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Telomeres, the repeating DNA sequences found at the ends of chromosomes, are dynamic and

complex parts of the genome with important health and fitness consequences. In this issue of

PLOS Genetics, Bauch and colleagues [1] help to extend our understanding of telomere biology

in important ways. Although telomeres are DNA, they do not act like DNA is “supposed” to.

Telomeres get shorter with each round of mitosis due to the end replication problem and in

response to DNA damage. They can be extended by telomerase, among other mechanisms.

This means that telomere length (TL) may change over an organism’s life (as soon as a fertil-

ized egg begins dividing) and do so differentially across cells in the body, reflecting the particu-

lar replicative and telomere maintenance mechanisms experienced by a cell lineage.

Growing evidence suggests that gametes are not exempt from these complex telomere

dynamics and that TL does not adhere to canonical DNA inheritance patterns. First, the telo-

meres contained on particular chromosome ends within an egg and sperm cell are the telo-

meres that a fertilized egg begins its life with [2]. Conventional genetic polymorphisms have

been shown to predict TL in humans. These genetic polymorphisms could influence TL via

effects on TL dynamics from the first mitotic division of the fertilized egg on. However, genetic

polymorphisms could also predict TL via indirect genetic effects on telomere dynamics in the

mother or father’s gamete cell lineages, which are then passed on to offspring. Although the

gametes of female animals are generally produced before birth, males must continually pro-

duce sperm. Consistent with this, paternally transmitted TL appears to be dynamic, whereas

maternally transmitted TL is less so. In particular, paternal age at conception (PAC) seems to

influence sperm TL, and subsequently the TL of offspring, whereas maternal age at conception

(MAC) does not [3].

Further complicating the picture, telomere dynamics vary considerably across species

(Table 1). In cross-sectional studies of humans and chimpanzees, sperm TL and, correspond-

ingly, offspring TL appears to increase with PAC. Other species have tended to show either no

association between PAC and offspring TL, or a negative association.

Bauch and colleagues’ study [1] extends the literature on parental age and offspring TL in

particularly robust ways. They take advantage of a long-term study of jackdaw birds to marshal

a large, longitudinal and family-based sample. TL was carefully measured using telomere

restriction fragment (TRF) analysis and met high–quality-control standards. Additionally, a

cross-fostering experiment was also conducted. Because of these combined strengths, the

results allow better causal inferences than is typical in studies of TL inheritance patterns.
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Although converging evidence strongly suggests that the PAC association with offspring TL

in humans is caused by a progressive increase in sperm TL as men age [3], most studies in

humans and other species have been cross-sectional and observational. Therefore, doubt often

remains about the degree to which PAC associations represent changes in gamete TL versus

other causal pathways. For example, TL may predict longevity and health such that males who

start life with longer TL tend to live to a later age and transmit their own longer telomeres to

offspring. Such a dynamic could create a correlation between PAC and TL without requiring a

lengthening of sperm TL with age.

By comparing siblings sired by the same father at different PACs, Bauch and colleagues [1]

showed clear evidence that TLs of offspring are likely shortened as fathers age. Cross-fostering,

buttressed these findings by showing that biological, but not foster-father, ages predicted off-

spring TL. Similar analyses showed no apparent effect of MAC on offspring TL. Although it is

possible that other factors confound this analysis, such as mothers adjusting egg contents

based on the age of their mates, this study provides strong evidence that telomeres are short-

ened with paternal age in this species.

It remains unclear what the mechanistic and evolutionary explanations for the PAC effects

on TL are, and why the effect varies across species. One explanation for cross-species variabil-

ity that has garnered some support is that species with higher sperm production rates show a

greater increase in sperm TL with age [3–5]. Surveying the most recent evidence of PAC asso-

ciations with TL across species (Table 1), an alternative possible explanation emerges. It

appears that increases in TL with PAC are generally found more in longer-lived and larger spe-

cies, whereas shorter-lived and smaller species generally show negative PAC effects or no effect

at all. Past studies have shown that long-lived species generally have shorter TL, whereas larger

species generally have lower somatic telomerase activity (TA) [6, 7]. Lower somatic TA in

large organisms is thought to be driven by the greater risk of cancer development in these

Table 1. Paternal age effect on offspring TL across species (adapted and updated from [3]).

Species n ra p Longevityb,c Weight (g)b Reference

Atlantic salmon 60 NS 13 25,740 [12]

Sand lizard� 12 -0.59 0.041 20 15 [13]

European shag 204 + 0.43 30.6 1,773 [14]

Common tern� 142 − 0.02 33 120 [5]

Alpine swift� 95 − 0.033 26 102.7 [15]

Zebra finch� 139 − 0.032 12 12 [16]

Jackdaw� 715 − 0.007 20.3 246 [1]

Great reed warbler 154 + 0.7 10.1 30 [17]

Soay sheep 318 0.066 0.238 22.8 80,000 [18]d

House mouse� 12d − �0.05 4 20.5 [19]

Long-tailed macaquee 9 + NS 39 6,363 [20]

Chimpanzee� 40 0.42 0.009 59.4 44,984 [4]

Human� 144 0.15 0.03 122.5 62,035 [4]

�p< 0.05
acorrelation values if reported; otherwise “+” indicates positive association and “−” negative association
bfrom AnAge database except sand lizard data which came from https://www.wildlifetrusts.org/wildlife-explorer/reptiles/sand-lizard
cmaximum longevity
dpersonal communication
etesticular TL instead of offspring TL

Abbreviations: n, number of offspring; NS, non-significant ; p, p-value ; r, correlation coefficient ; TL, telomere length.

https://doi.org/10.1371/journal.pgen.1007946.t001
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species, which selects against the cancer promoting effects of TA. Therefore, the diversity of

these PAC effects on TL is all the more puzzling because the most prominent suggested cause

of a positive PAC effect is high expression of testicular TA. If larger body size increases TA-

promoted cancers in both somatic and germ line tissues, the expectation is that long-lived spe-

cies should have decreased testicular TA and more negative PAC effects on TL, not more posi-

tive ones. Examination of testicular TA levels across species may help better reveal the extent

to which testicular TA levels underlie cross-species variation in PAC effects.

This contradiction between expected testicular TA levels and PAC effects on TL suggest

that explanations other than testicular TA should also be further explored. There is evidence

that changes in sperm TL in humans are, at least partly, driven by selective survival or prolifer-

ation of spermatogonial stem cells with longer TL [3, 8]. Given this, future studies of the PAC

effect in humans and other species should consider not just changes in mean TL with PAC,

but changes in TL distributions. For example, the TRF analysis deployed by Bauch and col-

leagues provides data on the distribution of TL, which could be analyzed in future studies to

help address whether there are shifts not only in the TL mean, but also the TL distribution

with PAC.

Regardless of mechanisms, the PAC effect on TL has intriguing health and evolutionary

implications. Strong converging evidence suggests that TL influences health and longevity.

The basic inheritance patterns of DNA as well as empirical evidence in humans suggests that

the PAC effect persists across generations [9]. Therefore, if ages of reproduction change in a

lineage/population in which PAC effects exist, then the TL of descendants could be rapidly

and durably shifted in ways that change their health and fitness. This raises the question of

why PAC effects persist if they cause such phenotypic instability. I have suggested that the pos-

itive PAC effect in humans might represent a unique type of adaptive intergenerational genetic

plasticity wherein descendants’ TL are progressively adjusted based on average age of repro-

duction among male ancestors [10]. If ages of reproduction of ancestors are predictive of the

environment descendants will experience, such a mechanism could allow a more appropriate

TL for that environment. Specifically, in lineages with later ages of reproduction, longer TL

may promote increased maintenance effort that improves fitness in the context of low extrinsic

mortality environments. How do we square this with the emerging evidence from Bauch and

colleagues as well as others (Table 1) that the PAC effect on TL is usually nonexistent or nega-

tive in smaller and shorter-lived species? Adaptive intergenerational effects are more likely to

emerge when intragenerational plasticity is constrained [11]. Because larger species tend to

have low somatic TA, this might constrain their intragenerational plasticity in TL and thereby

increase selection for intergenerational plasticity.
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