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Abstract

Composed of hundreds of microbial species, the composition of the human gut microbiota

can vary with chronic diseases underlying health disparities that disproportionally affect eth-

nic minorities. However, the influence of ethnicity on the gut microbiota remains largely

unexplored and lacks reproducible generalizations across studies. By distilling associations

between ethnicity and differences in two US-based 16S gut microbiota data sets including

1,673 individuals, we report 12 microbial genera and families that reproducibly vary by eth-

nicity. Interestingly, a majority of these microbial taxa, including the most heritable bacterial

family, Christensenellaceae, overlap with genetically associated taxa and form co-occurring

clusters linked by similar fermentative and methanogenic metabolic processes. These

results demonstrate recurrent associations between specific taxa in the gut microbiota and

ethnicity, providing hypotheses for examining specific members of the gut microbiota as

mediators of health disparities.

Author summary

Understanding microbiota similarities and differences across ethnicities has the potential

to advance approaches aimed at personalized microbial discovery and treatment, particu-

larly those involved in ethnic health disparities. Here, we explore whether or not self-

declared ethnicity consistently varies with gut microbiota composition across 1,673

healthy individuals in the United States. We find subtle but significant differences in taxo-

nomic composition between four ethnicities, and we replicate these results across two

study populations. Within the gut microbiota of Americans, there are at least 12 microbial

taxa, which reproducibly vary in abundance across ethnicities. These taxa tend to correlate

in abundance and metabolic functions and overlap with previously identified taxa that are

associated with human genetic variation. We discuss the roles these taxa play in digestion
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and disease and propose hypotheses for how they may relate to ethnic health disparities.

This study highlights the need to consider and potentially account for ethnic diversity in

microbiota research and therapeutics.

Introduction

The human gut microbiota at fine resolution varies extensively between individuals [1–3], and

this variability frequently associates with diet [4–7], age [6, 8, 9], sex [6, 9, 10], body mass

index (BMI) [1, 6], and diseases presenting as health disparities [11–14]. The overlapping risk

factors and burden of many chronic diseases disproportionally affect ethnic minorities in the

United States, yet the underlying biological mechanisms mediating these substantial disparities

largely remain unexplained. Recent evidence is consistent with the hypothesis that ethnicity

associates with variation in microbial abundance, specifically in the oral cavity, gut, and vagina

[15–17]. To varying degrees, ethnicity can capture many facets of biological variation includ-

ing social, economic, and cultural variation, as well as aspects of human genetic variation and

biogeographical ancestry. Ethnicity also serves as a proxy to characterize health disparity inci-

dence in the US, and while factors such as genetic admixture create ambiguity of modern eth-

nic identity, self-declared ethnicity has proven a useful proxy for genetic and socioeconomic

variation in population scale analyses, including in the Human Microbiome Project (HMP)

[18–20]. Microbiota differences have been documented across populations that differ in eth-

nicity as well as in geography, lifestyle, and sociocultural structure; however, these global

examinations cannot disconnect factors such as intercontinental divides and hunter–gatherer

versus western lifestyles from ethnically structured differences [21–23]. Despite the impor-

tance of understanding the interconnections between ethnicity, microbiota, and health dispar-

ities, there are no reproducible findings about the influence of ethnicity on differences in the

gut microbiota and specific microbial taxa in diverse US populations, even for healthy individ-

uals [6].

Here, we comprehensively examine connections between self-declared ethnicity and gut

microbiota differences across more than a thousand individuals sampled by the American Gut

Project (AGP, N = 1375) [24] and the HMP (N = 298) [6]. Previous studies demonstrated that

human genetic diversity in the HMP associates with differences in microbiota composition

[25], and genetic population structure within the HMP generally delineates self-declared eth-

nicity [20]. Ethnicity was not found to have a significant association with microbiota composi-

tion in a Middle Eastern population; however, factors such as lifestyle and environment that

influence microbiota variation across participants was homogenous compared to the ethnic,

sociocultural, economic, and dietary diversity found within the US [26]. While ethnic diversity

is generally under-represented in current microbiota studies, evidence supporting an ethnic

influence on microbiota composition among first generation immigrants has been recently

demonstrated in a Dutch population [27]. The goal of this examination is to evaluate, for the

first time, if there are reproducible differences in gut microbiota across ethnicities within an

overlapping US population, as ethnicity is one of the key defining factors for health disparity

incidence in the US. Lifestyle, dietary, and genetic factors all vary to different degrees across

ethnic groups in the US, and it will require more even sampling of ethnic diversity and stricter

phenotyping of study populations to disentangle which factors underlie ethnic microbiota var-

iation in the AGP and HMP.

Gut microbiota diversity across ethnicities in the United States
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Results

Microbiota are subtly demarcated by ethnicity

We first evaluate gut microbiota distinguishability between AGP ethnicities (Fig 1A, family

taxonomic level, Asian-Pacific Islanders [N = 88], Caucasians [N = 1237], Hispanics [N = 37],

and African Americans [N = 13]), sexes (female [N = 657], male [N = 718]), age groups (years

grouped by decade), and categorical BMI (underweight [N = 70], normal [N = 873], over-

weight [N = 318], and obese [N = 114]) (Demographic details in S1A Table). Age, sex, and

BMI were selected as covariates because they are consistent across the AGP and HMP data

sets. Additionally, 31 other AGP categorical factors measuring diet, environment, and geogra-

phy were compared for pairwise differences between two ethnicities using proportions tests,

and very few (10/894) tests significantly varied (S1 Table additional sheets). Interindividual

gut microbiota heterogeneity clearly dominates; however, analyses of similarity (ANOSIM)

reveal subtle but significant degrees of total microbiota distinguishability for ethnicity, BMI,

and sex but not for age (Fig 1B, Ethnicity; Fig 1C, BMI; Fig 1D, Sex; Fig 1E, Age) [28]. Recog-

nizing that subtle microbiota distinguishability between ethnicities may be spurious, we inde-

pendently replicate the ANOSIM results from HMP African Americans (N = 10), Asians

(N = 34), Caucasians (N = 211), and Hispanics (N = 43) (S2A Table, R = 0.065, p = 0.044). We

again observe no significant distinguishability for BMI, sex, and age in the HMP. Higher rare-

faction depths increase microbiota distinguishability in the AGP across various beta diversity

metrics and categorical factors (S2B Table), and significance increases when individuals from

over-represented ethnicities are subsampled from the average beta diversity distance matrix

(S2C Table). Supporting the ANOSIM results, Permutational Multivariate Analysis of Vari-

ance (PERMANOVA) models with four different beta diversity metrics showed that while all

factors had subtle but significant associations with microbiota variation when combined in a

single model, effect sizes were highest for ethnicity in seven out of eight comparisons across

beta diversity metrics and rarefaction depths in the AGP and HMP (S2D Table). We addition-

ally test microbiota distinguishability by measuring the correlation between beta diversity and

ethnicity, BMI, sex, and age with an adapted BioEnv test (S2E Table) [29]. Similar degrees of

microbiota structuring occur when all factors are incorporated (Spearman Rho = 0.055, p-val-

ues: Ethnicity = 0.057, BMI < 0.001, Sex< 0.001, Age = 0.564). Firmicutes and Bacteroidetes

dominated the relative phylum abundance, with each representing between 35% and 54% of

the total microbiota across ethnicities (S1 Fig).

We next test for ethnicity signatures in the gut microbiota by analyzing alpha and beta

diversity, abundance and ubiquity distributions, distinguishability, and classification accuracy

[30]. Shannon’s Alpha Diversity Index [31], which weights both microbial community rich-

ness (observed operational taxonomic units [OTUs]) and evenness (Equitability), significantly

varies across ethnicities in the AGP data set (Kruskal–Wallis, p = 2.8e-8) with the following

ranks: Hispanics > Caucasians > Asian-Pacific Islanders > African Americans (Fig 2A). In

the HMP, there is a significantly lower Shannon diversity for Asian-Pacific Islanders relative to

Caucasians and a trend of lower Shannon diversity for Asian-Pacific Islanders relative to His-

panics; African Americans change position in diversity relative to other ethnicities, potentially

as a result of undersampling bias. Five alpha diversity metrics, two rarefaction depths, and sep-

arate analyses of Observed OTUs and Equitability generally confirm the results (S3A Table).

If ethnicity impacts microbiota composition, pairwise beta diversity distances (ranging

from 1/completely dissimilar to 0/identical) will be greater between ethnicities than within

ethnicities. While average gut microbiota beta diversities across all individuals are high (Bray–

Curtis = 0.808), beta diversities between individuals of the same ethnicity (intraethnic, Bray–

Curtis = 0.806) are subtly but significantly lower than those between ethnicities in both the

Gut microbiota diversity across ethnicities in the United States
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AGP (interethnic, Bray–Curtis = 0.814) and HMP data sets (intraethnic, Bray–Curtis = 0.870

versus interethnic, Bray–Curtis = 0.877) (Fig 2B). We confirm AGP results by subsampling

individuals from over-represented ethnicities across beta metrics and rarefaction depths

Fig 1. Gut microbiota composition and distinguishability by ethnicity, sex, age, and BMI. (A) The average relative abundance of dominant microbial families for

each ethnicity. (B–E) Principle coordinates analysis plots of microbiota Bray–Curtis beta diversity and ANOSIM distinguishability for: (B) Ethnicity, (C) Sex, (D) Age,

(E) BMI. In B–E, each point represents the microbiota of a single sample, and colors reflect metadata for that sample. Caucasian points are reduced in size to allow

clearer visualization, and p-values are not corrected across factors that have different underlying population distributions. Data available at https://github.com/

awbrooks19/microbiota_and_ethnicity. BMI, body mass index.

https://doi.org/10.1371/journal.pbio.2006842.g001
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(S4A and S4B Table). Finally, we repeat analyses across beta metrics and rarefaction depths

using only the average distance of each individual to all individuals from the ethnicity to which

they are compared (S4C and S4D Table).

Fig 2. Ethnicity associates with diversity and composition of the gut microbiota. (A) Center lines of each boxplot depict the median by which ethnicities were ranked

from low (left) to high (right); the lower and upper ends of each box represent the 25th and 75th percentiles, respectively; whiskers denote the 1.5 interquartile range;

and black dots represent individual samples. Lines in the middle of violin plots depict the mean, and p-values are Bonferroni corrected within each data set. (B) Left

extending violin plots represent intraethnic distances for each ethnicity, and right extending violin plots depict all interethnic distances. Center lines depict the mean

beta diversity. Significance bars above violin plots depict Bonferroni corrected pairwise Mann–Whitney U comparisons of the intra-intra- and intra-interethnic

distances. (C) Within each ethnicity, OTUs shared by at least 50% of samples. Colored lines represent a robust ordinary least squares regression within OTUs of each

ethnicity, shaded regions represent the 95% confidence interval, R2 denotes the regression correlation, the OTUs column indicates the number of OTUs with>50%

ubiquity for that ethnicity, Mean A/U is the average abundance/ubiquity ratio, and the padj is the regression significance adjusted and Bonferroni corrected for the

number of ethnicities. Data available at https://github.com/awbrooks19/microbiota_and_ethnicity. OTU, operational taxonomic unit.

https://doi.org/10.1371/journal.pbio.2006842.g002
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Next, we explore interethnic differences in the number of OTUs shared in at least 50% of

individuals within an ethnicity, as the likelihood of detecting a biological signal is improved in

more abundant organisms relative to noise that may predominate in lower abundance OTUs.

Out of 5,591 OTUs in the total AGP data set, 101 (1.8%) OTUs meet this ubiquity cutoff in all

ethnicities, and 293 (5.2%) OTUs meet the cutoff within at least one ethnicity. Hispanics share

the most ubiquitous OTUs and have the lowest average abundance/ubiquity (A/U) ratio (Fig

2C), indicating stability, whereby stability represents a more consistent appearance of OTUs

with lower abundance but higher ubiquity [32]. This result potentially explains their signifi-

cantly lower intraethnic beta diversity distance and thus higher microbial community overlap

relative to the other ethnicities (Fig 2B). Comparisons in the AGP between the higher sampled

Hispanic, Caucasian, and Asian-Pacific Islander ethnicities also reveal a trend wherein higher

intraethnic community overlap (Fig 2B) parallels higher numbers of ubiquitous OTUs (Fig

2C), higher Shannon alpha diversity (Fig 2A), and higher stability of ubiquitous OTUs as mea-

sured by the A/U ratio (Fig 2C).

We next assess whether a single ethnicity disproportionately impacts total gut microbiota

distinguishability in the AGP by comparing ANOSIM results from the consensus beta diver-

sity distance matrix when each ethnicity is sequentially removed from the analysis (Fig 3A and

S2E Table). Distinguishability remains unchanged when the few African Americans are

removed but is lost upon removal of Asian-Pacific Islanders or Caucasians, likely reflecting

their higher beta diversity distance from other ethnicities (Fig 3A). Notably, removal of His-

panics increases distinguishability among the remaining ethnicities, which may be due to a

higher degree of beta diversity overlap observed between Hispanics and other ethnicities (S4B

Table). Results conform across rarefaction depths and beta diversity metrics (S2F Table), and

pairwise combinations show strong distinguishability between African Americans and His-

panics (ANOSIM, R = 0.234, p = 0.005) and Asian-Pacific Islanders and Caucasians (ANO-

SIM, R = 0.157, p< 0.001).

Finally, to complement evaluation with ecological alpha and beta diversity, we implement a

random forest (RF) supervised learning algorithm to classify gut microbiota from genus-level

community profiles into their respective ethnicity. We build four one-versus-all binary classifi-

ers to classify samples from each ethnicity compared to the rest and use two different sampling

approaches to train the models synthetic minority oversampling technique (SMOTE) [33] and

downsampling for overcoming uneven representation of ethnicities in both the data sets (see

Materials and methods). Given that the area under the receiver operating characteristic (ROC)

curve (or AUC) of a random guessing classifier is 0.5, the models classify each ethnicity fairly

well (Fig 3B), with average AUCs across sampling techniques and data sets of 0.78 for Asian-

Pacific Islanders, 0.76 for African Americans, 0.69 for Hispanics, and 0.70 for Caucasians. Eth-

nicity distinguishing RF taxa and out-of-bag error percentages appear in (S2 Fig).

Recurrent taxon associations with ethnicity

Subtle to moderate ethnicity-associated differences in microbial communities may in part be

driven by differential abundance of certain microbial taxa. 16.2% (130/802) of the AGP taxa

and 20.6% (45/218) of HMP taxa across all classification levels (i.e., phylum to genus, S5 Table)

significantly vary in abundance across ethnicities (Kruskal–Wallis, pFDR< 0.05). Between data

sets, 19.2% (25/130) of the AGP and 55.6% (25/45) of the HMP varying taxa replicate in the

other data set, representing a significantly greater degree of overlap than would be expected by

chance (ethnic permutation analysis of overlap, p< 0.001 each taxonomic level and all taxo-

nomic levels combined). The highest replication of taxa varying by abundance occurs with

22.0% of families (nine significant in both data sets / 41 significantly varying families in either

Gut microbiota diversity across ethnicities in the United States
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data set), followed by genus with 13.4% (nine significant in both data sets / 67 significantly

varying genera in either data set).

Among 18 reproducible taxa, we categorize 12 as taxonomically distinct (Fig 4) and exclude

six in which nearly identical abundance profiles between family/genus taxonomy overlap.

Comparing relative abundance differences between pairs of ethnicities for these 12 taxa in the

AGP reveals 30 significant differences, of which 20 replicate in the HMP (p< 0.05, Mann–

Whitney U). Intriguingly, all reproducible pairwise differences are a result of decreases in

Asian-Pacific Islanders (Fig 4). We also test taxon abundance and presence/absence associa-

tions with ethnicity separately in the AGP using linear and logistic regression models, respec-

tively, and we repeat the analysis while incorporating categorical sex and continuous age and

BMI as covariates (S6 Table). Clustering microbial families based on their abundance correla-

tion reveals two co-occurrence clusters: (i) a distinct cluster of six Firmicutes and Tenericutes

Fig 3. Microbiota distinguishability and classification ability across ethnicities. (A) ANOSIM distinguishability between all combinations of ethnicities. Symbols

depict specific ethnicities included in the ANOSIM tests, and boxes denote the R-value as a heatmap, in which white indicates increasing and black indicates

decreasing distinguishability relative to the R-value with all ethnicities. (B) Average ROC curves (for 10-fold cross-validation) and prediction performance metrics for

one-versus-all RF classifiers for each ethnicity, using SMOTE [33] and down subsampling approaches for training. Data available at https://github.com/awbrooks19/

microbiota_and_ethnicity. ANOSIM, analysis of similarity; RF, random forest; ROC, receiver operating characteristic; SMOTE, synthetic minority oversampling

technique.

https://doi.org/10.1371/journal.pbio.2006842.g003
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families in the HMP and (ii) an overlapping but more diverse cluster of 20 families in the AGP

(S3 Fig). Nine of the 12 taxa found to recurrently vary in abundance across ethnicities are rep-

resented in these clusters (Fig 4), with four appearing in both clusters and the other five

appearing either in or closely correlated with members of both clusters (S3 Fig). Furthermore,

90% (18/20) of families in the AGP cluster and 66% (4/6) of taxa in the HMP cluster signifi-

cantly vary in abundance across ethnicities. We also found overlap for AGP and HMP data

sets between taxa significantly varying in abundance across ethnicities (with false discovery

rate [FDR] < 0.05) and taxa in RF models with percentage importance greater than 50% for an

ethnicity (S2B Fig). Taken together, these results establish general overlap of the most signifi-

cant ethnicity-associated taxa between these methods, reproducibility of microbial abundances

that vary between ethnicities across data sets, and patterns of co-occurrence among these taxa,

which could suggest they are functionally linked.

Most heritable taxon of bacteria varies by ethnicity

Identified as the most heritable taxon in the human gut [34, 35], the family Christensenellaceae

exhibits the second strongest significant difference in abundance across ethnicities in both

Fig 4. Ethnicity-associated taxa match between the HMP and AGP. Bar plots depict the log10 transformed relative abundance for individuals possessing the respective

taxon within each ethnicity, ubiquity appears above (AGP) or below (HMP) bars, and the 25th and 75th percentiles are shown with extending whiskers. Mann–Whitney

U tests evaluate differences in abundance and ubiquity for all individuals between pairs of ethnicities; for example, the direction of change in Victivallaceae is driven by

ubiquity while abundance is higher for those possessing the taxon. Significance values are Bonferroni corrected for the six tests within each taxon and data set, and bold

p-values indicate that significance (p< 0.05) and direction of change replicate in the AGP and HMP. Data available at https://github.com/awbrooks19/microbiota_and_

ethnicity. AGP, American Gut Project; HMP, Human Microbiome Project.

https://doi.org/10.1371/journal.pbio.2006842.g004

Gut microbiota diversity across ethnicities in the United States

PLOS Biology | https://doi.org/10.1371/journal.pbio.2006842 December 4, 2018 8 / 24

https://github.com/awbrooks19/microbiota_and_ethnicity
https://github.com/awbrooks19/microbiota_and_ethnicity
https://doi.org/10.1371/journal.pbio.2006842.g004
https://doi.org/10.1371/journal.pbio.2006842


AGP and HMP data sets (S5 Table, Family: AGP, Kruskal–Wallis, pFDR = 1.55e-9; HMP, Krus-

kal–Wallis, pFDR = 0.0019). Additionally, Christensenellaceae is variable by sex and BMI (AGP:

Sex, Kruskal–Wallis, pFDR = 1.22e-12; BMI, Kruskal–Wallis, pFDR = 0.0020) and represents

some of the strongest pairwise correlations with other taxa in both co-occurrence clusters (S3

Fig). There is at least an eight-fold and two-fold reduction in average Christensenellaceae

abundance in Asian-Pacific Islanders relative to the other ethnicities in the AGP and HMP,

respectively (S5 Table), and significance of all pairwise comparisons in both data sets show

reduced abundance in Asian-Pacific Islanders (Fig 4). Christensenellaceae also occurs among

the top 10 most influential taxa for distinguishing Asian-Pacific Islanders from other ethnici-

ties using RF models for both AGP and HMP data sets (S2A Fig). Abundance in individuals

possessing Christensenellaceae and presence/absence across all individuals significantly associ-

ate with ethnicity (S6 Table, Abundance, Linear Regression, pBonferroni = 0.006; Presence/

Absence, Logistic Regression, pBonferroni = 8.802e-6), but there was only a slight correlation

between the taxon’s relative abundance and BMI (S4 Fig). Confirming previous associations

with lower BMI [36], we observe that AGP individuals with Christensenellaceae also have a

lower BMI (Mean BMI, 23.7 ± 4.3) than individuals without it (Mean BMI, 25.0 ± 5.9; Mann–

Whitney U, p< 0.001). This pattern is separately reflected in African Americans, Asian-Pacific

Islanders, and Caucasians but not Hispanics (Fig 5), suggesting that each ethnicity may have

different equilibria between the taxon’s abundance and body weight.

Genetic- and ethnicity-associated taxa overlap

Many factors associate with human ethnicity, including a small subset of population specific

genetic variants (estimated approximately 0.5% genome wide) that vary by biogeographical

ancestry [37, 38]; self-declared ethnicity in the HMP is delineated by population genetic struc-

ture [20]. Here, we investigate whether ethnicity-associated taxa overlap with (i) taxa that have

a significant population genetic heritability in humans [34, 35, 39, 40] and (ii) taxa linked with

human genetic variants in two large Genome-Wide Association Studies (GWAS)-microbiota

analyses [35, 40]. All recurrent ethnicity-associated taxa except one were heritable in at least

one study, with seven replicating in three or more studies (Table 1). Likewise, abundance dif-

ferences in seven recurrent ethnicity-associated taxa demonstrate significant GWAS associa-

tions with at least one variant in the human genome. Therefore, we assess whether any genetic

variants associated with differences in microbial abundance exhibit significant rates of differ-

entiation (fixation index [FST]) between 1,000 genome superpopulations [38]. Out of 49 vari-

ants associated with ethnically varying taxa, 21 have higher FST values between at least one pair

of populations than that of 95% of other variants on the same chromosome and across the

genome; the FST values of five variants associated with Clostridiaceae abundance rank above

the top 99% (S7 Table). Since taxa that vary across ethnicities exhibit lower abundance in

Asian-Pacific Islanders, it is notable that the FST values of 18 and 11 variant comparisons for

East Asian and South Asian populations, respectively, are above that of the 95% rate of differ-

entiation threshold from African, American, or European populations. Cautiously, the micro-

biota and 1,000 genomes data sets are not drawn from the same individuals, and disentangling

the role of genetic from social and environmental factors will still require more controlled

studies.

Discussion

Many common diseases associate with microbiota composition and ethnicity, raising the cen-

tral hypothesis that microbiota differences between ethnicities can occasionally serve as a

mediator of health disparities. Self-declared ethnicity in the US can capture socioeconomic,
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cultural, geographic, dietary, and genetic diversity, and a similarly complex array of interindi-

vidual and environmental factors influence total microbiota composition. This complexity

may result in challenges when attempting to recover consistent trends in total gut microbiota

differences between ethnicities. The challenges in turn emphasize the importance of reproduc-

ibility, both through confirmation across analytical methods and replication across study pop-

ulations [15–17, 20, 27, 42]. In order to robustly substantiate the ethnicity–microbiota

hypothesis, we evaluated recurrent associations between self-declared ethnicity and variation

in both total gut microbiota and specific taxa in healthy individuals. Results provide hypothe-

ses for examining specific members of the gut microbiota as mediators of health disparities.

Our findings from two American data sets demonstrate that (i) ethnicity consistently cap-

tures gut microbiota with a slightly stronger effect size than other variables such as BMI, age,

and sex; (ii) ethnicity is moderately predictable from total gut microbiota differences; and (iii)

12 taxa recurrently vary in abundance between the ethnicities, of which the majority have been

previously shown to be heritable and associated with human genetic variation. Whether

shaped through socioeconomic, dietary, healthcare, genetic, or other ethnicity-related factors,

reproducibly varying taxa represent sources for novel hypotheses addressing health disparities.

For instance, the family Odoribacteriaceae and genus Odoribacter are primary butyrate

Fig 5. Christensenellaceae variably associate with BMI across ethnicities. Boxplots of BMI for individuals without

(unfilled boxplots) and with (filled boxplots) Christensenellaceae. Significance was determined using one-tailed Mann–

Whitney U tests for lower continuous BMI values. Black lines indicate the mean relative abundance; the lower and

upper end of each box represent the 25th and 75th percentiles, respectively; and whiskers denote the 1.5 interquartile

range. Data available at https://github.com/awbrooks19/microbiota_and_ethnicity. BMI, body mass index.

https://doi.org/10.1371/journal.pbio.2006842.g005
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producers in the gut, and they have been negatively associated to severe forms of Crohns dis-

ease and Ulcerative Colitis in association with reduced butyrate metabolism [43–45]. Asian-

Pacific Islanders possess significantly less Odoribacteriaceae and Odoribacter than Hispanics

and Caucasians in both data sets, and severity of Ulcerative Colitis upon hospital admission

has been shown to be significantly higher in Asian Americans [46]. Considering broader phys-

iological roles, several ethnicity-associated taxa are primary gut anaerobic fermenters and

methanogens [47, 48] and associate with lower BMI and blood triglyceride levels [36, 49].

Indeed, Christensenellaceae, Odoribacteriaceae, Odoribacter, and the class Mollicutes contain-

ing RF39 negatively associate with metabolic syndrome and demonstrate significant popula-

tion genetic heritability in twins [39]. Implications for health outcomes warrant further

investigation but could be reflected by positive correlations of Odoribacteriaceae, Odoribacter,
Coriobacteriaceae, Christensenellaceae, and the dominant Verrucomicrobiaceae lineage

Akkermansia with old age [50, 51]. Akkermansia associations with health and ethnicity in

Western populations may reflect recently arising dietary and lifestyle effects on community

composition, as this mucus-consuming taxon is rarely observed in more traditional cultures

globally [23]. Moreover, these findings raise the importance of controlling for ethnicity in

studies linking microbiota differences to disease because associations between specific

microbes and a disease could be confounded by ethnicity of the study participants.

Based on correlations in individual taxon’s abundance, a similar pattern of co-occurrence

previously identified as the “Christensenellaceae Consortium” includes 11 of the 12 recurrent

ethnically varying taxa [34], and members of this consortium associate with genetic variation in

the human formate oxidation gene, aldehyde dehydrogenase 1 family member 1 (ALDH1L1),

which is a genetic risk factor for stroke [35, 52, 53]. Formate metabolism is a key step in the

pathway reducing carbon dioxide to methane [54, 55], and increased methane associates with

increased Rikenellaceae, Christensenellaceae, Odoribacteriaceae, and Odoribacter [56]. Products

of methanogenic fermentation pathways include short chain fatty acids such as butyrate, which,

through reduction of proinflammatory cytokines, is linked to cancer cell apoptosis and reduced

risk of colorectal cancer [57, 58]. Asian Americans are the only ethnic group where cancer

Table 1. Most recurrent ethnicity-associated taxa are previously reported heritable and genetically-associated taxa. The table shows population genetic heritability

estimates and associated genetic variants for the 12 recurrent ethnically varying taxa. The minimum heritability cutoff was chosen as>0.1, and only exactly overlapping

taxonomies were considered. Studies examined AUKTwins (2014, “A” measure of additive heritability in ACE model) [34], BYatsunenko (2014, “A” measure of additive

heritability in ACE model) [34], CUKTwins (2016, “A” measure of additive heritability in ACE model) [35], DLim (2016, H2r measure of polygenic heritability in SOLAR

[41]) [39], and ETurpin (2016, H2r measure of polygenic heritability in SOLAR [41]) [40].

Recurrent Ethnicity-Associated Taxa Heritability Genetic Associations

Family: Peptococcaceae 0.1213 A, 0.2154C, 0.26E rs143179968E

Family: Dehalobacteriaceae 0.6878B, 0.3087C

Family: Christensenellaceae 0.3819A, 0.6170B, 0.4230C, 0.3065D

Order: Clostridiales, Family: Unclassified 0.2914 A, 0.4020B, 0.1330C �40 Genetic VariantsC

Genus: Veillonella 0.1370 A, 0.2168D rs347941C

Order: RF39, Family: Unclassified 0.2341 A, 0.6618B, 0.3074C rs4883972C

Family: Verrucomicrobiaceae 0.1257 A, 0.5973B, 0.1394C

Family: Victivallaceae

Family Odoribacteriaceae 0.1389 A, 0.1917D, 0.34E chr7:96414393E, rs115795847E

Genus: Odoribacter 0.1916D

Family: Rikenellaceae 0.1299D, 0.29E rs17098734C, rs3909540C, rs147600757E rs62171178E

Family: Coriobacteriaceae, Genus: Unclassified 0.1364 A, 0.2822B, 0.1609C rs9357092E

�Indicates excessive variants were excluded from table. Data available: https://github.com/awbrooks19/microbiota_and_ethnicity.

https://doi.org/10.1371/journal.pbio.2006842.t001
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surpasses heart disease as the leading cause of death, and over 70% of Asian Americans were

born overseas, which can affect assimilation into Western lifestyles, leading to reduced access to

healthcare and screening and proper medical education [57, 59–61]. Preliminary results from

other groups suggest that the gut microbiome of Southeast Asian immigrants changes after

migration to the US [62]. Indeed, as countries in Asia shift toward a more Western lifestyle, the

incidence of cancers, particularly gastrointestinal and colorectal cancers, are increasing rapidly,

possibly indicating incompatibilities between traditionally harbored microbiota and Western

lifestyles [63–66]. Asian Americans have higher rates of type 2 diabetes and pathogenic infec-

tions than Caucasians [67], and two metagenomic functions enriched in control versus type 2

diabetes cases appear to be largely conferred by cluster-associated butyrate-producing and

motility-inducing Verrucomicrobiaceae and Clostridia taxa reduced in abundance among AGP

and HMP Asian-Pacific Islanders [11]. Both induction of cell motility and butyrate promotion

of mucin integrity can protect against pathogenic colonization and associate with microbial

community changes [11, 58, 68]. Levels of cell motility and butyrate are key factors suspected to

underlie a range of health disparities including inflammatory bowel disease, arthritis, and type 2

diabetes [11, 69–71]. Patterns of ethnically varying taxa across ethnicities could result from

many factors including varying diets, environmental exposures, sociocultural influences,

human genetic variation, and others. However, regardless of the mechanisms dictating assem-

bly, these results suggest that there is a reproducible, co-occurring group of taxa linked by simi-

lar metabolic processes known to promote homeostasis.

The utility of this work is establishing a framework for studying ethnicity-associated taxa

and hypotheses of how changes in abundance or presence of these taxa may or may not shape

health disparities, many of which also have genetic components. Differing in allele frequency

across three population comparisons and associated with the abundance of Clostridiales, the

genetic variant rs7587067 has a significantly higher frequency in African (minor allele fre-

quency [MAF] = 0.802) versus East Asian (MAF = 0.190, FST = 0.54, Chromosome = 98.7%,

Genome-Wide = 98.9%), admixed American (MAF = 0.278, FST = 0.44, Chromosome = 99.0%,

Genome-Wide = 99.1%), and European populations (MAF = 0.267, FST = 0.45, Chromo-

some = 98.7.3%, Genome-Wide = 98.7%). This intronic variant for the gene HECW2 is a

known expression quantitative trait locus (eQTL) (GTEx, eQTL Effect Size = -0.18, p = 7.4e-5)

[72, 73], and HECW2 encodes a ubiquitin ligase linked to enteric gastrointestinal nervous sys-

tem function through maintenance of endothelial lining of blood vessels [74, 75]. Knockout of

HECW2 in mice reduced enteric neuron networks and gut motility, and patients with Hirsch-

sprungs disease have diminished localization of HECW2 to regions affected by loss of neurons

and colon blockage when compared to other regions of their own colon and healthy individu-

als [76]. Hirschsprungs disease presenting as full colon blockage is rare and has not undergone

targeted examination as a health disparity; however, a possible hypothesis is that lower pene-

trance of the disease in individuals with the risk allele at rs7587067 could lead to subtler effects

on gut motility resulting in Clostridiales abundance differences.

Despite the intrigue of connecting the human genome, microbiota, and disease phenotypes,

evaluating such hypotheses will require more holistic approaches including incorporating

metagenomics and metabolomics to identify whether enzymes or metabolic functions repro-

ducibly vary across ethnicities, as well as direct functional studies in model systems to under-

stand if correlation is truly driven by causation. Further limitations should also be considered,

including recruitment biases for the AGP versus HMP, variation in sample processing and

OTU clustering, and uneven sampling, which could only be addressed with downsampling of

over-represented ethnicities. Still, despite these confounders, care was taken to demonstrate

the reproducibility of results across statistical methods, ecological metrics, rarefaction depths,

and study populations. Summarily, this work suggests that abundance differences of specific
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taxa, rather than whole communities, may represent the most reliable ethnic signatures in the

gut microbiota. A reproducible co-occurring subset of these taxa link to a variety of overlap-

ping metabolic processes and health disparities and contain the most reproducibly heritable

taxon, Christensenellaceae. Moreover, a majority of the microbial taxa associated with ethnic-

ity are also heritable and genetically associated taxa, suggesting that there is a possible connec-

tion between ethnicity and genetic patterns of biogeographical ancestry that may play a role in

shaping these taxa. Our results emphasize the importance of sampling ethnically diverse popu-

lations of healthy individuals in order to discover and replicate ethnicity signatures in the

human gut microbiota, and they highlight a need to account for ethnic variation as a potential

confounding factor in studies linking microbiota differences to disease. Further reinforcement

of these results may lead to generalizations about microbiota assembly and even consideration

of specific taxa as potential mediators or treatments of health disparities.

Materials and methods

Ethics statement

Access to HMP data was obtained through dbGaP approval granted to SRB and AWB. Institu-

tional Review Board approval was granted with nonhuman subjects determination IRB161231

by Vanderbilt University.

Data acquisition

AGP data was obtained from the project FTP repository located at ftp://ftp.microbio.me/

AmericanGut/. AGP data generation and processing prior to analysis can be found at https://

github.com/biocore/American-Gut/tree/master/ipynb/primary-processing. All analyses uti-

lized the rounds-1–25 data set, which was released on March 4, 2016. Throughout all analyses,

QIIME v1.9.0 was used in an Anaconda environment (https://continuum.io) for all script

calls, and custom scripts and notebooks were run in the QIIME 2 Anaconda environment

with python version 3.5.2, and plots were postprocessed using Inkscape (https://inkscape.org/

en/) [77]. Ethnicity used in this study was self-declared by AGP study participants as one of

four groups: African American, Asian or Pacific Islander (Asian-Pacific Islander), Caucasian,

or Hispanic. Sex was self-declared as either male, female, or other. Age was self-declared as a

continuous integer of years old, and age categories defined by the AGP by decade (i.e., 20’s,

30’s, etc.) were used in this study. BMI was self-declared as an integer, and BMI categories

defined by AGP of underweight, healthy, overweight, and obese were utilized. A total of 31 cat-

egorical metadata factors were assessed for structuring across ethnicities with a two proportion

Z test between pairs of ethnicities using a custom python script (S1 Table additional sheets).

The p-values were Bonferroni corrected within each metadata factor for the number of pair-

wise ethnic comparisons. 97% OTUs generated for each data set are utilized throughout to

maintain consistency with other published literature; however, microbial taxonomy of the

HMP is reassigned using the Greengenes reference database [78]. Communities characterized

with 16S rDNA sequencing of variable region four followed an identical processing pipeline

for all samples, which was developed and optimized for the Earth Microbiome Project [79].

HMP 16S rDNA data processed using QIIME for variable regions 3–5 was obtained from

http://hmpdacc.org/HMQCP/. Demographic information for individual HMP participants

was obtained through dbGaP restricted access to study phs000228.v2.p1, with dbGaP approval

granted to SRB and nonhuman subjects determination IRB161231 granted by Vanderbilt Uni-

versity. Ethnicity and sex were assigned to subjects based on self-declared values, with individ-

uals selecting multiple ethnicities being removed unless they primarily responded as Hispanic,

while categorical age and BMI were established from continuous values using the same criteria
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for assignment as in the AGP. The HMP Amerindian population was removed due to severe

under-representation. This filtered HMP table was used for community level analyses (ANO-

SIM, alpha diversity, beta intra-inter); however, to allow comparison with the AGP data set,

community subset analyses (co-occurrence, abundance correlation, etc.) were performed with

taxonomic assignments in QIIME using the UCLUST method with the GreenGenes_13_5

reference.

Quality control

AGP quality control was performed in Stata v12 (StataCorp, 2011) using available metadata to

remove samples (Raw N = 9,475) with BMI more than 60 (−988 [8,487]) or less than 10 (−68

[8,419]); missing age (−661 [7,758]), with age greater than 55 years old (−2,777 [4,981]) or less

than 18 years old (−582 [4,399]); and blank samples or those not appearing in the mapping file

(−482 [3,917]), with unknown ethnicity or declared as other (−131 [3786]), not declared as a

fecal origin (−2,002 [1784]), with unknown sex or declared as other (−98 [1686]) or located

outside of the US (−209 [1477]). No HMP individuals were missing key metadata or had other

reasons for exclusion (−0[298]). Final community quality control for both the AGP and HMP

was performed by filtering OTUs with less than 10 sequences and removing samples with less

than 1,000 sequences (AGP, −102 [1375]; HMP, −0 [298]). All analyses used 97% OTUs gener-

ated by the AGP or HMP, and unless otherwise noted, results represent Bray–Curtis beta

diversity and Shannon alpha diversity at a rarefaction depth of 1,000 counts per sample.

ANOSIM, PERMANOVA, and BioEnv distinguishability

The ANOSIM test was performed with 9,999 repetitions on each rarefied table within a respec-

tive rarefaction depth and beta diversity metric (Fig 1 and S2A–S2B Table), with R values and

p-values averaged across the rarefactions. Consensus beta diversity matrices were calculated as

the average distances across the 100 rarefied matrices for each beta diversity metric and depth.

Consensus distance matrices were randomly subsampled 10 times for subset number of indi-

viduals from each ethnic group with more than that subset number prior to ANOSIM analysis

with 9,999 repetitions, and the results were averaged evaluating the effects of more even repre-

sentations for each ethnicity (S2C Table). Consensus distance matrices had each ethnicity and

pair of ethnicities removed prior to ANOSIM analysis with 9,999 repetitions, evaluating the

distinguishability conferred by inclusion of each ethnicity (Fig 3A, S2F Table). Significance

was not corrected for the number of tests to allow comparisons between results of different

analyses, metrics, and depths. PERMANOVA analyses were run using the R language imple-

mentation in the Vegan package [80], with data handled in a custom R script using the Phylo-

seq package [81]. Categorical variables were used to evaluate the PERMANOVA equation

(Beta Diversity Distance Matrix ~ Ethnicity + Age + Sex + BMI) using 999 permutations to

evaluate significance, and the R and p-values were averaged across 10 rarefactions (S2D

Table). The BioEnv test, or BEST test, was adapted to allow evaluation of the correlation and

significance between beta diversity distance matrices and age, sex, BMI, and ethnicity simulta-

neously (S2E Table) [29]. At each rarefaction depth and beta diversity metric, the consensus

distance matrix was evaluated for its correlation with the centered and scaled Euclidian dis-

tance matrix of individuals continuous age and BMI, and categorical ethnicity and sex encoded

using patsy (same methodology as original test) (https://patsy.readthedocs.io/en/latest/#). The

test was adapted to calculate significance for a variable of interest by comparing how often the

degree of correlation with all metadata variables (age, sex, BMI, ethnicity) was higher than the

correlation when the variable of interest was randomly shuffled between samples 1,000 times.
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Alpha diversity

Alpha diversity metrics (Shannon, Simpson, Equitability, Chao1, Observed OTUs) were com-

puted for each rarefied table (QIIME: alpha_diversity.py), and results were collated and aver-

aged for each sample across the tables (QIIME: collate_alpha.py). Pairwise nonparametric t
tests using Monte Carlo permutations evaluated alpha diversity differences between the ethnic-

ities with Bonferroni correction for the number of comparisons (Fig 2A, S3 Table, QIIME:

compare_alpha_diversity.py). A Kruskal–Wallis test implemented in python was used to

detect significant differences across all ethnicities.

Beta diversity

Each consensus beta diversity distance matrix had distances organized based on whether they

represented individuals of the same ethnic group or were between individuals of different eth-

nic groups. All values indicate that all pairwise distances between all individuals were used (Fig

2B, S4A and S4B Table), and mean values indicate that for each individual, their average dis-

tance to all individuals in the comparison group was used as a single point to assess pseudo-

inflation (S4C and S4D Table). A Kruskal–Wallis test was used to calculate significant differ-

ences in intraethnic distances across all ethnicities. Pairwise Mann–Whitney U tests were cal-

culated between each pair of intraethnic distance comparisons, along with intra-versus-

interethnic distance comparisons. Significance was Bonferroni corrected within the number of

intra-intraethnic and intra-interethnic distance groups compared, with violin plots of intra-

and interethnic beta diversity distances generated for each comparison.

Random forest

RF models were implemented using taxa summarized at the genus level, which performed bet-

ter compared to RF models using OTUs as features, both in terms of classification accuracy

and computational time. We first rarefied OTU tables at a sequence depth of 10,000 (using R

v3.3.3 package vegan’s rrarefy() function) and then summarized rarefied OTUs at the genus

level (or a higher characterized level if genus was uncharacterized for an OTU). We filtered for

rare taxa by removing taxa present in fewer than half of the number of samples in rarest eth-

nicity (i.e., fewer than 10/2 = 5 samples in HMP and 13/2 = 6 [rounded down] in AGP), retain-

ing 85 distinct taxa in the HMP data set and 322 distinct taxa in the AGP data set at the genus

level. The resulting taxa were normalized to relative abundance and arcsin-sqrt transformed

before being used as features for the RF models. We initially built a multiclass RF model, but

since the RF model is highly sensitive to the uneven representation of classes, all samples were

identified as the majority class, i.e., Caucasian. In order to even out the class imbalance, we

considered some sampling approaches, but most existing techniques for improving classifica-

tion performance on imbalanced data sets are designed for binary class imbalanced data sets

and are not effective on data sets with multiple under-represented classes. Hence, we adopted

the binary classification approach and built four one-versus-all binary RF classifiers to classify

samples from each ethnicity compared to the rest. 10-fold cross-validation (using R package

caret [82]) was performed using ROC as the metric for selecting the optimal model. The per-

formance metrics and ROC curves were averaged across the 10 folds (Fig 3B). Without any

sampling during training the classifiers, most samples were identified as the majority class, i.e.,

Caucasian, by all four one-versus-all RF classifiers. In order to overcome this imbalance in

class representation, we applied two sampling techniques inside cross-validation: i) downsam-

pling and ii) SMOTE [33]. In the downsampling approach, the majority class is downsampled

by random removal of instances from the majority class. In the SMOTE approach, the majority

class is downsampled, and synthetic samples from the minority class are generated based on
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the k-nearest neighbors technique [33]. Note, the sampling was performed inside cross-valida-

tion on training set, while the test was performed on unbalanced held-out test set in each fold.

In comparison to a no-sampling approach, which classified most samples as the majority class,

i.e., Caucasians, our sampling-based approach leads to improved sensitivity for classification

of minority classes on unbalanced test sets. Nevertheless, the most accurate prediction remains

for the inclusion in the majority class. The ROC curves and performance metrics table in Fig

3B show the sensitivity–specificity tradeoff and classification performance for one-versus-all

classifier for each ethnicity for both the sampling techniques applied on both of the data sets.

For both of the data sets, downsampling shows higher sensitivity and lower specificity and pre-

cision for minority classes (i.e., African Americans, Asian-Pacific Islanders, and Hispanics)

compared to SMOTE. However, for the majority class (i.e., Caucasian), downsampling lowers

the sensitivity and increases the specificity and precision compared to SMOTE. The sensitiv-

ity–specificity tradeoff, denoted by the AUC, is reduced for Hispanics in both the data sets.

The most important taxa with>50% importance for predicting an ethnicity using RF model

with SMOTE sampling approach are shown in S2A Fig. Among the 10 most important taxa

for each ethnicity, there are nine taxa that overlap between the AGP and HMP data sets

(highlighted by the blue rectangular box); however, which ethnicity, they best distinguish var-

ies between the two data sets. Within each data set we highlighted taxa that are distinguishing

in RF models and have distinguishing differential abundance in S2B Fig, reporting both the

FDR corrected significance for Kruskal–Wallis tests of differential abundance, and the percent

importance for the most distinguished ethnicity of each in RF models. We also report out-of-

bag errors for the final RF classifier that was built using the optimal model parameters

obtained from cross-validation approach corresponding to each ethnicity and sampling proce-

dure for both AGP and HMP data sets in S2C Fig.

Taxon associations

Taxon differential abundance across categorical metadata groups was performed in QIIME

(QIIME: group_significance.py, S5 Table) to examine whether observation counts (i.e., OTUs

and microbial taxon) are significantly different between groups within a metadata category

(i.e., ethnicity, sex, BMI, and age). The OTU table prior to final community quality control

was collapsed at each taxonomic level (i.e., Phylum–Genus; QIIME: collapse_taxonomy.py),

with counts representing the relative abundance of each microbial taxon. Differences in the

mean abundance of taxa between ethnicities were calculated using Kruskal–Wallis nonpara-

metric statistical tests. p-values are provided alongside false discovery rate and Bonferroni cor-

rected p-values, and taxon were ranked from most to least significant. Results were collated

into excel tables by taxonomic level and metadata category being examined, with significant

(FDR and Bonferroni p-value < 0.05) highlighted in orange, and taxa that were false discovery

rate significant in both data sets were colored red. The Fisher’s exact test for the overlap of

number of significant taxa between data sets was run at the online portal (http://vassarstats.

net/tab2x2.html), with the expected overlap calculated as 5% of the number of significant taxa

at all levels within the respective data set, and the observed 25 taxa that overlapped in our anal-

ysis. The permutation analysis was performed by comparing the number of significant taxa (S5

Table, pFDR< 0.05) overlapping between the AGP and HMP to the number overlapping when

the Kruskal–Wallis test was performed 1,000 times with ethnicity randomly permuted. In 1/

1,000 runs, there was one significant taxon overlapping at the family level and one in 3/1,000

permutations at the genus level, with no significant taxa overlapping in any repetitions at

higher taxonomic levels. The 12 families and genera that were significantly different were eval-

uated to not be taxonomically distinct if their abundances across ethnicities at each level
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represented at least 82%–100% (nearly all>95%) of the overlapping taxonomic level, and the

genera was used if classified and family level used if genera was unclassified (g__). Average rel-

ative abundances on a log10 scale among individuals possessing the taxon were extracted for

each taxon within each ethnicity, and the abundance for 12 families and genera were made

into bar chart figures (Fig 4). The external whisker (AGP above, HMP below) depicts the 75th

percentile of abundance, and the internal whisker depicts the 25th percentile. Pairwise Mann–

Whitney U tests were performed between each pair of ethnicities using microbial abundances

among all individuals and were Bonferroni corrected for the six comparisons within each

taxon and data set. Bonferroni significant p-values are shown in the figure and shown in bold

if significance and direction of change replicate in both data sets. Ubiquity shown above or

below each bar was calculated as the number of individuals in which that taxon was detected

within the respective ethnicity. Additional confirmation of ethnically varying abundance was

also performed at each taxonomic level (S6 Table), at which the correlation of continuous age

and BMI along with categorically coded sex and ethnicity were simultaneously measured

against the log10 transformed relative abundance of each taxon among individuals possessing

it using linear regression (S6 Table, Abundance) and against the presence or absence of the

taxon in all individuals with logistic regression (S6 Table, Presence Absence). Significance is

presented for the models each with ethnicity alone and with all metadata factors included (age,

sex, BMI), alongside Bonferroni corrected p-values and individual effects of each metadata

factor.

Co-occurrence analysis

Bacterial taxonomy was collapsed at the family level, Spearman correlation was calculated

between each pair of families using SciPy [83], cluster maps were generated using seaborn (S3

Fig), and ethnic associations were drawn from S5 Table. Correlations were masked where Bon-

ferroni corrected Spearman p-values were>0.05, and clusters were identified as the most

prominent (strongest correlations) and abundance enriched. Enrichment of ethnic association

was evaluated by measuring the Mann–Whitney U of cluster families’ ethnic associations (p-

values, S5 Table) compared to the ethnic associations of noncluster taxa. Cluster-associated

families were identified as having at least three significant correlations with families within the

cluster.

Christensenellaceae analysis

The abundance of the family Christensenellaceae was input as relative abundance across all

individuals from the family level taxonomic table. Individuals were subset based on the pres-

ence/absence of Christensenellaceae, and BMIs were compared using a one-tailed Mann–

Whitney U test, then each was further subset by ethnicity and BMI compared using one-tailed

Mann–Whitney U tests and boxplots within each ethnicity (Fig 5).

Genetically associated, heritable, and correlated taxa analysis

Genetically associated taxa from population heritability studies [34, 35, 39, 40] with a mini-

mum heritability (A in ACE models or H2r)>0.1 and from GWAS studies [35, 40] were

examined for exact taxonomic overlap with our 12 ethnically-associated taxa. The 42 genetic

variants associated with Unclassified Clostridiales are rs16845116, rs586749, rs7527642,

rs10221827, rs5754822, rs4968435, rs17170765, rs1760889, rs6933411, rs2830259, rs7318523,

rs17763551, rs2248020, rs1278911, rs185902, rs2505338, rs6999713, rs5997791, rs7236263,

rs10484857, rs9938742, rs1125819, rs4699323, rs641527, rs7302174, rs2007084, rs2293702,

rs9350764, rs2170226, rs2273623, rs9321334, rs6542797, rs9397927, rs2269706, rs4717021,
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rs7499858, rs10148020, rs7524581, rs11733214, and rs7587067 from [35]. These 40 variants

along with variants in Table 1 except for chr7:96414393 (total = 49) were then assessed in

1,000 Genomes individuals for significant differentiation across superpopulations [38]. The

1,000 Genomes VCF files were downloaded (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/

20130502/), and variants with a minor allele frequency less than 0.01 were removed, with FST

calculated between each pair of superpopulations using vcftools [84]. The East Asian versus

South Asian FST rates were not used in the analysis. A custom script was used to examine the

FST for each of the 49 variants and was compared to the FST of all variants on the same chro-

mosome and all variants genome-wide for that pair of populations, with percentile calculated

and the number of variants with a higher FST divided by the total number of variants. The

eQTL value and significance for rs7587067 were drawn from the GTEx database [73].

Supporting information

S1 Fig. The average relative abundance of dominant microbial phyla for each ethnicity.

(TIFF)

S2 Fig. Summary of RF distinguishing taxa and out-of-bag error for each ethnicity. (A)

Importance of taxa for predicting each ethnicity using RF models with SMOTE sampling

approach are shown as percentage contributions, highlighted by color for each ethnicity.

Among the 10 most important taxa for each ethnicity, nine overlap between the AGP and

HMP data sets (highlighted by the blue rectangular box); however, which ethnicity they best

distinguish varies between the two data sets. (B) Taxa that are distinguishing in RF models and

have distinguishing differential abundance in S5 Table. The FDR corrected significance for

Kruskal–Wallis tests of differential abundance and the percent importance for the most distin-

guished ethnicity of each in RF models are shown. (C) Out-of-bag error percentages for the

final RF classifier that was built using the optimal model parameters obtained from cross-vali-

dation approach corresponding to each ethnicity and sampling procedure for both AGP and

HMP data sets. AGP, American Gut Project; FDR, false discovery rate; HMP, Human Micro-

biome Project; RF, random forest; SMOTE, synthetic minority oversampling technique

(TIFF)

S3 Fig. Abundance correlation of microbial families. Spearman correlation cluster maps of

bacterial abundance for families in the AGP and HMP. Numbers within boxes depict the

spearman correlation value with heatmap coloration from blue negative correlation (−1),

white no correlation (0), to red positive correlation (1). Positions have been masked based on

Bonferroni significance <0.05 for the total cluster map of all microbial families. Taxa within

boxes were identified as a highly correlated cluster, and taxa outside the boxes share multiple

correlations with those within the cluster. Blue taxonomic names indicate overlap of taxa

within boxes of both the AGP and HMP, while black indicate multiple correlations with the

clusters in both data sets. The ethnic association column depicts FDR corrected p-values from

Kruskal–Wallis tests in S5 Table, which are bolded if<0.05. AGP, American Gut Project;

FDR, false discovery rate; HMP, Human Microbiome Project.

(TIFF)

S4 Fig. Correlation of BMI with Christensenellaceae abundance. The relationship for each

individual between log10 transformed Christensenellaceae abundance on the y-axis and BMI

on the x-axis, with statistics slope, R2, and p fit with a linear regression. Coloration of each

point indicates ethnicity: yellow, African American; blue, Asian-Pacific Islander; green, His-

panic; red, Caucasian. BMI, body mass index.

(TIFF)
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S1 Table. Demographic information for the AGP. Breakdown of age and BMI by sex and

ethnicity. Heatmaps were constructed within each statistic and category (bounded by black

box). The means for all sex and ethnic groups were used as the center (white), with higher val-

ues indicated in red and lower in blue. HMP data is not shown because of data access restric-

tions on participant metadata, available through dbGaP application. Additional sheets depict

proportions tests of ethnic structuring for 31 metadata factors, each on their own sheet. AGP,

American Gut Project; BMI, body mass index; HMP, Human Microbiome Project.

(XLSX)

S2 Table. Microbiota distinguishability by ethnicity, age, sex, and BMI. (A) AGP and HMP

ANOSIM distinguishability by ethnicity, age, sex, and BMI at a rarefaction depth of 1,000 and

across four ecological metrics (more details in table). (B) AGP ANOSIM distinguishability by

ethnicity, age, sex, and BMI at rarefaction depths of 1,000 and 10,000. (C) ANOSIM results for

consensus distance matrix while subsampling the maximum number of individuals from each

ethnic group. (D) BioEnv results of correlation between ethnicity, age, sex, and BMI together

with outcome as multivariate beta diversity distance matrices (Distance Matrix = Ethnicity�x1

+ Categorical Age�x2 + Categorical BMI�x3 + Sex�x4 + B). (E) ANOSIM results for consensus

distance matrix when each ethnicity and group of ethnicities are sequentially removed from

the analysis. AGP, American Gut Project; ANOSIM, analysis of similarity; BMI, body mass

index; HMP, Human Microbiome Project.

(XLSX)

S3 Table. Alpha diversity by ethnicity, age, sex, and BMI. Alpha diversity for ethnicity, age,

sex, and BMI across varying rarefaction depths and beta diversity metrics in the AGP (Fig 4A

and Fig 4C–4E) and for ethnicity in the HMP (Fig 4B). Results are based on nonparametric

permutation-based t tests, and p-values are Bonferroni corrected within each factor of interest,

depth, and metric. AGP, American Gut Project; BMI, body mass index; HMP, Human Micro-

biome Project.

(XLSX)

S4 Table. Comparison of beta diversity distances for within and between ethnicities. All

values depicted are Mann–Whitney U p-values. (A) All distances between pairs of individuals

within each ethnicity were compared between ethnicities across rarefaction depths 1,000 and

10,000, four beta diversity metrics, and with subsampling over-represented ethnicities. (B) All

distances between pairs of individuals within and between each ethnicity were compared

between ethnicities. (C) Mean distances between pairs of individuals within each ethnicity

were compared between ethnicities. (D) Mean distances between pairs of individuals within

and between each ethnicity were compared between ethnicities.

(XLSX)

S5 Table. Taxa that are differentially abundant by ethnicity, sex, BMI, and age in the AGP

and HMP. Kruskal–Wallis results for differential taxa abundance across metadata groupings,

including FDR and Bonferroni corrected p-values, and taxa abundance averages within each

group. Metadata factors and taxonomic levels are separated by excel tabs. AGP, American Gut

Project; BMI, body mass index; FDR, false discovery rate; HMP, Human Microbiome Project.

(XLSX)

S6 Table. Taxa that are correlated with ethnicity, sex, BMI, and age in the AGP. Results of

linear (Abundance) and logistic (Presence Absence) regression results for differential taxa

abundance across metadata factors separated by taxonomic level. Columns in order indicate
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the taxon name, the number of individuals with nonzero abundance; then the p-value for eth-

nicity alone, the p-value Bonferroni corrected, the f-test statistic, and R2; then the same values

for the regression with ethnicity, age, sex, and BMI together; then the abundances in each eth-

nic group; and finally the p-values for each factor broken down. AGP, American Gut Project;

BMI, body mass index.

(XLSX)

S7 Table. Genetic variants with taxa associations and detailed 1,000 Genomes population

differentiation rates (FST). Variants in red indicate the variant has at least one FST above the

95th percentile for high differentiation between at least one pair of populations. Columns I–

BU represent the values for calculating variant FST and percentiles. The first two spaces indi-

cate the two superpopulations being compared. FST indicates the rate of differentiation for that

variant between that pair of populations. Higher indicates the number of variants genome-

wide with a higher FST, and total indicates the total genome-wide variants examined. The col-

umns with chromosome indicate the number of variants with higher FST and total variants on

the same chromosome as the variant of interest. Percent indicates the number of variants with

a higher FST divided by the total number of variants. FST, fixation index.

(XLSX)
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