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Abstract: Depressive disorders are among the most disabling diseases experienced around the world,
and their incidence has significantly increased over the last few decades due to multiple environmen-
tal, social, and biological factors. The search for new pharmacological alternatives to treat depression
is a global priority. In preclinical research, molecules obtained from plants, such as flavonoids, have
shown promising antidepressant-like properties through several mechanisms of action that have
not been fully elucidated, including crossing of the blood brain barrier (BBB). This review will focus
on discussing the main findings related to the participation of the serotonergic system and brain-
derived neurotrophic factor (BDNF) on the antidepressant-like effect of some flavonoids reported
by behavioral, neurochemical, and molecular studies. In this sense, evidence shows that depressive
individuals have low levels of serotonin and BDNF, while flavonoids can reverse it. Finally, the
elucidation of the mechanism used by flavonoids to modulate serotonin and BDNF will contribute to
our understanding of the neurobiological bases underlying the antidepressant-like effects produced
by these natural compounds.
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1. Introduction

The COVID-19 pandemic has had a colossal negative impact on mental health around
the world [1]. Loss of family and loved ones, fear of infection, isolation, job loss, schooling
from home, and financial concerns are powerful stressors that have been witnessed during
this pandemic, contributing to the development of feelings of loneliness and anger, and
increasing the prevalence of mental disorders such as depression. According to the World
Health Organization, the worldwide prevalence of depression symptoms exponentially
increased by 25% during the last two years [2]. Depression is one of the main comorbid
disorders present in several disabling conditions such as cardiovascular diseases, diabetes,
rheumatoid arthritis, and cancer, among others [3], and it represents the main economic
burden of all mental illnesses [4]. Therefore, this psychiatric disorder is considered one
of the most important subjects of concern in healthcare around the world [2]. From this
perspective, there is a clear urgent need to develop methods that aim to care for people’s
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mental health. The search for new drugs for the treatment of depression has become even
more urgent during this pandemic [5,6].

There are several pharmacological treatments to relieve the symptoms of depression,
which include different drugs such as selective serotonin reuptake inhibitors (SSRIs), dual
antidepressants (serotonin and noradrenalin reuptake inhibitors), tricyclic antidepressants,
and monoamine oxidase inhibitors (MAOIs), which increase the levels of monoamines
such as dopamine (DA), noradrenaline (NE), and particularly serotonin (5-HT) [7,8].

Notably, it has been shown that the onset of the therapeutic effects of antidepres-
sants is mediated by long-term neuroplasticity processes [9]. Specifically, the increase in
neurotrophins such as brain-derived neurotrophic factor (BDNF) is associated with the
improvement of depression symptoms in patients treated with antidepressant drugs [9,10].
However, only 50%–70% of depressed patients experience a decrease of at least 50% in
symptom severity, of which only half achieve full remission [11]. In addition, the long
period of latency until the manifestation of therapeutic effects [12] and experiencing side
effects (i.e., sexual dysfunction, insomnia, anxiety, dry mouth, among others) [13,14] are
considered as the main reasons why patients withdraw from treatment. Because of this,
research conducted at the preclinical level has focused on finding new pharmacological
alternatives for the treatment of depression [5,6].

Natural compounds with potential therapeutic application in neuropharmacology
have gained interest in clinical and preclinical research [15]. Particularly, flavonoids have
demonstrated neuroprotective properties, exerting antidepressant effects both in depressed
patients and validated animal models [16,17]; however, the specific mechanism of action
of flavonoids remains unclear. Thus, this review focuses on recapitulating and analyzing
the main preclinical findings on the participation of the serotonergic system and BDNF in
the mechanism of action responsible for the antidepressant-like effect of flavonoids. The
above is important considering the link between the serotonergic system and BDNF in
the neuroplasticity involved in the appearance of the therapeutic effect of antidepressant
drugs. A narrative review of specialized scientific articles published in indexed scientific
journals was conducted following a search for relevant articles in prestigious databases
(PubMed, Scopus, Google Scholar) using the following keywords: “flavonoid, BDNF,
animal model, depression, phytochemical, and 5-HT”. This review has the objective of
expanding the knowledge on the neurobiological mechanisms of the antidepressant-like
effect of flavonoids, particularly those related to 5-HT and BDNF changes.

2. Serotonergic System and BDNF Involved in Depression Etiology and in Response
to Antidepressants

Depression is a disabling psychiatric disorder that is characterized by a loss of interest
in performing most daily activities, concentration problems, feelings of guilt and despair,
suicidal thoughts, appetite and sleep changes, as well as low energy [2]. Depressed people
are more vulnerable to developing additional chronic diseases; moreover, considering the
combined disability from depression plus that produced by chronic diseases, depression
can be considered as one of the most expensive medical conditions worldwide, with
approximately 280 million people living with this condition [18].

Despite great progress in neurosciences and psychiatry, the etiology of depression has
not been fully dilucidated [19]. However, several new theories have arisen to complement
explanations on the etiology of depression [20], such as the neurotrophic hypothesis of
depression, which is one of the most recently studied. This theory proposes that neu-
roplasticity is a key factor in depression and in the therapeutic effects of antidepressant
drugs [21]. It is supported by the evidence that depressed patients present low levels of
neurotrophins (i.e., BDNF, and nerve growth factor = NGF) [22–24]. In addition, chronic
treatment based on antidepressant drugs has been shown to reestablish the levels of these
neurotrophins [24–26], promoting neuroplasticity in brain structures involved in mood and
emotional regulation such as the prefrontal cortex (PFC) and hippocampus (HP), among
others [9,27,28].
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Interestingly, 5-HT and BDNF represent two of the most important systems involved
in neuroplasticity [29,30]. Of these, 5-HT is perhaps the most studied neurotransmitter
associated with the etiology of depression, since it was initially proposed that low levels of
5-HT are related with the risk of depression [31], while levels of this monoamine increase
following antidepressant treatment [32]. However, it is a first step in the establishment
of depression and the therapeutic effect of antidepressant drugs, because multiple neuro-
plasticity events are occurring in parallel. On the other hand, BDNF is a neurotrophin that
has been linked to depression in addition to having essential functions in neuroplasticity,
neuronal survival, and neurogenesis [33]. 5-HT plays an essential role in the mechanism
of action of antidepressant drugs (i.e., SSRIs, MAOIs, tricyclics, and duals) due to the
rapid and transient increase in 5-HT bioavailability in the synaptic space [34]. Hence, since
pharmacological treatment only exerts therapeutic effects after several weeks, it has been
assumed that the long-term improvement of serotonergic neurotransmission can promote
greater expression of neuropeptides associated with neuroplasticity, such as BDNF [29],
which is known to be modulated by different classes of antidepressant drugs, particularly
SSRIs [35]. In this sense, a recent study examined 51 depressed patients that presented low
levels of BDNF in serum compared to the control group. However, after 8 weeks of fluox-
etine, escitalopram, and paroxetine administration, depressed patients had significantly
increased serum BDNF levels, which reached values similar to those of the control group.
These effects were negatively correlated with scores based on the Hamilton Rating Scale
for Depression (HRSD) [36]; that is to say, when BDNF levels increase, the HRSD score
decreases. This implicates BDNF in the therapeutic effects of antidepressant drugs.

Preclinical research also provides support implicating 5-HT and BDNF in the antide-
pressant effects [37–39]. Several studies have focused on exploring the interaction between
both systems and its effects in terms of depressive-like behavior in animal models [40–43].
In vitro studies using B-lymphoblast cell culture have shown that exposure to 2% BDNF
medium promotes a decrease in 5-HT reuptake [44], which is associated with the increase
in 5-HT viability, as reflected in the reduction of depressive-like behavior in animal mod-
els [45]. Similarly, in a study carried out in Slc6a41Hubr rats with knockout of the 5-HT
transporter (SERT−/−), a decrease in the BDNF levels was detected, which was associated
with a reduction in sucrose intake (anhedonia) and severe depression-like behavior in the
forced swim test (FST). Contrarily, BDNF overexpression was associated with increased
sucrose intake and a decrease in depression-like behavior [43]. Similar effects were pro-
duced by 5-HT depletion, via the administration of p-chlorophenyl-alanine (10 mg/kg,
s.c.), which promoted a decrease in BDNF in the HP and PFC of rats, and high levels of
anxiety- and depressive-like behaviors [46].

In summary, preclinical and clinical evidence shows that 5-HT and BDNF have a
bidirectional relationship, where the modification of one may affect the other, which can
have a direct impact in the establishment of both depression symptoms and the therapeutic
effects of antidepressants. This places 5-HT and BDNF as the main targets of new molecules
for depression disorders.

3. Serotonergic System

The serotonergic neurons are in the midbrain (brain stem), specifically in the raphe
nucleus, where axons innervate several brain structures, particularly those of the brain
cortex, limbic system, basal ganglia, and spinal cord [47–49]. These neurons synthesize 5-HT
from the amino acid tryptophan, which is converted into 5-hydroxytryptophan (5HTP) by
the enzyme tryptophan hydrolase type 2 (TPH2). 5-HTP is converted to 5-HT by the action
of the enzyme aromatic amino acid decarboxylase [50]. The action of 5-HT is mediated
by seven families of receptors (5-HT1–5-HT7), which are subdivided into 14 subtypes, all
of which are coupled to G protein, except for the 5-HT3 receptor, which is a ligand-gated
ion channel [51]. In this sense, the 5-HT receptors are expressed throughout the peripheric
and central nervous system (CNS), particularly in areas involved in the neurobiology of
depression.
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5-HT participates in the regulation of the sleep–wake cycle, aggressiveness, motivation,
sexual behavior, and neuroendocrine activity through the hypothalamic–pituitary–adrenal
axis, which is the main stress response system. Dysregulation of the serotonergic system
is involved in the physiopathology of depression, while pharmacological treatment with
antidepressant drugs (i.e., SSRIs, tricyclics, MAOIs) reduces symptoms of depression [52,53].
Thus, the decrease in 5-HT levels and serotonergic projections to brain areas involved in
the regulation of mood, as well as an increase in the autoinhibition of 5-HT and a deficient
antidepressant response, are involved in the establishment of depression [54,55].

In the 1960s, the monoaminergic hypothesis was proposed, whereby a decrease in
several neurotransmitters such as 5-HT, DA, and NE in the CNS is responsible for the devel-
opment of depressive symptoms [56–58]. This hypothesis is supported by the mechanism
of action of antidepressant drugs, which increase monoamine levels and alleviate depres-
sive symptoms [59,60]. Nevertheless, this hypothesis does not explain the delay in the
therapeutic effect of antidepressant drugs. Since inhibition of the reuptake or metabolism
of monoamines occurs within a matter of hours, it is not directly related to any therapeutic
effects that occur after several weeks of treatment [61]. Attempts have been made to explain
this discrepancy between the pharmacological action and therapeutic effect of antidepres-
sants, and it was shown that the sensitivity of 5-HT receptors plays a key role in said
mechanisms. In this sense, long-term receptor desensitization promotes an increase in the
firing rate of 5-HT neurons [34,62], which is associated with those slow adaptive changes
induced in the 5-HT receptors that could explain the long latency to the antidepressant
effect [34,63].

Additionally, stimulation of the 5-HT1A and 5-HT2A receptors produces changes in
downstream signaling, regulating gene expression via the activation of diverse genes that
in turn regulate the transcription of messenger ribonucleic acid (mRNA). The protein cAMP
response element binding protein (CREB) is one of these transcription factors involved in
learning and memory, synthesis of neurotrophins, circadian cycles, neurogenesis, and the
pathophysiology of psychiatric and neurodegenerative disorders [64]. In this sense, the
activation of CREB, through the chronic administration of antidepressant drugs, has been
strongly linked to the promotion of neuroplasticity processes in which neurotrophic factors
such as BDNF play a fundamental role.

4. Brain-Derived Neurotrophic Factor

BDNF is a peptide of the neurotrophin family encoded by the BDNF gene, which
plays an important role in the modulation of neuroplastic processes that underly learning,
memory, and behavior [65]. This protein is essential for neurodevelopment, and it acts
on neurogenesis, maturation, and differentiation of neurotransmission systems such as
the brain stress and reward and motivation systems, which are related to mental disor-
ders [66,67]. This neurotrophin is located in several brain structures as the HP and PFC,
where its levels are high [68].

BDNF and its tropomyosin receptor kinase B (TrkB) are associated with the devel-
opment of mood disorders and establishment of therapeutic effects of antidepressant
drugs [69]. In fact, Duman et al. was the first to propose the connection between BDNF,
depression, and the antidepressant action [54]. In this sense, Nibuya et al. (1995) reported
that BDNF levels increased in the HP and PFC of Sprague-Dawley male rats 18 days after
electroconvulsive therapy [70]. Later, it was verified that pharmacological and nonphar-
macological antidepressant therapies (i.e., drugs, cognitive behavioral therapies) can also
increase the concentrations of BDNF in different brain areas [35].

The above is supported by subsequent studies in which both BDNF mRNA and protein
levels were decreased in the brain of postmortem depressive patients [71], particularly in
the HP [72] and amygdala [73]. The same effect was found in suicide victims compared with
healthy subjects [74]. Furthermore, DNA methylation of BDNF gene promoters is increased
in the peripheral blood mononuclear cells of depressed patients [75] and samples from
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suicide patients [76], which is consistent with a reported reduction in BDNF expression in
depressed patients [71].

The reduction of BDNF levels is not specific to depression, and similar reductions
have been observed in other neuropsychiatric disorders, such as schizophrenia and demen-
tia [77,78]. In preclinical research, stressors are often used to trigger depression-related
behavior. Stress decreases BDNF expression in several brain regions such as HP [79,80]
and increases BDNF expression in other brain regions such as basolateral amygdala [81]
depending on the type and duration of the stressor [82]. However, the high inter- and
intra-individual variation in serum BDNF levels prevents the generalized use of BDNF as a
biomarker of depression [83].

In addition to BDNF, its receptor TrkB is implicated in depression disorders and
the therapeutic effects of antidepressant drugs [84]. For example, the TrkB protein and
its mRNA are decreased in postmortem brain samples from depressed patients [70,85].
Moreover, it was found that activated phosphorylated forms of TrkB are decreased in
brain samples from depressed patients [86]. In accordance, the increase in TrkB activation
is associated with a decrease in depressive-like behavior in mouse models [87]. In this
sense, BDNF depletion did not affect the antidepressant response as observed in behavioral
models, though the loss of TrkB resulted in an attenuated response to antidepressant
drugs [88], which reveals a critical role for the TrkB receptor in conventional antidepressant
action that is independent of BDNF signaling. Moreover, TrkB overexpression can produce
antidepressant-like effects in male C57BL/6 mice subjected to FST [89].

Recently, it was shown that antidepressant drugs such as fluoxetine, imipramine, and
ketamine, can bind directly to the TrkB receptor [90]. This affinity is lower than that for the
5-HT transporter; however, antidepressants accumulate in the brain, and the concentrations
necessary for TrkB binding are achieved after several weeks of treatment [91]. These
findings have promoted the development of a potential hypothesis, which proposes that
the primary site of action of antidepressant drugs is direct binding to TrkB receptor rather
than monoamine transporters [82].

The aforementioned evidence supports the crucial role of BDNF and its TrkB recep-
tor in depression, since signaling dysregulation of these two components is associated
with reduced neuroplasticity and the development of depression symptoms. However,
it is important to note that BDNF is not only one of the main targets of conventional
antidepressant drugs but also represents a cell target for new molecules with potential
antidepressant effects.

5. Searching for Alternatives to Antidepressant Drugs

Despite the great advances in pharmacological research on antidepressant drugs,
even during the latency period with new treatments patients continue suffering from
depressive symptoms and some even drop out of treatment [92]. In addition, some patients
have an increased risk of suicide during the first week of pharmacological treatment [93].
These characteristics drive the search for new active compounds with faster effects such as
probiotics [94] or ketamine, whose effects are related to rapid molecular neuroplasticity;
however, their clinical use is unfortunately limited by its poor safety and development of
pharmacological tolerability [95,96]. As a consequence, the identification, evaluation, and
development of new antidepressant substances with improved efficacy and apparently
fewer side effects has become the main objective of numerous studies [16].

In this sense, the study of phytochemical compounds, such as flavonoids, is a growing
field in neuropharmacology research [97,98], especially due to their impact on the CNS,
including their potential antidepressant-like effects [16,99,100].

6. General Information of Flavonoids

Flavonoids are a group of polyphenolic compounds produced by plants as secondary
metabolites. They act as signal compounds, attracting pollinators or animals for seed
dispersion and protecting plants from oxidants and ultraviolet radiation [101]. These
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phenolic compounds are widely found in fruits and vegetables [102,103]. Those termed as
“dietary flavonoids” constitute an important component of the normal human diet [104]
and have been implicated in conferring a large range of health benefits arising from their
bioactive properties, such as anti-inflammatory, anticancer, anti-aging, cardio protective,
immunomodulatory, antidiabetic, antibacterial, antiparasitic, antiviral, and neuroprotective
effects [104–106].

Flavonoids have been considered as a nutraceutical product in recent research [107].
Their antioxidant activity has been extensively studied in vitro, which can prevent damage
caused by free radicals through scavenging of reactive oxygen species (ROS), upregulation
of intracellular production of antioxidant enzymes, inhibition of free radical generating
enzymes (i.e., xanthine oxidase, lipoxygenase, protein kinase) [108], and reduction of α-
tocopherol radicals [109]. Moreover, it has been suggested that the presence of various
functional groups (i.e., the hydroxyl group –OH), as well as their number and location in
their chemical structure, could be responsible for these antioxidant properties [110].

Flavonoids are frequently found as glycosylated or esterified forms. These share a
basic 15-carbon skeleton consisting of single-bond C3 and C6 rings, namely rings A and B
linked by a third carbon ring [111]. In fact, it has been proposed that catechol (o-dihydroxy)
or pyrogallol (trihydroxy) groups attached to ring B are essential for its antioxidant activity,
since they require less energy for their dissociation [112] and are therefore more capable of
scavenging free radicals directly by donating a hydrogen atom [113]. Some studies have
reported that daily intake of flavonoids reduces the risk of diverse diseases, including
cancer, cardiovascular disease, and neurodegenerative and psychiatric disorders [114], and
it has even been considered that the antiviral properties of flavonoids could also be applied
in treatment in the context of the current COVID-19 pandemic [115].

However, even though these compounds have been recognized as powerful antiox-
idants, little has been mentioned about their prooxidant action [113], which has been
proposed to be directly proportional to the number of hydroxy groups, since mono- and di-
hydroxy compounds show no detectable prooxidant effects, while poly-hydroxy flavonoids
present strong prooxidant activity [116]. It has also been observed that the prooxidant
activity of these secondary metabolites is concentration dependent [117]. For example, in
a study conducted on rat liver cells, quercetin was found to inhibit lipid peroxidation at
micromolar concentrations (≤1.5 µM); however, at 100 µM, it enhanced the formation of
hydroxy radicals [118].

Based on in vivo studies, there is no clear evidence regarding the prooxidant properties
of flavonoids, since there are no studies available on whether these compounds have the
same actions in the stomach, intestine, or colon of humans [119], which is mainly related
to their poor absorption in the digestive tract [120]. However, it has been proposed that
even if there are slight prooxidant properties in the human body, these would be beneficial,
since flavonoids would possibly promote a certain degree of oxidative stress and, therefore,
the increased levels of defense and antioxidant enzymes would lead to an overall boost to
cytoprotection [121]. It is important to highlight that the reported prooxidant properties of
flavonoids could be also related to potential side effects in the long-long term, considering
that the prooxidant properties of several synthetic and natural products may result in the
deterioration of cellular membranes and increase in the nonselective filtration of substances
and, thus, negatively impact on cellular function [122]. In this way, it is necessary that, in
addition to studying their beneficial effects on health, specific studies also evaluate the
potential side effects of flavonoids to identify possible limitations for excluding them from
consideration as therapeutics of several illness in humans.

There are different types of flavonoids, and they are classified depending on their
chemical structure, degree of unsaturation, and oxidation of carbon rings. The subclasses in-
clude flavonols, flavones, flavanones, flavanols, isoflavones, and anthocyanidins [123,124],
and they can be associated with different colors in the diet and can be obtained from
different vegetal sources (Table 1).
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Table 1. Classification and main characteristic of flavonoids.
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6.1. Flavonols

Flavonols have a 3-hydroxyflavone backbone that consists of hydroxyl groups at differ-
ent positions that can be used to synthesize many compounds with a different activity [125].
Kaempferol, quercetin, myricetin, and fisetin are some of the most studied flavonols due to
their antioxidant properties [124]. Dietary flavonols are bioavailable molecules with human
health benefits; for example, quercetin inhibits ROS-mediated hepatocarcinogenesis by
upregulating enzymatic (catalase (CAT), superoxide dismutase (SOD), glutathione peroxi-
dase, paraoxonase) and nonenzymatic (total glutathione) antioxidant defense systems [126].
In addition, flavonols are associated with antidepressant and anxiolytic activities, pos-
sibly after increasing 5-HT and decreasing 5-hydroxyindoleacetic acid (5-HIAA) in the
brain [127].

6.2. Flavones

Flavones are one of the largest and important subgroups of flavonoids. They are
widely distributed as glucosides in leaves, flowers, and fruits. Among the main flavones,
the following stand out due to their actions on CNS: luteolin, apigenin, tangeretin, and
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chrysin [128]. In this sense, the biological effects of apigenin are related to gene transcription,
protein expression, and enzyme activity levels, and reducing antioxidant enzyme loss in
streptozotocin-treated cells [129]. In addition, there is evidence showing that chrysin exerts
anxiolytic- and antidepressant-like effects, which have been associated with the GABAA
receptor modulation and the increase of BDNF in the brain, as well as the regulation of
5-HT receptors at pre- and post-synaptic levels [130–132].

6.3. Flavanones

Flavanones are present in all citrus fruits such as oranges, lemons, and grapes. Hesper-
itin, naringenin, and eriodictyol are examples of this class of flavonoids [133]. Flavanones
can provide phenolic hydrogen, thereby functioning as an effective antioxidant [134]. Fur-
thermore, flavanones can favor the production of glial cell line-derived neurotrophic factor
against Parkinson’s disease through anti-inflammatory effects, preventing neurodegenera-
tion [135].

6.4. Flavanols

Flavanols are generally present in two forms: proanthocyanidins and catechins. These
compounds are found abundantly in bananas, apples, blueberries, peaches, pears, and
apricot, among others [136]. The long-term consumption of flavanol-rich foods facilitates
the improvement of endothelial function and prevents the development of cardiovascular
diseases [137]; moreover, anti-inflammatory and vasodilatory activities have been identified
in the flavanols [138], and they can also induce positive effects on cognitive processes,
including in relation to attention, working memory, and processing speed [139].

6.5. Isoflavones

Isoflavones are predominantly found in soybeans and other leguminous plants [140].
These flavonoids are a subgroup in which the B ring is attached to position three of the C
ring. They have structural similarities to estrogens, such as estradiol, and for this reason
they are also called phytoestrogens (i.e., daidzein and genistein) [114,141]. In this sense,
isoflavones have gained popularity as an alternative treatment for menopausal symptoms in
women who are unwilling or cannot take hormone replacement therapy [142]. In addition,
isoflavones can improve cognitive function and relieve depressive symptoms [143].

6.6. Chalcones

Chalcones are characterized by the absence of the C ring of the basic flavonoid skeleton
structure. Hence, they can also be referred to as open-chain flavonoids. Major examples of
chalcones include phloridzin, arbutin, phloretin, and chalconaringenin [124]. They exhibit
antioxidant, antibacterial, anthelmintic, antiulcer, antiviral, antiprotozoal, and anticancer
effects [144]. Recent work evidenced antidepressant activity on the FST and tail suspension
test (TST) of a new chalcone compound denominated DHIPC (2,4-dichloro-2′-hydroxyl-
4′,6′-diisoprenyloxychalcone) as capable of increasing the concentrations of 5-HT and NE,
and it increases 5-HIAA contents in the HP, hypothalamus, and cortex in the brain [145].

6.7. Anthocyanidins

Anthocyanidins are a class of water-soluble flavonoids and natural pH indicators [146].
They are commonly present in higher plants and are mainly responsible for the blue, purple,
and red colors of fruits such as berries, grapes, and certain tropical fruits in addition to
vegetables, roots, and cereals. In addition, anthocyanidins help to attract insect pollinators.
The six most common types are cyanidin, pelargonidin, delphinidin, peonidin, petunidin,
and malvidin [147]. Anthocyanidins have diverse biological activities such as antioxidant,
antiproliferative, and anti-inflammatory properties [133]. Currently, the scientific literature
indicates their potential effects as neuroprotectors on diseases such as anxiety, depression,
Alzheimer’s, and Parkinson’s diseases [148].
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Finally, flavonoids possess several biological properties. Intriguingly, the importance
of flavonoids in different neurological disorders has gained increasing attention due to
their actions on the CNS and regulation of emotional and mood processes associated with
neurochemical and neuroplastic changes, such as antidepressant drugs [16]. In addition,
at the clinical level, recent meta-analysis studies have demonstrated the potential antide-
pressant effects of flavonoids. However, more knowledge about its clinical application
is also necessary, mainly about the optimal doses, duration of treatment, and amount of
intake [149]. Despite this, flavonoids could, in the median and long term, represent one of
the main pharmacological options for the development of antidepressant drugs.

7. Pharmacokinetics of Flavonoids and Their Entry into the CNS

Most flavonoids are present in food in their O-glycoside form, with glucose being the
most common β-linked residue, but glucoramnose, galactose, arabinose, and rhamnose
are also present [150]. Once they are ingested and before entering the general circulation,
these glycosides can undergo deglycosylation (hydrolysis), which takes place in either
the small or large intestines depending on the type of sugar [104]. This process is carried
out by two β-glucosidase enzymes: lactase-phlorizin hydrolase, which hydrolyzes lactose,
glucose, and galactose, and cytosolic β-glycosidase, which has specificity dependent on the
aglycone moiety [151]. The next step is the passive diffusion of the flavonoid aglycones
through epithelial cells [152]. In this sense, isoflavones are the most efficiently absorbed,
while flavanols and flavanones are intermediately absorbed, and proanthocyanins and
anthocyanins are poorly absorbed [153].

After absorption, flavonoids are transported to the liver for further metabolism
through different conjugation reactions such as O-methylation, sulfation, and glucuronida-
tion. Due to flavonoids having a high conjugation capacity, their concentration in plasma
is generally low [150]. These metabolites can also undergo oxidative metabolism medi-
ated by cytochrome P450 enzymes. Likewise, metabolism can be carried out through
bacteria in the colon, which hydrolyzes the parent, and in the upper part of the intestine
unmetabolized flavonoids as well as their glucuronides and sulfates can be found. Some
research has reported that conjugation reactions with glucuronic acid and/or sulfate are
the most common for flavonoids. Finally, because of the metabolism of flavonoids, more
hydrophilic compounds are obtained and hence eliminated through different routes. In the
case of flavonoids, elimination in the bile is quantitatively the most important elimination
route [104].

On the other hand, despite some research showing that diets rich in flavonoids have
various therapeutic effects both at the systemic level and in the CNS [154–157], most studies
have reported the presence of these compounds and their metabolites at the peripheral
level, but little has been explored with respect to their bioavailability in the brain and the
mechanisms that facilitate their transport through the blood–brain barrier (BBB) [158].

Epicatechin (a flavanol found mostly in cocoa and green tea) and its methylated form
(3′-O-methyl epicatechin) were found in the brains of rats after (1, 5, and 10 days) its oral
administration (100 mg/kg body weight/d) [159]. The capacity of epicatechin and its
metabolite to cross the BBB in an in vitro model hCMEC/D3c cell culture has also been
evaluated. Both were found to cross the BBB in a time-dependent manner (at 3 and 18 h),
although with higher efficiency for the methylated metabolite. This suggests that the
transport process involved is likely passive diffusion, since methylated molecules are more
lipophilic than unconjugated epicatechin and, therefore, more easily cross the BBB [160].

Similarly, quercetin and its metabolite (3-O-glucuronyl-quercetin; 50 mg/kg body wt;
p.o.) were found in rat brain tissue in a capillary endothelial cell line [161]; its transporta-
tion through the BBB was also evaluated. In this sense, it was found that quercetin and
its glucuronidated form crossed the BBB (a model cell line hCMEC/D3), increasing its
concentration as time passed (over 1, 3, and 18 h). However, its metabolite showed a faster
rate [160].



Int. J. Mol. Sci. 2022, 23, 10896 10 of 25

Interestingly, in the case of anthocyanins, these compounds have only been identi-
fied intact or glycosylated (unconjugated) in the CNS [162,163]. Three anthocyanins were
evaluated: delphinidin-3-O-glucoside (Dp-3-gl), cyanidin-3-O-glucoside (Cy-3-gl), and
malvidin-3-O-glucoside (Mv-3-gl), and all crossed hCMEC/D3 cells in a time-dependent
manner (over 1, 3, and 18 h) but showed different efficiencies associated with their hy-
drophilicity. Dp-3-gl is the most hydrophilic and, therefore, least efficient of the three
derivatives, which suggests the influence in which the polarity of anthocyanins plays in
their transport through the BBB [160]. In addition, the neuroprotective effects of flavonoids
could possibly be mainly exerted by their conjugated metabolites, considering that a
mixture of different conjugated quercetin metabolites was shown to exert more effective
antihypertensive effects than the isolated molecule [164].

8. Participation of Serotonergic System in the Antidepressant-like Effect of Flavonoids

Diverse preclinical studies have evaluated the effect of flavonoids in promoting the de-
velopment of new alternatives for treating depression [16]. In this sense, the antidepressant-
like effect produced by flavonoids has been demonstrated using animal models of depres-
sion such as the FST, TST, or sucrose water consumption test [165], among others. These
effects are associated with the modulation of several neurotransmission systems such as
noradrenergic, dopaminergic, and serotonergic [17,130]. Table 2 summarizes the findings
regarding the antidepressant potential of some flavonoids that exert their action through
the serotonergic system, which has been extensively related to the etiology of depression
and the mechanism of action of antidepressant drugs [130,166,167].

Table 2. Flavonoids with antidepressant-like effects and their action on the serotonergic system.

Flavonoid Experimental
Subjects Treatment Behavioral Effect Effect on

Serotonergic System Reference

Astilbin
(taxifolin-3-O-
rhamnoside)

Adult male
C57BL/6J mice

10, 20, and 40 mg/kg
(i.p.) for 21 days

↓ TTI in FST and
TST

↑ Sucrose intake

↑ 5-HT in frontal
cortex [168]

Hesperidin
(3,5,7-

trihydroxyflavanone-
7-rhamnoglucoside)

Male adult Swiss
mice

0.1, 0.3, and 1 mg/kg
(i.p.) S.D. 30 min

before behavioral test

↓ TTI in FST and
TST

Pretreatment with
pCPA (100 mg/kg, i.p.)

prevents
antidepressant-like

effect

[169]

Adult male Wistar
rats with

hyperglycemia
induced by

streptozotocin

25, 50, and 100 mg/kg
(p.o.) for 21 days ↓ TTI in FST ↑ Brain levels of 5-HT [170]

Male Swiss
Albino mice

1 mg/kg (i.p.) for
14 days

↓ TTI in FST and
TST

↑ 5-HT in HP and
cerebral cortex [171]

Old male Sprague-
Dawley rats

20, 50, and 100 mg/kg
(i.p.) for 14 days

↑ Sucrose intake
↓ TTI in FST

↑ 5-HT in HP, PFC,
and amygdala [172]

Rutin
(quercetin-3-O-

rhamnosylglucoside)

Male Swiss mice

0.01, 0.1, 0.3, 1, 3, and
10 mg/kg (p.o.)

60 min before the
behavioral test

↓ TTI in FST

Pretreatment with
pCPA (100 mg/kg, i.p.)

prevents
antidepressant-like

effect

[173]

Five weeks old
male Sprague
Dawley rats

225 mg/kg (p.o.) for
28 days

↓ TTI
↑ Swimming time

in FST

↑ 5-HT in frontal
cortex, HP, striatum,

and amygdala
[174]
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Table 2. Cont.

Flavonoid Experimental
Subjects Treatment Behavioral Effect Effect on

Serotonergic System Reference

Icariin
(7-(β-D-

Glucopyranosyloxy)-
5-hydroxy-4′-
methoxy-8-(3-

methylbut-2-en-1-
yl)-3-(α-L-

rhamnopyranosyloxy)
flavone)

Adult male Wistar
rats

30 and 60 mg/kg (p.o.)
for 5 weeks ↑ Sucrose intake

↑ 5-HT1A mRNA
levels in HP and

frontal cortex
[175]

Orientin
(luteolin-8-C-

glucoside)

Adult male
Kunming mice

20 and 40 mg/kg (p.o.)
3 weeks ↑ Sucrose intake ↑ 5-HT in HP and

PFC [40]

Hyperoside
(quercetin

3-galactoside)

Male Albino Swiss
mice

3.75 mg/kg (i.p.)
60 min before the

behavioral test

↓ TTI in FST and
TST

Pretreatment with
pCPA (100 mg/kg, i.p.)

prevented
antidepressant-like
effect of hyperoside

[176]

Quercetin Male Swiss Albino
mice

25 mg/kg (p.o.) for
4 weeks

↓ TTI in FST and
TST ↑ Brain levels of 5-HT [100]

Fisetin Male ICR mice
10 and 20 mg/kg (p.o.)

60 min before
behavioral test

↓ TTI in FST and
TST

↑ 5-HT in frontal
cortex and HP [166]

Vixetin
(apigenin-8-C-

glucopyranoside)

Adult male
BALB/c mice

10, 20, and 30 mg/kg
(p.o.) 60 min before

behavioral test

↓ TTI in FST and
TST

Pretreatment with
NAN 190, a 5-HT1A

antagonist (0.5 mg/kg,
i.p.) prevented

antidepressant-like
effect of vixetin

[177]

Apigenin

Male ICR mice
7, 10, 14, and

20 mg/kg (p.o.) for
2 weeks

↓ TTI in FST
↑ Sucrose intake

↑ 5-HT in PFC, HP,
hypothalamus and

nucleus accumbens of
rats exposed to CMS

[178]

Albino mice
(either sex)

25 and 50 mg/kg (p.o.)
24, 5, and 1 h before
the behavioral test

↓ TTI in TST and
FST

Pretreatment with
pCPA (100 mg/kg, i.p.)

prevented
antidepressant-like
effect of apigenin

[179]

Naringenin
(4′,5,7-

trihydroxyflavanone-
7-rhamnoglucoside)

Male ICR mice
10, 20, and 50 mg/kg
(p.o.) 60 min before
the behavioral test

↓ TTI in TST

Pretreatment with
pCPA (100 mg/kg, i.p.)

prevented
antidepressant-like
effect of naringenin

[180]

Three months old
BALB/c male mice

25, 50, and 100 mg/kg
(p.o.) for 14 days

↑ Sucrose intake
↓ TTI in FST

↑ 5-HT in cortex and
HP [181]

Silibinin

6–8 weeks old
Kunming mice

100, 200, and
400 mg/kg (p.o.) for

3 weeks

↓ TTI in TST and
FST ↑ 5-HT in PFC and HP [182]

Eight weeks old
male Sprague
Dawley rats

25, 50, and 100 mg/kg
(i.p.) for 14 days

↓ TTI in the FST
↑ Sucrose intake

↑ 5-HT in HP and
amygdala, and

enhanced expression
of TpH-1 mRNA in HP

[183]
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Table 2. Cont.

Flavonoid Experimental
Subjects Treatment Behavioral Effect Effect on

Serotonergic System Reference

Chrysin

Male C57B/6J mice 5 and 20 mg/kg (p.o.)
for 14 days ↓ TTI in FST ↑ 5-HT in HP [130]

Adult female
C57BL/6 mice

20 mg/kg (p.o.) for
28 days

↓ TTI in FST and
TST ↑ 5-HT in PFC and HP [184]

Male Wistar rats 5 mg/kg (p.o.) for
28 days ↓ TTI in FST

↓ 5-HT1A and 5-HT2A
mRNA in raphe

nucleus
↑ 5-HT1A mRNA in

HP

[185]

Nobiletin Male ICR mice
25, 50, and 100 mg/kg

(p.o.) 60 min before
the behavioral test

↓ TTI in FST and
TST

Pretreatment with
WAY 100,635

(7.1 mg/kg, s.c., a
serotonin 5-HT1A

receptor antagonist)
and cyproheptadine

(3 mg/kg, i.p., a
serotonin 5-HT2

receptor antagonist)
prevented

antidepressant-like
effect of Nobiletin

[186]

Liquiritin
(7-Hydroxyflavanone
4′-O-glucoside) and
Isoliquiritin (2′,4,4′-
Trihydroxychalcone

4-glucoside)

Mice
10, 20, and 40 mg/kg
(p.o.) 30 min before
the behavioral test

↓ TTI in FST and
TST

↑ 5-HT in HP,
hypothalamus

and cortex
[187]

i.p. = intraperitoneally; p.o. = per oral rout; ↑ = the variable was increased; ↓ = the variable was decreased;
TTI = total time of immobility; 5-HT = serotonin; HP = hippocampus; PFC = prefrontal cortex; FST = forced
swim test; TST = tail suspension test; pCPA = p-chlorophenylalanine methyl ester; CMS = chronic mild stress;
5-HT1A = 5-hydroxytryptamine 1A receptor; 5-HT2A = 5-hydroxytryptamine 2A receptor CUMS = chronic
unpredictable mild stress.

Concerning this, hesperidin, a flavonoid abundant in highly consumed citrus fruits
such as oranges and lemons, is capable of crossing the BBB [188] and produces anti-
inflammatory, antioxidant, and neuroprotective effects [188,189]. It has also been reported
to produce antidepressant-like effects in murine models, e.g., the acute or chronic adminis-
tration of 1 mg/kg hesperidin to mice or chronic administration of 20, 50, and 100 mg/kg
hesperidin to rats reduced the immobility time in FST and TST [169,171] and increased
sucrose intake [160] and 5-HT concentrations in the HP, PFC, and amygdala [171,172], while
the pretreatment with p-chlorophenylalanine methyl ester (pCPA), a selective inhibitor of
tryptophan hydroxylase, an important enzyme in the biosynthesis of serotonin, prevents
the antidepressant-like effect of hesperidin [169].

Similarly, in preclinical research on mice, the acute administration of 10 and 20 mg/kg
fisetin [166], a flavonoid found in fruits such as apples and strawberries, or acute (10, 20,
and 50 mg/kg) [180] or chronic (25, 50, and 100 mg/kg) [181] naringenin, the predominant
flavonoid in grapefruit, produces antidepressant-like effects, which are associated with
increased 5-HT in the frontal cortex and HP that are abolished through pretreatment with
pCPA [167,180,181], which implicates the serotonergic system in its pharmacological and
behavioral effects.

In complement, chronic administration of apigenin (7 and 50 mg/kg) [179,180] or
(5 and 20 mg/kg) chrysin [129,184], both flavonoids from plants Passiflora incarnata and
Matricaria chamomilla, also increased motivation behaviors—less immobility in FST and
TST and higher consumption of sucrose—mediated by the serotonergic system, with



Int. J. Mol. Sci. 2022, 23, 10896 13 of 25

higher concentrations of 5-HT in the PFC, HP, and nucleus accumbens, all effects that were
prevented by pretreatment with pCPA or ondansetron, a serotonin 5-HT3 receptor antago-
nist [131,178,184], important effects if we consider that these brain structures are involved
in the physiopathology of depression and are pharmacological targets of antidepressant
drugs (i.e., SSRIs, tricyclics, and MAOIs).

The data show that flavonoids have antidepressant-like effects that are related to the
modulation of the serotonergic system, similar to that observed with clinical antidepres-
sant drugs, highlighting the potential utility of flavonoids to produce therapeutic effects
in humans.

9. BDNF Implicated in the Antidepressant-like Effect of Flavonoids

Several flavonoids exert different mechanisms through which they can modulate the
BDNF system and are therefore able contribute to their antidepressant-like effect [16,190,191].
Among these flavonoids are hesperidin, apigenin, astibilin, bacalein, chrysin, dihydromyricetin,
hyperoside, icariin, 7,8-dihydroxyflavone, myricetin, naringenin, naringenin, orientin, and
silibinin [17]. Table 3 summarizes the actions on BDNF related to the antidepressant-like
effect of flavonoids.

Table 3. Role of BDNF in the antidepressant-like effect of flavonoids.

Flavonoid
Experimental
Subjects and

Condition

Dose and
Treatment
Duration

Behavioral Effects
Related with

Antidepressant
Activity

Effect on BDNF Reference

Baicalein

Male Sprague–Dawley
rats exposed to
restrain stress

10, 20, and
40 mg/kg (i.p.) for

14 days

↓ TTI in FST
↑ Sucrose intake ↑ BDNF levels in HP [192]

Male C57BL/6J mice
with depressive-like
behavior induced by

rotetone

300 mg/kg (p.o.)
for 4 weeks

↓ TTI in TST
↑ Sucrose intake

↑ BDNF levels in HP
↑ TrkB phosphorylation [193]

Icariin
Male C57BL/6J mice

exposed to social
defeat

5 and 10 mg/kg
(p.o.) for 28 days ↑ Interaction time ↑ BDNF mRNA in HP [194]

Hesperidin Male adult Swiss mice 0.3 and 1 mg/kg
(i.p.) for 21 days ↓ TTI in FST ↑ BDNF levels in HP [167]

Astibilin Male C57BL/6J mice
exposed to CUMS

10, 20, and
40 mg/kg (i.p.) for

21 days

↓ TTI in FST and TST
↑ Sucrose intake

↑ BDNF levels in frontal
cortex [168]

Naringenin Male ICR mice
exposed to CUMS

10 and 20 mg/kg
(p.o.) for 21 days ↑ Sucrose intake ↑ BDNF and mRNA

BDNF in HP [195]

7,8-
dihydroxiflavone

Male C57BL/6 mice
submitted to CMS

10 and 20 mg/kg
(i.p.) for 28 days ↑ Sucrose intake

↑ BDNF in HP and PFC
Agonist to the TrkB

receptor
[196]

Chrysin Female C57BL/6J mice
exposed to CUMS

5 and 20 mg/kg
(p.o.) for 28 days

↑ Sucrose intake
↓ TTI in FST

↑ BDNF and NGF in HP
and PFC [130]

Orientin Male Kunming mice 20 and 40 mg/kg
(p.o.) for 21 days

↑ Sucrose intake
↓ TTI in FST and TST ↑ BDNF in HP and PFC [40]

3,5,6,7,8,30,40-
Heptame

thoxyflavone
C57BL/6 mice 50 mg/kg (s.c.) for

25 days ↓ TTI in FST and TST ↑ BDNF in HP [197]

Apigenin Male ICR mice 20 and 40 mg/kg
(p.o.) for 21 days

↑ Sucrose intake
↓ TTI in FST ↑ BDNF in HP [198]
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Table 3. Cont.

Flavonoid
Experimental
Subjects and

Condition

Dose and
Treatment
Duration

Behavioral Effects
Related with

Antidepressant
Activity

Effect on BDNF Reference

Fisetin Male ICR mice 5 mg/kg (p.o.) for
21 days ↓ TTI in FST and TST ↑ Activation of TrkB

receptor in HP [199]

Silibinin

Male Sprague-Dawley
rats with

depression-like
behavior induced by

Aβ1-42 oligomers

50 and 100 mg/kg
(p.o.) for 15 days ↓ TTI in FST and TST

↑ BDNF and TrkB
receptor expression in

HP
[200]

Quercetin Female C57BL/6J
ERα-KO mice

10 mg/kg (p.o.) for
10 weeks ↓ TTI in FST and TST ↑ BDNF and TrkB

receptor expression [201]

i.p. = intraperitoneally; FTS = forced swim test; ↑ = the variable was increased; ↓ = the variable was decreased;
TTI = total time of immobility; BDNF = brain derived neurotrophic factor; p.o. = per oral rout; TrkB = Tropomyosin
receptor kinase B; mRNA = messenger ribonucleic acid; HP = hippocampus; CUMS = chronic unpredictable mild
stress; TST = tail suspension test; PFC = prefrontal cortex; CMS = chronic mild stress; NGF = nerve growth factor;
s.c. = subcutaneous injection.

According to the above, one of these reported mechanisms is the one that suggests that
flavonoids possess a neuroprotective action mediated by the increase in BDNF levels, since
they prevent induction of the depressive-like behavior in rodents submitted to depression
models (i.e., TST, FST) [167,199,201]. For example, chronic pretreatment with hesperidin
(0.3 and 1 mg/kg, i.p., for 21 days) increases the levels of BDNF in HP, which is associated
with the decrease in immobility in the FST [154]. It has also been observed that the daily
administration of baicalein (10, 20, and 40 mg/kg; i.p.) prior to daily exposure to repeated
restraint stress (2 h/day) for 14 days increases BDNF levels and decreases corticosterone
concentrations in the HP, which is related to prevention of depressive-like behavior in
FST [192].

Moreover, these polyphenolic compounds can increase the expression of BDNF in
the brain. In this sense, the antidepressant-like effect of chronic treatment with different
flavonoids such as icariin (5 and 10 mg/kg, p.o., for 28 days), naringenin (10 and 20 mg/kg,
p.o., for 21 days), silibinin (50 and 100 mg/kg, p.o., for 15 days), and quercetin (10 mg/kg,
p.o., for 10 weeks) were associated with increased levels of BDNF mRNA, particularly in
brain structures such as HP and PFC [194,195,200,201].

On the other hand, some flavonoids, in addition to regulating BDNF, can also modulate
its receptor TrkB [193,197,199–201]. For example, chronic treatment with fisetin (5 mg/kg,
p.o., for 21 days) increases the TrkB receptor activation in the HP of ICR mice [199]; sim-
ilarly, sibylinin (50 and 100 mg/kg, p.o., for 15 days) promotes increased expression of
this receptor in the HP of male Sprague-Dawley rats [200], actions that were both associ-
ated with a decrease in immobility behavior in the FST and TST, which is considered an
antidepressant-like effect. These results have significant implications considering that the
activity of BDNF and its TrkB receptor can independently regulate the therapeutic effects
of conventional antidepressants [88]. The above suggests that flavonoids could exert their
therapeutic actions through an alternative mechanism than regulating BDNF levels.

Flavonoids, at preclinical level, can also reverse depressive behaviors by increasing
BDNF levels, such as in the case of depressed patients administered antidepressants [153].
For example, astibilin (10, 20, and 40 mg/kg, i.p., for 21 days) reversed the anhedonic
behavior in male C57BL/6J induced by chronic stress, which was related to the increase in
BDNF levels in the frontal cortex [168]. This same effect has been reported for naringenin
(10 and 20 mg/kg, p.o., for 21 days) [182], 7,8-dihydroxyflavone (10 and 20 mg/kg, i.p., for
28 days) [197], and chrysin (5 and 20 mg/kg, p.o., for 28 days) [130], which confirms the
potential of flavonoids as possible molecules that could be used for the development of
pharmacological prototypes for the treatment of depression.
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10. Concluding Remarks

Depression is one of the main comorbidities in many chronic diseases and a healthcare
challenge due to the overlapping of symptoms and lack of adherence to treatment [202].
Therefore, having pharmacological alternatives with a greater efficacy and range of safety is
one of the objectives and the main priority in preclinical research. In this sense, flavonoids
represent a new pharmacological proposal for the treatment of depressive symptoms.
These compounds have a wide repertoire of biological proprieties such as antioxidant, anti-
inflammatory, anti-histaminic, anxiolytic, and antidepressant properties [105,107,108]. This
last property has gained great interest in the neuropharmacology field, due to flavonoids
having been demonstrated to exert antidepressant-like effects in different animal mod-
els [165].

As reviewed, there is extensive evidence suggesting that the serotonergic system and
BDNF are the two main pathways through which flavonoids exert their antidepressant
action. The evidence collected in this review shows that most of the described flavonoids
modulate the serotonergic system by increasing the 5-HT levels in specific brain structures
implicated in mood regulation, such as the HP and PFC (see Table 2). However, there
are few studies that evaluate the participation of other components of the serotonergic
system (i.e., enzymes and receptors, among others), which could also explain the increase
in 5-HT levels. Despite this, the literature suggests that 5-HT is modulated by changes in
the expression of the enzyme TpH-1, which is responsible for converting tryptophan to
5-HT [181], as well as the decrease in the mRNA levels of 5HT1A and 5-HT2A receptors in
the raphe nucleus, which could increase the 5-HT firing rate in postsynaptic areas [183].
In addition, it is noteworthy that the effects of flavonoids on 5-HT levels are similar to
those produced by conventional antidepressant drugs: the increase in 5-HT has been
detected even 30 min after the administration of flavonoids [169], and the mechanism
of action requires elucidation. Likewise, the effect of flavonoids on 5-HT levels persists
during chronic administration [100,175] and has been widely associated with the increase
in trophic factors and neuroplasticity processes.

With respect to the participation of BDNF in the antidepressant-like effect of flavonoids,
this review shows that most flavonoids induce increased levels of this trophic factor,
particularly in the HP and PFC (Figure 1). In addition, the onset of these effects has
been reported after two weeks of treatment with flavonoids (see Table 3) similar to that of
conventional antidepressant drugs. However, it is still necessary to explore pharmacological
strategies that include the administration of flavonoids in combination with conventional
antidepressants, which could reduce the latency of therapeutic effects, and to evaluate the
possible participation of BDNF in the rapid facilitation of such effects.

The analyzed evidence also suggests that flavonoids can even promote TrkB pathway
signaling through increasing the expression and activation of TrkB. This is relevant since
these effects were also observed in studies where flavonoids (baicalein and quercetin) were
administered orally, which would suggest that even their metabolism does not necessarily
impose limitations with respect to exertion of their biological actions [193,200]. This could
be useful on the design of pharmacological prototypes based on the structure of flavonoids
with the aim of exerting rapid antidepressant effects, since the use of TrkB modulators has
been shown to shorten latency to the appearance of therapeutic effects [87,203].

Additionally, despite describing the antidepressant-like effect of various flavonoids
in this review, there is little literature evidence regarding the specific groups or features
in their chemical structure that determine their antidepressant potential. However, in a
recent study conducted in 2016, it was shown that those flavonoids with multiple hydroxy
groups in their structure, such as apigenin (4′, 5, 7-trihydroxyflavone), quercetin (3, 3′,
4′, 5, 7-five hydroxyflavone), fisetin (3, 3′, 4′, 7-tetrahydroxyflavone), and luteolin (3′, 4′,
5, 7-tetrahydroxyflavone) have mostly been reported to have antidepressant properties.
Thus, authors subjected these four flavonoids to a structure–activity relationship study and
demonstrated that the presence of hydroxy groups in position five or seven on the A-ring
is a common feature of these flavonoids. Another of the structural characteristics is the
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presence of C-glycoside, for example, in flavonoids such as icariin, rutin, and vixetin, in
which either monosaccharides or disaccharides are present [99]. This information could
imply an important guideline for the development of future molecules derived from
flavonoids, which may have specific characteristics in their structure, which ensure an
antidepressant profile.
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Figure 1. Possible implication of serotonergic system and BDNF in the antidepressant-like effect of
flavonoids. Long-term treatment with flavonoids decreases the expression of presynaptic (raphe
nucleus) 5-HT1A (a) and 5-HT2A (b) receptors and can also increase the expression of TpH-1 (c),
both of which improve the 5-HT levels (d) in several postsynaptic areas (i.e., HP, PFC, HYP, and
AMY), increasing the levels of postsynaptic 5-HT1A receptors (e). The high levels of 5-HT promote
CREB expression (f), which stimulates the increase in mRNA (g) and protein (h) of TrkB receptor.
Similarly, the levels of mRNA (i) and protein (j) of BDNF are increased. The above improves the
neuroplasticity, neuronal survival, and neurogenesis, which is reflected in the appearance of the
antidepressant-like effect of flavonoids. 5-HT1A = serotonin 1A receptor; 5-HT2A = serotonin 2A
receptor; Tph-1 = tryptophan hydroxylase 1; 5-HT = serotonin; HP = hippocampus; PFC = pre-
frontal cortex; HYP = hypothalamus; AMY = amygdala; CREB = cAMP response element-binding;
mRNA = messenger ribonucleic acid; TrkB = tropomyosin receptor kinase B; BDNF = brain-derived
neurotrophic factor.

Another point to consider is that, although most of the studies described in this re-
view used oral administration, even then, antidepressant effects were observed; other
research has also explored the effects of subcutaneous [196] and intraperitoneally injec-
tions [167–169,176,201], see Tables 2 and 3. That could be seen as a limitation of flavonoids;
however, these studies have been valuable to understand their potential therapeutic prop-
erties. Preclinical experiments exploring the effects of ketamine in animals commonly used
intraperitoneal administration [204,205] in rodents and intravenous in primates [206], even
though antidepressants are typically orally administered. These studies were valuable even
though ketamine is currently administered by nasal spray [207]—for a review, see [208]—
which has been approved for use in treatment-resistant depression in both the United States
and Europe. Similarly, experiments studying flavonoids have been useful, especially when
considering pharmacodynamic parameters in different routes of administration and would
be valuable in the development of new therapies.

Focusing on another aspect, it is important to mention that most of the research
described in this review is based on male individuals. Contrary to this, in humans, it has
demonstrated that depression is more prevalent in women than men [209]. In addition, it is
known that steroid hormones (i.e., estrogen, progesterone) play a fundamental role in the
response to antidepressant drugs, both preclinically and in humans [210]. Therefore, it is
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still necessary to explore the interaction of flavonoids with steroid hormones regarding the
modulation of serotonergic and BDNF systems on the antidepressant-like effects. Similarly,
evaluating the possible side effects of flavonoids on sleep and sexual activity, among other
behaviors, should be a goal to improve understanding on the pharmacological properties of
theses polyphenolic compounds, considering that most of the studies on the antidepressant
effects of flavonoids have only explored motor effects.

Finally, it has been shown that the antidepressant-like effects of flavonoids are related
to their modulation of the serotonergic and BDNF systems. This is important, considering
that new molecules with these properties could be designed for use as new treatments for
depression. According to the multifactorial origin of depression, it would be interesting to
consider the possible synergism of the anti-inflammatory, antioxidant, and regulation of
the brain–microbiota axis effects promoted by flavonoids, a possibility that has recently
been explored in some studies [101,181,211]. All of the compiled evidence thus highlights
the importance of flavonoids in the development of new treatments for depression, empha-
sizing the necessity to continue exploring their pharmacological properties on the CNS and
identifying potential side effects in screening promising candidates.
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flowers (Jı̄n Zhēn Huā) in rats. J. Tradit. Complement. Med. 2013, 3, 53–61. [CrossRef] [PubMed]

175. Pan, Y.; Wang, F.M.; Qiang, L.Q.; Zhang, D.M.; Kong, L.D. Icariin attenuates chronic mild stress-induced dysregulation of the
LHPA stress circuit in rats. Psychoneuroendocrinology 2010, 35, 272–283. [CrossRef] [PubMed]
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