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T cell receptor engagement by peptide—
MHC ligands induces a conformational
change in the CD3 complex of thymocytes
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The T cell receptor (TCR) can recognize a variety of cognate peptide/major
histocompatibility complex (pMHC) ligands and translate their affinity into distinct
cellular responses. To achieve this, the nonsignaling o3 heterodimer communicates ligand
recognition to the CD3 signaling subunits by an unknown mechanism. In thymocytes, we
found that both positive- and negative-selecting pMHC ligands expose a cryptic epitope in
the CD3 complex upon TCR engagement. This conformational change is induced in vivo and
requires the expression of cognate MHC. We conclude that TCR engagement with a
cognate pMHC ligand induces a conformational change in the CD3 complex of thymocytes
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and propose that this marks an initial event during thymic selection that signals the

recognition of self-antigen.

T cell development is controlled by CD3 signal
transduction, which is initiated when peptide—
MHC (pMHC) engages the af3 heterodimer of
the TCR (1). A unique feature of the TCR is
its ability to scan structurally similar pMHC
ligands and transmit distinct biochemical signals
depending on the strength of the ligand recog-
nized (2, 3). In developing thymocytes, weak
TCR ligands induce positive selection and
stronger ligands induce negative selection (4).
A great deal of work has focused on how the
CD3 complex transduces TCR engagement
into specific cellular responses. Current models
point to TCR oligomerization (5), synapse for-
mation and membrane reorganization (6-8),
recruitment of TCR to membrane rafts (9),
and induction of ligand-induced TCR-CD3
conformational change (10, 11) to explain the
earliest events of TCR signaling.

Although the conformational change expla-
nation lies closest to the point of origin, it is also
the idea least supported by direct experimental
evidence. Crystallographic analysis of pMHC-
TCR complexes reveals ligand-induced con-
formational changes in the complementarity
determining regions (CDRs) of TCR-variable
domains (12-14). However, these structural
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changes are thought to accommodate pMHC
binding and with one exception (15) are not
accompanied by any corresponding conforma-
tional changes of the TCR constant domains.
Furthermore, the crystal structures of TCRs
bound to variant pMHC ligands have revealed
only minor differences in CDR conformation
in comparison with nominal peptide ligands
(12, 14). These studies argue that conforma-
tional changes occurring in the CDR loops
may not be communicated to the distal domains
of the TCR—CD3 complex.

Using a biochemical approach, we previ-
ously reported that human CD3 undergoes a
conformational change when the TCR-CD3
complex is directly bound by certain mAbs but
not by others (16). This conformational change
uncovered a cryptic epitope on the cytoplas-
mic tail of CD3e, revealing a polyproline se-
quence that is a binding site for the SH3.1 do-
main of the cytosolic adaptor protein, Nck.
Whether such a conformational change occurs
when cognate pMHC engages TCR has not
been directly addressed (17, 18). Here, we
found that a conformational change in CD3
was induced by either positive- or negative-
selecting pMHC:s in vitro and also by endoge-
nous pMHC during thymocyte maturation in
vivo. The conformational change within the
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CD3 complex might be one of the first steps in TCR signal-
ing, indicating that a relevant pMHC ligand has been bound
by the af3 heterodimer.

RESULTS AND DISCUSSION

The TCR-CD3 complex of murine thymocytes undergoes

a conformational change when stimulated with antibodies
Engagement of human TCR—-CD3 by certain mAbs was
previously shown to expose a cryptic polyproline sequence
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Figure 1. Induction of open CD3 in thymocytes stimulated with

anti-TCR-CD3 antibodies. (A) The open CD3 PD assay was performed on
lysates from C57BL6 thymocytes that had been incubated in the absence
(@) or presence of 10 wg/ml anti-TCRB (H57) or anti-CD3e (2C11) for 5
min at 37°C. (B) The open CD3 PD assay was performed as in A, and after
cell lysis, various antibodies (10 wg/ml) specific for distinct CD3 subunits
were added to the lysates and were present during the assay. APA1/1,
anti-CD3e intracellular polyproline motif; APA1/2, anti-CD38 cytoplasmic
tail; C-17, anti-CD3+y extracellular domain; 6B10, anti-CD3{ extracellular
domain; s448, anti-CD3{ intracellular domain. (C) The open CD3 recapture
assay was performed on lysates from C57BL6 thymocytes that had been
incubated with 10 wg/ml anti-TCRB (H57) for 15 min at 37°C. After the
open CD3 complexes had been eluted and recaptured on APA1/1 beads,
aliquots of the beads were separately stained with a PE-conjugated mAb
probe as indicated and analyzed by flow cytometry. (D) The open CD3 PD
assay was performed on lysates from C57BL6 thymocytes that were
treated with 50 wM PV or PV and 10 wg/ml anti-CD3e (2C11) for 5 min at
37°C. (E) Open CD3 PD assay of lysates from C57BL6 thymocytes that were
preincubated for 45 min with or without 20 wM PP2 and stimulated with
10 pg/ml anti-CD3e (2C11) in the continued presence or absence of PP2
for 30 min at 37°C. (F) The open CD3 PD assay was performed as in A for
30 min at 37 or 0°C.
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in the cytoplasmic domain of CD3e (“open CD3”), which
could be bound by the Nck SH3.1 domain in pull-down
(PD) assays (16). To determine whether anti-TCR—-CD3
antibodies induce open CD3 in murine thymocytes, C57BL6
thymocytes were stimulated with anti-TCR 3 or anti-CD3¢e
mAbs. Postnuclear lysates were subjected to Nck SH3.1 PD
and CD3{ Western blotting to assess the accessibility of the
CD3e polyproline motif in mature, fully assembled TCR—
CD3 complexes (see Materials and methods, Open CD3
PD and Western blots section). Open CD3 was signifi-
cantly induced by stimulation with either mAb (Fig. 1 A).
PD was blocked by the mAb APA1/1, which is specific
for the polyproline region of CD3e (19), but was not
blocked by antibodies specific for CD3y, CD38, or CD3(
(Fig. 1 B). Thus, the open configuration in murine CD3
can be induced by antibody binding to the TCR-CD3
complex.

To determine whether open CD3 complexes were asso-
ciated with the usual complement of TCR—CD3 subunits,

A Stm: @ pvSV pFARL pOVA 2CII
€D3-PD —
B Stim:

pOVA
APAT1/1 in lysate: ~— + B

CD3-PD .

C

pOVA dose: 0 200pM 2nM 20nM 200nM 2uM
CD3-PD i . . ﬁ il
D
Time: 0 15" 2’ 15> 300 60’ 180" 300’
CD3-PD - - Stmme gmeesm — e

Figure 2. An agonist pMHC ligand induces open CD3 in murine
thymocytes. The open CD3 PD assay was performed on lysates from cocul-
tures of OT-I B2m~/~ RAG2~/~ DP thymocytes and T2-K° APCs. (A) Before
thymocyte-APC coculture, APCs were incubated in the absence (@) or
presence (2 wM) of the null peptides, VSV (pVSV) and FARL (pFARL), or the
strong agonist OVA (pOVA). After coculture for 30 min at 37°C, cells were
lysed, and the lysates were subjected to the open CD3 PD assay. As a posi-
tive control for open CD3 induction, one coculture was incubated with
anti-CD3e (2C11). (B) APCs loaded with 2 wM pOVA were cocultured with
thymocytes for 30 min at 37°C. After thymocyte stimulation and lysis, the
open CD3 PD assay was performed in the presence (+) or absence (—) of
10 wg/ml APA1/1, which is a mAb specific for the CD3e polyproline motif.
(C) APCs loaded with 200 pM to 2 M pOVA were cocultured with thy-
mocytes for 30 min at 37°C. The open CD3 assay was performed as de-
scribed above. (D) After a brief centrifugation, pOVA-loaded APCs were
cocultured with thymocytes for up to 300 min at 37°C. For time point O,
thymocytes and nonloaded APCs were mixed, centrifuged, and immediately
lysed. The amount of open CD3 recovered after each stimulation is shown.
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we used a PD recapture strategy. After C57BL6 thymocytes
were stimulated and lysed, complexes bound by the Nck
SH3.1 sepharose beads were eluted and recaptured on
APA1/1(anti-CD3g)—conjugated polystyrene latex beads.
The native complexes on the APA1/1 beads were stained
with various PE-conjugated mAbs and analyzed by flow cy-
tometry, similarly to a previously published method (20). La-
tex beads conjugated to control Ig failed to immunoprecipi-
tate TCR—CD3 subunits (unpublished data), and APA1/1
beads failed to capture highly expressed thymocyte proteins
such as CD8 and Thy1.2; however, the APA1/1 beads spe-
cifically recaptured TCR[3, CD3g, CD3vy, and CD3{ poly-
peptides (Fig. 1 C). Thus, both TCR and CD3 components
are present in the open CD3 complexes.

It was possible that open CD3 exposure was dependent
on signal transduction. However, treatment of thymocytes
with pervanadate (PV), a strong phosphatase inhibitor and
inducer of tyrosine phosphorylation, did not induce open
CD3 (Fig. 1 D). Furthermore, thymocyte stimulation with
anti-CD3e in the presence of the src kinase inhibitor PP2
failed to inhibit the induction of open CD3 (Fig. 1 E). Fi-
nally, even when antibody stimulations were performed at
0°C, open CD3 was still inducible (Fig. 1 F). We conclude
that the induction of open CD3 observed in these experi-
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ments is independent of tyrosine phosphorylation, src kinase
activity, and other signaling and therefore represents a con-
formational change induced by the binding of antibody to
the murine TCR—CD3 complex.

Thymocyte TCR-CD3 complexes undergo a conformational
change when stimulated with agonist pMHC ligands

Using the OT-I transgenic mouse model, we asked whether
pMHC presented on APCs induces a conformational change
in the CD3 complex of thymocytes. In OT-I B2m~/~
RAG27/~ mice, thymocyte development is blocked at the
CD4" CD8* double positive (DP) stage due to lack of class |
MHC antigen expression. The open CD3 PD assay was per-
formed after the coculture of OT-I B2m~'~ RAG2/~ DP
thymocytes with T2-K» APCs (21) that had been preloaded
with various peptides. The peptides pVSV and pFARL,
which bind H-2K" but do not engage the OT-I TCR, failed
to induce open CD3 in these cocultures (Fig. 2 A). In
contrast, the strong agonist and negative-selecting peptide
pOVA induced open CD3 in OT-I f2m~/~ RAG2™/~ DP
thymocytes (Fig. 2 A). Detection of open CD3 could be
competitively blocked by the APA1/1 mAb, verifying that
the PD was specific for the cytoplasmic tail of CD3e (Fig. 2
B). Induction of open CD3 by pOVA was peptide dose de-
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Figure 3. Induction of open CD3 in thymocytes by agonist pMHC
occurs independently of signal transduction. (A) OT-I B2m~/~ RAG2~/~
DP thymocytes and T-2K® APCs loaded with 2 uM pFARL or pOVA were
separately preincubated in the presence or absence of 20 wM PP2 for 45 min
at 37°C. The cells were then cocultured in the continued presence or ab-
sence of PP2 for 15 min at 37°C, after which the open CD3 PD assay was
performed. (B) Samples from A were immunoprecipitated with anti-CD3¢
and blotted with anti-phosphotyrosine. (C) APCs loaded with 2 wM pFARL
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or pOVA were cocultured with OT-1 B2m~/~ RAG2~/~ DP thymocytes
either for 30 min at 37°C or overnight (O/N) at 0°C and then subjected to
the open CD3 PD assay. (D) Cultures that were incubated as described in C
were stained with anti-TCRB-PE and analyzed by flow cytometry for sur-
face TCR expression. (E) APCs loaded with 2 uM pFARL or pOVA were cocul-
tured overnight (O/N) with OT-I B2m~/= RAG2~/~ DP thymocytes at 37 or
0°C. Cells were harvested and stained with anti-CD69-PE and analyzed by
flow cytometry.
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pendent (Fig. 2 C), with weak detection almost immediately
after TCR engagement and maximal detection by 30 min
that persisted for several hours (Fig. 2 D).

To determine whether the opening of CD3 was depen-
dent on tyrosine phosphorylation, OT-I f2m~/~ RAG2™/~
DP thymocytes were cocultured with pOVA-loaded APCs
in the presence or absence of the src kinase inhibitor PP2.
Although PP2 inhibited early tyrosine phosphorylation, it
failed to inhibit induction of open CD3 (Fig. 3, A and B).
To more generally block cellular enzymatic and signaling ac-
tivity, cocultures of thymocytes with pOVA-loaded APCs
were performed at 0°C. As these experiments relied on the
passive accumulation of TCR-MHC binding events, cocul-
tures were maintained overnight. This treatment permitted
the induction of open CD3 (Fig. 3 C), despite the lack of
surface TCR down-regulation (Fig. 3 D) and CD69 up-reg-
ulation (Fig. 3 E). These data argue that the open CD3 in-
duced in thymocytes by pOVA occurs independently of the
enzymatic and/or cellular activities typically associated with
signal transduction. We conclude that the induction of open
CD3 in thymocytes by pMHC ligands is directly dependent
on TCR engagement and represents a conformational change
in the TCR—CD3 complex.

Both positive- and negative-selecting peptides induce open
CD3 in thymocytes in vitro

The peptides pE1, pQ7, and pQ4 are variants of pOVA that
bind as well as pOVA to H-2K" (22), but pE1 and pQ7 in-
duce positive selection, whereas pQ4 and pOVA induce
negative selection of OT-I thymocytes in FTOC (23, 24,
and unpublished data). We cocultured OT-I B2m ™/~ RAG2™/~
DP thymocytes with APCs that had been preloaded with the
various peptides and assessed CD69 up-regulation after 16 h.
The biologic potency of these peptides for the OT-I TCR
varied over a 50,000-fold range: pE1 < pQ7 < pQ4 <
pOVA (Fig. 4 A). The degree of surface TCR down-regula-
tion induced after 30 min of coculture also followed the
same hierarchy (Fig. 4 B).

When cocultures were subjected to the open CD3 PD as-
say, only null peptides failed to induce open CD3 (Fig. 4 C).
‘Whether weak or strong, all signaling pMHC ligands induced
open CD3 at high peptide concentrations (Fig. 4 C). Based
on the differences in signaling potency noted above, we hy-
pothesized that stronger, negative-selecting pMHC ligands
might induce the open CD3 conformation at lower peptide
concentrations than the weaker, positive-selecting pMHC
ligands. Surprisingly, however, lowering the peptide concen-
tration 1,000-fold to barely above the detection limit of the
PD assay did not prevent the positive-selecting pMHC
ligands from inducing open CD3 (Fig. 4 D). We conclude
that either positive- or negative-selecting peptides can induce
a conformational change in the TCR—CD3 complex. There-
fore, in thymocytes, the open CD3 conformation distin-
guishes null from signaling pMHCs but is not predictive of
signal strength and does not distinguish between ligands capa-
ble of mediating positive or negative selection.
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Figure 4. Positive and negative selecting peptides induce open CD3
in thymocytes in vitro. Peptides were scored regarding their effect on
thymic selection in FTOC as either null (black), positive selecting (blue), or
negative selecting (red). (A) APCs loaded with varying concentrations of
pFARL, pE1, pQ7, pQ4, or pOVA were cocultured with OT-1 B2m~/~ RAG2~/~
DP thymocytes for 16 h at 37°C. Cells were then stained with anti-CD69-PE
and the percentage of positive thymocytes was measured by flow cytome-
try. (B) APCs loaded with 2 M pFARL, pE1, pQ7, pQ4, or pOVA were cocul-
tured with OT-I B2m~/~ RAG2~/~ DP thymocytes for 30 min at 37°C. Cells
were then stained with anti-TCRB-PE and the mean fluorescence intensity
(MFI) of surface TCR expression was measured by flow cytometry. (C) APCs
preloaded with 2 wM pFARL, pE1, pQ7, pQ4, or pOVA were cocultured with
OT-I B2m~/= RAG2~/~ DP thymocytes for 30 min at 37°C. Cells were then
lysed and the open CD3 PD assay was performed. (D) APCs loaded with 2 nM
pFARL, pE1, pQ7, or pOVA were cocultured with thymocytes for 30 min at
37°C. The open CD3 PD assay was then performed on lysates of cells stim-
ulated as described in C.

Thymic selection induces open CD3 in thymocytes in vivo

We wished to determine whether the endogenous pMHC
ligands that mediate thymocyte selection in vivo induced
open CD3. The OT-I transgene was bred onto various thy-
mic selection backgrounds: OT-I B2m~/~ RAG2™/~ (no
TCR engagement, no selection); OT-I B2m™*™/* RAG27/~
(positive selection); and OT-I B2m™*/* RAG2%/* (positive
selection). Without any exogenous stimulation, thymocytes
were harvested and lysed, and the lysates were subjected to
the open CD3 PD assay. Because the level of TCR expres-
sion varied somewhat between strains, analysis was facilitated

PEPTIDE-MHC INDUCES CONFORMATIONAL CHANGE IN CD3 | Gil et al.
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Figure 5. The expression of cognate pMHC ligands induces open
CD3 in thymocytes in vivo. (A) Thymocytes were obtained from 7-wk-
old OT-I B2m~/= RAG2~/~, OT-I B2m*/* RAG2~/~, or OT-I B2m™*/*
RAG2*/* mice. Without any exogenous stimulation, thymocytes were
lysed and subjected to the open CD3 PD assay. Quantitative flow cytome-
try was used to estimate the average number of surface TCRs expressed
on thymocytes from each genotype. These calculations were used to load
each gel lane with equal numbers of surface TCR equivalents, as noted
below the blot (average no. surface TCRs/cell X cell equivalents loaded =
total surface TCRs loaded). For comparison, a Western blot of CD3¢ was
performed on total thymocyte lysates loaded according to the same cal-
culations. (B) Pixels from the bands obtained in A were quantified and the
fold-increase in band intensity was calculated relative to the signal ob-
tained from OT-I B2m~/~ RAG2~/~ thymocytes.

by loading each lane of the gel with an equal number of
“surface TCR equivalents” rather than cell equivalents (Fig.
5). OT-I B2m*/* RAG27/~ and OT-I B2m*™/* RAG2*/*
mice displayed significantly enhanced levels of endogenous
open CD3, which was above that of the nonselected thy-
mocytes from OT-I B2m~/~ RAG2™/~ mice (Fig. 5). It is
likely that the open CD3 detected in these experiments orig-
inated from thymocytes undergoing (or having undergone)
positive selection, because the death of negatively selected
thymocytes in vivo removes them from ex vivo assays. This
may explain why the detection of open CD3 was less pro-
nounced in OT-I RAG*/* thymocytes compared with OT-I
RAG™/~ thymocytes (Fig. 5). We conclude that the expres-
sion of endogenous pMHC complexes is associated with the
induction of open CD3 in thymocytes in vivo.

Concluding remarks

A number of studies support the notion that conformational
changes accompany TCR—-MHC binding. For example, the
binding of soluble TCR af heterodimers to a spectrum of
variant pMHC ligands was recently shown to result in a
wide range of heat capacity measurements, an indication of
conformational changes and/or structural flexibility (25).
However, the observation that pMHC ligands induce an
open CD3 conformation was not predicted by most crystal-
lographic studies, because ligand-induced conformational
changes in TCR af3 were shown to be restricted to the
CDR loops due to an “induced-fit” of the TCR’s variable
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regions at the ligand binding interface (12—14). An exception
to this was reported in a recently solved crystal structure (15)
of the LC13 TCR complexed with its agonist pMHC
ligand, which demonstrated a conformational change in a
Ca region where the TCRa chain potentially interacts with
CD3e. It is not clear whether this Ca conformational
change represents a unique or generalizable phenomenon,
because it has not been observed in other TCR-MHC crys-
tals (25, 26). Nevertheless, the idea that the a3 heterodimer
moves upon engagement with pMHC ligand and that this
movement in turn nudges CD3e represents an interesting
model of intersubunit communication that is consistent with
our observations.

In thymocytes, the open CD3 conformation distin-
guishes null from signaling pMHCs but is not predictive of
signal strength and does not distinguish between ligands ca-
pable of mediating positive or negative selection. Open CD3
could mark the initiation of a molecular clock (27, 28),
where short TCR occupancy leads to early signals (e.g., pos-
itive selection) and long TCR occupancy leads to late signals
(e.g., negative selection). Having started the timer, other sig-
nals downstream of open CD3 would be required to com-
plete the kinetic measurement of ligand engagement and de-
termine the cellular response. We propose that the open
CD3 conformation marks an early molecular signal from the
afd heterodimer to the CD3 complex that a cognate pMHC
ligand has been recognized by the TCR. The precise rela-
tionship of this conformational change to the initiation of
downstream signaling cascades remains to be determined.

MATERIALS AND METHODS

DNA constructs and mice. The construct pGEX-4T1-GST-SH3.1 was
provided by R. Geha (Harvard Medical School, Boston, MA). OT-I
B2m ™/~ RAG27/7, OT-1 B2m™/* RAG27/~, and OT-I B2m™/* RAG2*H/*
mice were bred and maintained on a C57BL6 background.

Antibodies, peptides, and other reagents. Rabbit anti-CD3{ serum (s448;
reference 19) and anti-phosphotyrosine (4G10; Upstate Biotechnology)
were used for Western blots. Anti-CD3e (APA1/1) and anti-CD3d
(APA1/2) were described previously (29). Other antibodies included anti-
CD3g (2C11), anti-TCRP (H57), anti-CD3ve (17A2), anti-CD8B (53—
5.8), anti-Thy1.2 (30-H12), and anti-CD69 (H1.2F3; BD Biosciences); and
anti-CD3{ (6B10) and anti-CD37y (C-17; Santa Cruz Biotechnology, Inc.).
The peptides pFARL (SSIEFARL), pVSV (RGYVYQGL), pEl (EIIN-
FKEL), pQ7 (SIINFKQL), pQ4 (SIIQFKEL), and pOVA (SIINFKEL)
were synthesized as described previously (30).

Thymocyte stimulation. 30 X 10° thymocytes were incubated with 10
pwg/ml soluble antibody. PV (50 wM) and PP2 (20 wM) treatments were
performed as described previously (16). T2-KP cells (provided by T. Potter,
National Jewish Medical and Research Center, Denver, CO; reference 21)
were cultured with exogenous peptide for 3 h at 37°C, washed, and cocul-
tured with 50 X 10° OT-1 B2m~/~ RAG27/~ thymocytes (1:1 ratio). Cells
were washed and lysed in 0.3% Brij 58 isotonic buffer; and the postnuclear
fractions were subjected to the open CD3 PD assay.

Open CD3 PD and Western blots. The open CD3 PD assay was de-
scribed previously (16). Samples were subjected to reducing SDS-PAGE (13%)
and transferred to PVDF membranes. Mature, fully assembled TCR-CD3
complexes were detected by Western blotting with anti-CD3( antiserum s448.
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Open CD3 recapture assay. After the open CD3 PD, TCR-CD3 com-
plexes were eluted from the beads by incubation in 10 mM reduced glu-
tathione for 1 h at 30°C. Eluates were incubated with APA1/1 covalently
bound to 3.2-pwm diameter carboxylate-modified polystyrene latex beads
(Interfacial Dynamics). The APA1/1 beads recaptured TCR-CD3 com-
plexes, which were probed with PE-conjugated antibodies specific for vari-
ous TCR—~CD3 subunits, and analyzed by flow cytometry.

Quantitative flow cytometry. Quantitative surface TCR estimates were
made using PE-conjugated H57 (1:1 fluorochrome/antibody ratio; BD
Biosciences) to stain thymocytes, and microbead fluorescence standards
were used for standard curve generation (RCP-30-5; Spherotech).
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