Si. We claim that this case
applies to at most one value of i. This implies that after
taking care of all the other cases τ only deletes charac-
ters in Si. We then change the ith duplicate-delete
operation to also delete the characters deleted by τ, and
omit τ . Since F (·) obeys the triangle inequality, this
will not increase the total cost of deletion. By the induc-
tive hypothesis, the rest of y can be generated by just
duplicate-delete operations with at most the same cost.
It remains to prove the claim. Recall that the set {Si} is
comprised of mutually non-overlapping subsequences of
z. Suppose that there exist indices i ≠ j such that Si ∩ d
is a non-prefix/suffix substring of Si and Sj ∩ d is a non-
prefix/suffix substring of Sj . There must exist indices of
both Si and Sj in z that precede d, are contained in d,
and succeed d. Let ip <ic <is be three such indices of Si

and let jp <jc <js be similar for Sj . It must be the case
also that jp <ic <js and ip <jc <is. Without loss of general-
ity, suppose ip <jp. It follows that (ip, ic) and (jp, js) are
alternating in z. So, Si and Sjare overlapping which con-
tradicts Lemma 1.
To extend the recurrence from the previous section to

duplication-deletion distance, we must observe that
because we allow deletions in the string that is dupli-
cated from x, if we assume character xi is copied to pro-
duce y1, it may not be the case that the character xi+1
also appears in y; the character xi+1 may have been
deleted. Therefore, we minimize over all possible loca-
tions k >i for the next character in the duplicated string
that is not deleted. The extension of the recurrence
from the previous section to duplication-deletion dis-
tance is:

ˆ( , ) , ˆ( , ) min ˆ ( , ),

ˆ ( , ) ,

{ : }
d d d

d

i x y
i

i

i
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
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




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(5)

Theorem 2. d̂ (x, y) is the duplication-deletion dis-
tance from x to y. For {i : xi = y1}, d̂i

(x, y) is the dupli-
cation-deletion distance from x to y under the additional
restriction that y1is generated by xi.
The proof of Theorem 2 is almost identical to that of

Theorem 1 in the previous section and is omitted. How-
ever, the running time increases; while the number of
entries in the dynamic programming table does not
change, the time to compute each entry is multiplied by
the possible values of k in the recurrence, which is O(|
x|). Therefore, the running time is O(|y|2|x|μ(x)μ(y)),
which is O(|y|3|x|2) in the worst case. We conclude this
section by showing, in the following lemma, that if both
the duplicate and delete cost functions are the identity
function (i.e. one per operation), then the duplication-
deletion distance is equal to duplication distance with-
out deletions.
Lemma 3. Given a source string x, a target string y, If

the cost of duplication is 1 per duplicate operation, and
the cost of deletion is 1 per delete operation, then d̂ (x,
y) = d(x, y).
Proof. First we note that if a target string y can be

built from x in d(x, y) duplicate operations, then the
same sequence of duplicate operations is a valid
sequence of duplicate and delete operations as well, so d
(x, y) is at least d̂ (x, y).
We claim that every sequence of duplicate and delete

operations can be transformed into a sequence of
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duplicate operations of the same length. The proof of
this claim is similar to that of Lemma 2. In that proof
we showed how to transform a sequence of duplicate
and delete operations into a sequence of duplicate-delete
operations of at most the same cost. We follow the
same steps, but transform the sequence into an a
sequence that consists of just duplicate operations with-
out increasing the number of operations. Recall the four
cases in the proof of Lemma 2. In the the first three
cases we eliminate the delete operation without increas-
ing the number of duplicate operations. Therefore we
only need to consider the last case (Si ∩ d is a non-
empty substring of Si that is neither a prefix nor a suffix
of Si). Recall that this case applies to at most one value
of i. Deleting Si ∩ d from Si leaves a prefix and a suffix
of Si. We can therefore replace the ith duplicate opera-
tion and the delete operation with two duplicate opera-
tions, one generating the appropriate prefix of Si and
the other generating the appropriate suffix of Si. This
eliminates the delete operation without changing the
number of operations in the sequence. Therefore, for
any string y that results from a sequence of duplicate
and delete operations, we can construct the same string
using only duplicate operations (without deletes) using
at most the same number of operations. So, d(x, y) is
no greater than d̂ (x, y).

Duplication-Inversion Distance
In this section we extend the duplication-deletion dis-
tance recurrence to allow inversions. We now explicitly
define characters and strings as having two orientations:
forward (+) and inverse (-).
Definition 9. A signed string of length m over an

alphabet Σ is an element of ({+, -} × Σ)m.
For example, (+b -c -a +d) is a signed string of length

4. An inversion of a signed string reverses the order of
the characters as well as their signs. Formally,
Definition 10. The inverse of a signed string x = x1 . .

. xm is a signed string x = -xm . . . -x1.
For example, the inverse of (+b -c -a +d) is (-d +a +c -b).
In a duplicate-invert operation a substring is copied

from x and inverted before being inserted into the target
string y. We allow the cost of inversion to be an affine
function in the length ℓ of the duplicated inverted
string, which we denote Θ1 + ℓΘ2, where Θ1, Θ2 ≥ 0.
We still allow for normal duplicate operations.
Definition 11. A duplicate-invert operation from x,

 x (s, t, p), copies an inverted substring -xt, -xt-1 . . ., -xs
of the source string x and pastes it into a target string at
position p. Specifically, if x = x1 . . . xm and z = z1 . . .
zn, then z ∘  x (s, t, p) = z z x x x z zp t t s p n1 1 1    .
The cost associated with each duplicate-invert opera-

tion is Θ1+ (t - s + 1)Θ2.

Definition 12. The duplication-inversion distance
from a source string x to a target string y is the cost of a
minimum sequence of duplicate and duplicate-invert
operations from x, in any order, that generates y.
The recurrence for duplication distance (Eqs. 1, 3) can

be extended to compute the duplication-inversion dis-
tance. This is done by introducing a term for inverted
duplications whose form is very similar to that of the
term for regular duplication (Eq. 3). Specifically, when
considering the possible characters to generate y1, we
consider characters in x that match either y1 or its
inverse, -y1. In the former case, then, we use di

 (x, y)
to denote the duplication-inversion distance with the
additional restriction that y1 is generated by xi without
an inversion. The recurrence for di

 is the same as for
di in Eq. 3. In the latter case, we consider an inverted
duplicate in which y1 is generated by -xi. This is denoted
by di

 , which follows a similar recurrence. In this
recurrence, since an inversion occurs, xi is the last char-
acter of the duplicated string, rather than the first one.
Therefore, the next character in x to be used in this
operation is -xi-1 rather than xi+1. The recurrence for
di
 also differs in the cost term, where we use the affine

cost of the duplicate-invert operation. The extension of
the recurrence to duplication-inversion distance is there-
fore:

d d d d
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i
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11
(( , ) ( , ) }., ,| |x y x y y2 1 1 2j i jd 
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

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 

(6)

Theorem 3. d (x, y) is the duplication-inversion dis-
tance from x to y. For {i : xi = y1}, di

 (x, y) is the dupli-
cation-inversion distance from x to y under the
additional restriction that y1 is generated by xi. For {i :
xi = -y1}, di

 (x, y) is the duplication-inversion distance
from x to y under the additional restriction that y1is gen-
erated by -xi.
The correctness proof is very similar to that of

Theorem 1, only requiring an additional case for hand-
ling the case of a duplicate invert operation which is
symmetric to the case of regular duplication. The
asymptotic running time of the corresponding
dynamic programming algorithm is O(|y|2μ(x)μ(y)). The
analysis is identical to the one in section 3. The fact
that we now consider either a duplicate or a duplicate-
invert operation does not change the asymptotic run-
ning time.
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Duplication-Inversion-Deletion Distance
In this section we extend the distance measure to
include delete operations as well as duplicate and dupli-
cate-invert operations. Note that we only handle dele-
tions after inversions of the same substring. The order
of operations might be important, at least in terms of
costs. The cost of inverting (+a +b +c) and then deleting
-b may be different than the cost of first deleting +b
from (+a +b +c) and then inverting (+a +c).
Definition 13. The duplication-inversion-deletion

distance from a source string x to a target string y is the
cost of a minimum sequence of duplicate and duplicate-
invert operations from x and deletion operations, in any
order, that generates y.
Definition 14. A duplicate-invert-delete operation

from x,
 x (i1, j1, i2, j2, . . ., ik, jk, p), for i1 ≤ j1 <i2 ≤ j2 <... <ik≤

jk pastes the string
            

x x x x x x x x xj j i j j i j j ik k k k k k1 1 11 1 1 1 1 1
    in-

to a target string at position p. Specifically, if x = x1 . . .
xm and z = z1 . . . zn, then z ∘  x (i1, j1, i2, j2, . . ., ik, jk,
p) = z z x x x x x x x x xp j j i j j i j jk k k k k k i1 1 1 1 11 1 1 1

               
   ii p nz z

1
  .

The cost of such an operation is Θ1 + (jk - i1 + 1)Θ2 +
( )i j

k
  

   11

1
1 . Similar to the previous section, it

suffices to consider just duplicate-invert-delete and
duplicate-delete operations, rather than duplicate, dupli-
cate-invert and delete operations.
Lemma 4. If F (·) is non-decreasing and obeys the tri-

angle inequality and if the cost of inversion is an affine
non-decreasing function as defined above, then the cost
of a minimum sequence of duplicate, duplicate-invert
and delete operations that generates a target string y
from a source string x is equal to the cost of a minimum
sequence of duplicate-delete and duplicate-invert-delete
operations that generates y from x.
The proof of the lemma is essentially the same as that

of Lemma 2. Note that in that proof we did not require
all duplicate operations to be from the same string x.
Therefore, the arguments in that proof apply to our
case, where we can regard some of the duplicates from
x and some from the inverse of x.
The recurrence for duplication-inversion-deletion dis-

tance is obtained by combining the recurrences for
duplication-deletion (Eq. 5) and for duplication-inver-
sion distance (Eq. 6). We use separate terms for dupli-
cate-delete operations ( ˆ

di
 ) and for duplicate-invert-

delete operations ( ˆ
di
 ). Those terms differ from the

terms in Eq. 6 in the same way Eq. 5 differs from Eq. 2;
Because of the possible deletion we do not know that xi
+1 (xi-1) is the next duplicated character. Instead we
minimize over all characters later (earlier) than xi.
The recurrence for duplication-inversion-deletion dis-

tance is therefore:
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Theorem 4. ˆ
d (x, y) is the duplication-inversion-dele-

tion distance from x to y. For {i :xi = y1}, ˆ
di
 (x, y) is

the duplication-inversion-deletion distance from x to y
under the additional restriction that y1 is generated by
xi. For {i : xi = -y1}, ˆ

di
 (x, y) is the duplication-inver-

sion-deletion distance from x to y under the additional
restriction that y1is generated by -xi.
The proof, again, is very similar to the proofs in the

previous sections. The running time of the correspond-
ing dynamic programming algorithm is the same
(asymptotically) as that of duplication-deletion distance.
It is O(|y|2|x|μ(y)μ(x)), where the multiplicity μ(y) (or
μ(x)) is the number of times a character appears in the
string y (or x), regardless of its sign.
In comparing the models of the previous section and

the current one, we note that restricting the model of
rearrangement to allow only duplicate and duplicate-
invert operations (Section 5) instead of duplicate-invert-
delete operations may be desirable from a biological per-
spective because each duplicate and duplicate-invert
requires only three breakpoints in the genome, whereas
a duplicate-invert-delete operation can be significantly
more complicated, requiring more breakpoints.

Variants of Duplication-Inversion-Deletion
Distance
It is possible to extend the model even further. We give
here one detailed example which demonstrates how
such extensions might be achieved. Other extensions are
also possible. In the previous section we handled the
model where the duplicated substring of x may be
inverted in its entirety before being inserted into the tar-
get string. In the generalized model a substring of the
duplicated string may be inverted before the string is
inserted into y. For example, we allow (+a +b +c +d +e
+f) to become (+a +b -e -d -c +f) before being inserted
into y. In this model, the cost of duplicating a string of
length m with an inversion of a substring of length ℓ is
Δ1 + mΔ2 + Θ (ℓ), for some non-negative monotonically
increasing cost function Θ.
The way we extend the recurrence is by considering

all possible substring inversions to the original string x.
For 1 ≤ s ≤ t ≤ |x|, let x s t, be the string x1 . . . xs-1 -xt.
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. . -xs xt+1 . . . x|x|. That is, the string that is obtained
from x by inverting (in-place) xs, t. For convenience,
define also x 0 0, = x. We will use di

st (x, y) to denote
the distance from x to y in this model under the addi-
tional restriction that y1 is generated by xi and that the
substring xs, t was inverted. Note that this does not
make much sense unless s ≤ i ≤ t, since otherwise the
inverted substring is not used in the duplication. How-
ever, restricting the inversion cost Θ (ℓ) to be non-nega-
tive and monotonically increasing makes sure that those
cases will not contribute to the minimization since
inverting a character that is not duplicated will only
increase the cost. The recurrence for duplication-dele-
tion with arbitrary-substring-duplicate-inversions dis-
tance is given below.
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The running time is O(|y|2|x|3μ(x)μ(y)). The multipli-
cative |x|2 factor in the running time in comparison
with that of the previous section arises from considering
all possible inverted substrings of x. We note that if we
were only interested in handling inversions to just a pre-
fix or a suffix of the duplicated string, then it is possible
to extend the duplication-inversion-deletion recurrence
without increasing the asymptotic running time.

Duplication Distance as a Context-Free Grammar
The process of generating a string y by repeatedly copy-
ing substings of a source string x and pasting them into
an initially empty target string is naturally described by
a context-free grammar (CFG). This alternative view
might be useful in understanding our algorithms and
their correctness. Thus, we provide the basic idea
behind this connection for the most simple variant of
duplication distance: no inversions or deletions and the
cost of each duplicate operation is 1. For a fixed source
string x, we construct a grammar Gx in which for every
i, j such that 1 ≤ i ≤ j ≤ |x|, there is a production rule S
→ SxiSxi+1S . . . SxjS.
These production rules correspond to duplicating the

substring xi, j . In addition there is a trivial production
rule S → Î, where Î denotes the empty string. It is easy
to see that the language described by this grammar is
exactly the set of strings that can be duplicated from x.
The non-overlapping property (Lemma 1) is now an
immediate consequence of the structure of parse trees
of CFGs. Finding the duplication distance from x to y is
equivalent to finding a parse tree with a minimal num-
ber of non-trivial productions among all possible parse
trees for y.
Consider now the slightly different grammar obtained by

removing the leading S to the left of xi from each of the
production rules, so that the new rules are of the form S →
xiSxi+1S . . . Sxj S. It is not difficult to see that both gram-
mars produce the same language and have the same mini-
mal size parse tree for every string y. The change only

Figure 7 Example parse tree. An optimal parse tree T for y = bbccd where x = abcd. The root production duplicates x2,4 = bcd. x2 generates
y1 and x3 generates y4. The trees T1 and T2 are indicated. T1 is an optimal parse tree for y2,4-1 = bc. T2 is an optimal parse tree for y4,|y| = cd.
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restricts the order in which rules are applied. For example,
y1 is always produced by the first production rule.
The recurrence for di(x, y) naturally arises by observing

that if T is an optimal parse tree for y in which the first
production rule generates y1 by xi and yj by xi+1, then the
subtree T1 of T that generates y2, j-1 is a valid parse tree
which is optimal for y 2, j-1. Similarly, the tree T2

obtained by deleting xi and T1 from T is a valid parse
tree which is optimal for yj,|y| under the restriction that yj
must be generated by xi+1 (see Fig. 7). Moreover, T1 and
T2 are disjoint trees which contain all non trivial produc-
tions in T . This explains the term d(x, y2, j-1) + di+1(x,
yj,|y|) in Eq. 2, which is the heart of the recursion. The
minimization over {j : yj = xi+1, j > 1} simply enumerates
all of the possibilities for constructing T . The term 1 + d
(x, y2,|y|) handles the possibility that y1 is generated by a
duplicate operation that ends with xi. In this case the tree
T2 is empty, so we only consider T1. We add one to
account for the production rule at the root of T which is
not part of T1. This is illustrated in Fig. 8.

Conclusion
We have shown how to generalize duplication distance
to include certain types of deletions and inversions and
how to compute these new distances efficiently via
dynamic programming. In earlier work [17,18], we used

duplication distance to derive phylogenetic relationships
between human segmental duplications. We plan to
apply the generalized distances introduced here to the
same data to determine if these richer computational
models yield new biological insights.
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