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Addiction-Associated Genetic Variants Implicate Brain Cell
Type- and Region-Specific Cis-Regulatory Elements in
Addiction Neurobiology
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Recent large genome-wide association studies have identified multiple confident risk loci linked to addiction-associated behav-
ioral traits. Most genetic variants linked to addiction-associated traits lie in noncoding regions of the genome, likely disrupt-
ing cis-regulatory element (CRE) function. CREs tend to be highly cell type-specific and may contribute to the functional
development of the neural circuits underlying addiction. Yet, a systematic approach for predicting the impact of risk variants
on the CREs of specific cell populations is lacking. To dissect the cell types and brain regions underlying addiction-associated
traits, we applied stratified linkage disequilibrium score regression to compare genome-wide association studies to genomic
regions collected from human and mouse assays for open chromatin, which is associated with CRE activity. We found enrich-
ment of addiction-associated variants in putative CREs marked by open chromatin in neuronal (NeuN™) nuclei collected
from multiple prefrontal cortical areas and striatal regions known to play major roles in reward and addiction. To further
dissect the cell type-specific basis of addiction-associated traits, we also identified enrichments in human orthologs of open
chromatin regions of female and male mouse neuronal subtypes: cortical excitatory, D1, D2, and PV. Last, we developed
machine learning models to predict mouse cell type-specific open chromatin, enabling us to further categorize human NeuN™"
open chromatin regions into cortical excitatory or striatal D1 and D2 neurons and predict the functional impact of addic-
tion-associated genetic variants. Our results suggest that different neuronal subtypes within the reward system play distinct
roles in the variety of traits that contribute to addiction.
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We combine statistical genetic and machine learning techniques to find that the predisposition to for nicotine, alcohol, and
cannabis use behaviors can be partially explained by genetic variants in conserved regulatory elements within specific brain
regions and neuronal subtypes of the reward system. Our computational framework can flexibly integrate open chromatin
data across species to screen for putative causal variants in a cell type- and tissue-specific manner for numerous complex
traits.
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Introduction

Substance use disorders have increased in prevalence over
the last three decades, with an estimated 100 million cases
worldwide (GBD 2016 Alcohol and Drug Use Collaborators,
2018; Eddie et al., 2019). Pharmacological interventions are
limited in their ability to cure addiction because of physio-
logical and logistic barriers (Pullen and Oser, 2014; Pear et
al., 2019). As the societal epidemic of substance use grows,
there is a greater need to understand the neurobiology of
substance use behaviors and addiction.

The reward circuits co-opted in addiction as well as the asso-
ciated neural cell types are highly conserved across primates and
rodents (Monaco et al., 2015; Grillner and Robertson, 2016;
Scaplen and Kaun, 2016; Hodge et al., 2019). Many studies have
shown that addictive substances promote impulsive and compul-
sive behavior by activating the mesolimbic dopamine system, in
which dopaminergic inputs from the VTA project to medium
spiny neurons (MSNs) of the NAc in the ventral striatum (Koob
and Volkow, 2010). Glutamatergic inputs to the NAc from the
amygdala, frontal cortex, and hippocampus (HIPP) contribute to
behavioral motivation through the extrapyramidal motor system
(Koob and Volkow, 2010). Subsequently, the NAc sends outputs
to nuclei of the ventral pallidum, which are critical for processing
and modulating substance reward signal (Koob and Volkow,
2010). The development of compulsive substance-seeking is
hypothesized to be linked to recruitment of the dorsal striatum,
which together with the prefrontal cortical regions regulates a va-
riety of reward- and addiction-related phenotypes (Koob and
Volkow, 2010; Goldstein and Volkow, 2011). These findings
emphasize that substance abuse behavior involves the interplay
of the brain regions and cell types that make up the reward
system.

Increasing evidence reveals strong genetic links to substance
use risk (Pasman et al., 2018; Karlsson Linnér et al., 2019; M. Liu
et al., 2019) and substance use disorder (Kendler and Prescott,
1998a,b; Dick, 2016; Waaktaar et al., 2018; Erzurumluoglu et al.,
2020). Genome-wide association studies (GWASs) report that
genetic risk for substance use shares underlying architecture with
other neuropsychiatric disorders (Pasman et al., 2018; M. Liu et
al., 2019). These risk variants tend to lie in noncoding regions of
the human genome rather than the protein-coding regions that
have clearer functional consequence to link genes to traits
(Jensen, 2016). These genetic variants, including single nucle-
otide polymorphisms (SNPs), can disrupt transcription fac-
tor binding in cis-regulatory elements (CREs) with varying
impact on gene regulation and downstream neural circuitry.
Many CREs have tissue- and cell type-specific activity
(Roadmap Epigenomics Consortium et al., 2015), suggesting
that cell types and tissues underlying addiction may be
uniquely targeted by genetic variants at these CREs. GWASs
for nicotine-, alcohol- (M. Liu et al., 2019), and cannabis-use
traits (Pasman et al., 2018) have identified multiple confident
risk loci and SNPs linked to addiction-associated phenotypes
with brain specificity, yet their effects on the CREs of specific
brain regions and cell types involved in addiction pathophys-
iology are an open area of inquiry.

Comparisons of GWASs to functional annotations of the
human genome have yielded estimates that >90% of SNPs asso-
ciated with complex phenotypes lie within potentially functional
noncoding regions, which are marked by epigenetic features,
including open chromatin (Maurano et al., 2012; Finucane et al,,
2015). Linkage disequilibrium (LD) of significant SNPs compli-
cates the identification of causal variants contributing to genetic
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risk (Bush and Moore, 2012), as multiple SNPs that are tightly
linked will inherently all have similar association with a disorder,
even if not all of them are necessarily causal. Regression of SNP
LD scores against GWAS summary statistics (LDSC regression)
is the dominant method for relating human genetics to func-
tional annotations. LDSC regression partitions risk SNPs identi-
fied by GWAS into the tissues or cell types in which genetic
variation in CREs may contribute to heritability of complex traits
(Finucane et al., 2015; Visscher et al., 2017). Yet, the functional
consequences of risk SNPs in CRE sequences cannot be reliably
inferred from DNA sequences alone (Shlyueva et al, 2014).
By synthesizing recent developments in epigenomic assays
(Buenrostro et al., 2013; Mo et al.,, 2015; Tak and Farnham,
2015) and machine learning (Ghandi et al, 2014; Zhou and
Troyanskaya, 2015; Kelley et al.,, 2016, 2018; D. Lee, 2016), it is
possible to predict cell types affected by addiction-associated
genetic variation and propose cell type-specific hypotheses on
the pathogenesis of addiction.

Here, we implement a framework that links the genetic pre-
disposition to addiction-associated traits to specific brain regions
and cell types within them by identifying those that have open
chromatin regions (OCRs) that are enriched for SNPs identified
by GWASs. We first intersect SNPs measured by GWASs with
human and mouse bulk tissue- and cell type-specific OCRs to
identify putative region- and cell type-specific CREs that may be
impacted by genetic variation associated with addiction-related
traits. To overcome limits of cellular resolution in the human
brain, we apply convolutional neural network (CNN) models
trained on transgenically labeled neuron populations in the
reward system of mice to predict the cell type specificity of
GWAS-associated SNPs in the human genome. We further apply
these models to the problem of screening for putative causal
SNPs within dense loci reported in GWAS for addiction-associ-
ated traits. This pipeline, to our knowledge, describes the first
integrative analyses across species, brain regions, and cell types
to screen for candidate causal addiction-associated genetic risk
variants in dense loci with numerous significant SNPs in LD.

Materials and Methods

ATAC-seq data processing pipeline

We processed raw FASTQ files of ATAC-seq experiments with the offi-
cial ENCODE ATAC-seq pipeline accessed by https://github.com/
ENCODE-DCC/atac-seq-pipeline. We ran this pipeline using the mm10
genome assembly for mouse and the hg38 genome for human with the
following settings: smooth_win = 150, multimapping = 0, idr_thresh =0.1,
cap_num_peak = 300,000, keep_irregular_chr_in_bfilt_peak = true. We
grouped biological replicates (e.g., samples from the same tissue region or
condition) when processing data to obtain individual de-duplicated, fil-
tered bam files. We removed samples that had low periodicity indicated
by ENCODE quality control metrics (https://www.encodeproject.org/
atac-seq/) and reprocessed the remaining replicates with the pipeline.
Using the high-quality replicates, we obtained reproducible (IDR) peaks
for each condition. Unless otherwise stated, we used the “optimal” repro-
ducible set of peaks for downstream analyses.

Publicly available datasets

NeuN-sorted ATAC-seq of human postmortem brain (Fullard et al.,
2018). We identified OCRs overlapping addiction-related variants
through analysis of human postmortem brain ATAC-seq in which
cells were sorted into NeuN"' and NeuN~ groups via fluorescence-
activated nuclei sorting; the brain regions we used were dorsolateral
PFC (DLPFC), orbitofrontal cortex (OFC), ventrolateral PFC
(VLPEC), ACC, superior temporal gyrus (STC), inferior temporal
gyrus (ITC), primary motor cortex (PMC), insula (INS), primary vis-
ual cortex (PVC), amygdala, HIPP, mediodorsal thalamus (MDT),
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NAc, and putamen (PUT). We downloaded data from the Sequence
Read Archive through Gene Expression Omnibus (GEO) accession
#GSE96949. We separated samples by cell type and reprocessed them
with the ENCODE pipeline as detailed above, aligning reads to hg38.
All datasets were high quality according to the ENCODE metrics for
epigenomic datasets (https://www.encodeproject.org/atac-seq/). We
used the “optimal reproducible peaks” for each cell type and brain
region as foregrounds in GWAS LDSC enrichment with the
Honeybadger2 OCR set as the background set (see LDSC regression
GWAS enrichment backgrounds).

Single-cell chromatin accessibility profiling (Corces et al., 2020). We
downloaded 24 clusters of IDR peaks of human isocortex, striatum,
HIPP, and substantia nigra in BED format through GEO accession
#GSE147672. These clusters represent cell populations defined by
Corces et al. (2020) from the measured brain regions. We assigned clus-
ters to cell populations as described by Corces et al. (2020): astrocyte
(AST) (clusters 13, 17), hippocampal excitatory (clusters 3, 4), isocortical
AST (cluster 15), isocortical excitatory (cluster 1), isocortical inhibitory
(cluster 11), microglia (cluster 24), neuron (cluster 7), nigral AST (clus-
ter 14), nigral neurons (clusters 5, 6), nigral oligodendrocyte precursor
(cluster 10), oligodendrocyte (clusters 19-23), oligodendrocyte precursor
(clusters 8, 9), striatal AST (cluster 16), and striatal inhibitory cells (clus-
ters 2, 12). We did not include cluster 18, which corresponds to a dou-
blet. We merged coordinates from clusters assigned to the same cell
types to define foreground sets for LDSC regression GWAS enrichment.
We merged the foreground sets with the Honeybadger2 OCR set to
define the background set (LDSC regression GWAS enrichment
backgrounds).

Human occipital cortex scTHS-seq (Lake et al., 2018). We down-
loaded BED-formatted cell type-specific differential OCRs from occipital
cortex scTHS-seq of excitatory neurons (EXC), inhibitory neurons
(INs), ASTs, endothelial cells, oligodendrocyte precursor cells, oligoden-
drocytes, and microglia (MIC) from the GEO subseries #GSE97887. We
used the hg38 OCR coordinates as foregrounds in LDSC regression
GWAS enrichment with the Honeybadger2 OCR set as the background
set (LDSC regression GWAS Enrichment Backgrounds).

Mouse INTACT-sorted nuclei ATAC-seq (Mo et al, 2015). We
downloaded FASTQ files of R26-CAG-LSL-Sunl-sfGFP-Myc transgenic
mouse lines for cell type-specific ATAC-seq performed using the
INTACT method from the accession #GSE63137. Mo et al. (2015) iso-
lated INTACT-enriched nuclei from three cell types: EXC (Camk2a-cre),
vasoactive intestinal peptide neurons (VIP, Vip-cre), and parvalbumin
neurons (PV, Pvalb-cre). We reprocessed the data with the Kundaje lab-
oratory open chromatin pipeline using the mm10 genome (https://
github.com/kundajelab/atac_dnase_pipelines). We mapped reproducible
mouse ATAC-seq peaks for each cell type to hg38 using halLiftover with
the 12-mammals Cactus alignment (Paten et al, 2011; Hickey et al,,
2013) followed by HALPER (Zhang et al.,, 2020) (mapping mouse OCR
orthologs) to produce a foreground set of orthologous human sequences
for LDSC regression GWAS enrichment (Finucane et al., 2018). We
mapped the ENCODE mm10 DNasel-hypersensitive peak set (Yue et
al,, 2014) to hg38 (mapping mouse OCR orthologs) and used success-
fully mapped hg38 orthologs of mm10 OCRs as background set for
mouse foreground enrichments. Furthermore, we used this dataset to
evaluate differential accessibility in cre-dependent Sunl-GFP Nuclear
Anchored Independent Labeled (cSNAIL)-INTACT PV and PV-nega-
tive ATAC-seq samples and develop CNN models of cell type-specific
open chromatin (see methods below).

Human negative control foregrounds (ENCODE Project Consortium,
2012; Thurman et al, 2012; Davis et al, 2018; Cannon et al, 2019):
We downloaded raw ATAC-seq profiles of human adult female and
male stomach ATAC-seq (ENCSR337UIU, ENCSR851SBY, respectively),
female human embryonic liver DNase-seq (ENCSR562FNN), and
human embryonic lung DNase-seq (ENCSR582IPV) from https://www.
encodeproject.org/. We processed these files using the ENCODE pipeline
as detailed above to obtain optimal reproducible hg38 peaks. We also
downloaded BED files of human adipocyte and preadipocyte ATAC-seq
profiles generated by Cannon et al. (2019), from GEO accession number
#GSE110734. We mapped these BED coordinates from hgl9 to hg38
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using liftOver to define negative control foregrounds for human LDSC
regression GWAS enrichment. We merged the human negative control
foregrounds and Fullard et al. (2018), foregrounds with the Honeybadger2
OCR set to define the background for human negative control foreground
enrichments.

Human-orthologous negative control foregrounds (C. Liu et al.,
2019). We also downloaded raw ATAC-seq data profiled in female
mouse kidney, female mouse liver, and male mouse lung generated by C.
Liu et al. (2019), from Sequence Read Archive accession #SRP167062 to
define human-orthologous negative control foregrounds. We processed
these files using the ENCODE pipeline as detailed above to get optimal
reproducible peaks. We mapped optimal reproducible peaks from
mm10 to hg38 using halLiftover with the 12-mammals Cactus align-
ment followed by HALPER (mapping mouse OCR orthologs) to
define negative control foregrounds for human-orthologous LDSC
GWAS enrichments. We merged all human orthologous fore-
grounds with the human orthologs of the ENCODE mm10 DNasel-
hypersensitive peak set to define a background for human-ortholo-
gous LDSC GWAS enrichments.

Mapping mouse OCR orthologs

We used halLiftover (Hickey et al., 2013) with the 12-mammals Cactus
alignment (Paten et al., 2011) followed by HALPER (https://github.com/
pfenninglab/halLiftover-postprocessing) (Zhang et al., 2020) to map
mml0 mouse reproducible OCRs to hg38 human orthologs to perform
LDSC regression GWAS enrichment. The Cactus multiple sequence
alignment file (Paten et al., 2011) has 12 genomes, including mm10 and
hg38, aligned in a reference-free manner, allowing us to leverage multi-
species alignments to confidently identify orthologous regions across
species. halLiftover uses a Cactus-format multiple species alignment to
map BED coordinates from a query species to orthologous coordinates
of a target species, and HALPER constructs contiguous orthologs from
the outputs of halLiftover (Zhang et al., 2020). We ran the orthologFind.
py function from HALPER on the outputs of halLiftover using the fol-
lowing parameters: -max_frac 5.0 -min_frac 0.05 -protect_dist 5
-narrowPeak -mult_keepone. In general, 70% of mouse brain ATAC-seq
reproducible peaks were able to be mapped to confident human ortho-
logs. To map the ENCODE mm10 mouse DHS background, which does
not contain summit information, to hg38, we used the mouse coordi-
nates of position with the most species aligned in a region to define the
summit. Only for the mm10 mouse DHS background set, for which a
significant proportion of regions could not be confidently mapped to
hg38, we flanked the original assembly coordinates by 300 bp to increase
OCR mapping from 54% to 64%.

Experimental design

To augment and compare to mouse cell type-specific ATAC-seq datasets
generated in this study, we performed bulk tissue ATAC-seq from cortex
(CTX) and dorsal striatum/NAc (CPU) of 7- and 12-week-old C57Bl/6]
mice (N=2 each age) from both sexes (Extended Data Table 4-1) as
described by Buenrostro et al. (2015) with the following minor differen-
ces in buffers and reagents. We killed mice with isoflurane, rapidly
decapitated to extract the brain, and sectioned it in ice-cold oxygenated
aCSF (119 mwm NaCl, 2.5 mm KCl, 1 mm NaH,PO, (monobasic), 26.2
mM NaHCOj3, 11 mum glucose) at 200 um sections on a vibratome (Leica
Microsystems, VT1200). We further micro-dissected sections for cortex
and dorsal striatum on a stereo microscope and transferred dissected
regions into chilled lysis buffer (Buenrostro et al., 2015). We Dounce ho-
mogenized the dissected brains in 5 ml of lysis buffer with the loose pes-
tle (Pestle A) in a 15 ml glass Dounce homogenizer (Pyrex, #7722-15).
We washed nuclei lysate off the pestle with 5 ml of lysis buffer and fil-
tered the nuclei through a 70 um cell strainer into a 50 ml conical tube.
We washed the Dounce homogenizer again with 10 ml of BL buffer and
transferred the lysate through the 70 um filter (Foxx, 1170C02). We pel-
leted the 20 ml of nuclei lysate at 2000 x g for 10 min in a refrigerated
centrifuge at 4°C. We discarded the supernatant and resuspended the
nuclei in 100-300 ul of water to approximate a concentration of 1-2 mil-
lion nuclei/ml. We filtered the nuclei suspension through a 40 um cell
strainer. We stained a sample of nuclei with DAPI (Invitrogen, #D1206)
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and counted the sample to measure 50k nuclei per ATAC-seq transposi-
tion reaction. The remaining steps follow the Buenrostro et al. (2015)
protocol for tagmentation and library amplification. We shallowly
sequenced barcoded ATAC-seq libraries at 1-5 million reads per sample
on an Illumina MiSeq and processed individual samples through the
ENCODE pipeline for initial quality control. We used these QC meas-
ures (clear periodicity, library complexity, and minimal bottlenecking)
to filter out low-quality samples and repooled a balanced library for
paired-end deep sequencing on an Illumina NextSeq to target 30 million
uniquely mapped fragments per sample after mitochondrial DNA and
PCR duplicate removal. These raw sequencing files entered processing
through the ENCODE ATAC-seq pipeline as above by merging techni-
cal replicates and grouping biological replicates by brain region for each
pipeline run.

The cSNAIL genome (pAAV-Efla-DIO-Sunl-Gfp-WPRE-pA) con-
tains loxP sites to invert the Sunl-Gfp fusion gene and integrate into the
nuclear membrane of cells expressing the Cre gene, allowing these cell
populations to be profiled for various genomic assays (Lawler et al.,
2020). We packaged the cSNAIL genome with AAV variant PHP.eB
(pUCmini-iCAP-PHP.eB) in AAVpro(R) 293T cells (Takara, catalog
#632273). Viviana Gradinaru provided us with the pUCmini-iCAP-PHP.
eB (http://n2t.net/addgene:103005; RRID: Addgene_103005) (Chan et al.,
2017). We precipitated viral particles with polyethylene glycol, isolated
with ultracentrifugation on an iodixanol density gradient, and puri-
fied in PBS with centrifugation washes and 0.2 um syringe filtration.
We injected each mouse with 4.0 x 10''vg into the retro-orbital cav-
ity under isoflurane anesthesia. We allowed the virus to incubate in
the animal for 3-4 weeks to reach peak expression. We closely moni-
tored the health of the animals throughout the length of the virus
incubation and did not note any concerns.

On the day of the cSNAIL mouse or bulk tissue ATAC-seq experi-
ments, we dissected brain regions from fresh tissue and extracted nuclei
in the same manner as described for bulk tissue experiments. Then, we
sorted the nuclei suspension into SunlGFP™ (Cre") and Sun1GFP~
(Cre") fractions using affinity purification with Protein G Dynabeads
(Thermo Fisher Scientific, catalog 10004D). A preclearing incubation
with beads and nuclei for 10-15min removes effects from nonspecific
binding events. Next, we incubated the remaining free nuclei with anti-
GFP antibody (Invitrogen, #G10362) for 30min to bind SunlGFP.
Finally, we added new beads to the solution to conjugate with the anti-
body and incubated the reaction for an additional 20 min. The preclear
step and all incubations took place in wash buffer (0.25 M sucrose, 25 mm
KCl, 5 mm MgCl,, 20 mm Tricine with KOH to pH 7.8, and 0.4%
IGEPAL) at 4°C with end-to-end rotation. After the binding process, we
separated bead-bound nuclei on a magnet, washed 3 times with wash
buffer, and filtered through a 20 um filter to ensure purity. We resus-
pended nuclei in nuclease-free water for input into the ATAC-seq
tagmentation reaction. We performed nuclei quantification and tagmenta-
tion in the same manner described for bulk tissue ATAC-seq above.

We list in Extended Data Table 4-1 the number of animals, the geno-
types, and which regions collected for ATAC-seq experiments in this
study. All transgenic mouse strains in this study were originally gener-
ated on C57BL/6] backgrounds, and lines were maintained on a C57BL/
6] background throughout breeding. The general breeding strategy was
homozygous transgenic mice with C57BL/6] mice to produce heterozy-
gous transgenic offspring for experiments, except for Sst-Cre mice,
which were homozygous for the transgene. To minimize genetic drift
within an isolated population, breeding C57BL/6] mice and transgenic
mice were routinely refreshed after 1-5 generations with stock animals
from The Jackson Laboratory or from other colonies at Carnegie Mellon
University. The mice did not contain additional transgenes outside of
cell type-specific Cre. N=2 PValb-2a-Cre samples from CPU/NAc
region had received a sham surgery with saline injection into the external
globus pallidus 5d before they were killed. N=2 DI1-Cre samples from
both CPU and NAc regions had received headcap surgeries 3 weeks
before they were killed. Both PValb-2a-Cre and DI-Cre were overall
healthy at time of death. We collected cSNAIL samples from both sexes
where possible (Extended Data Table 4-1).
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Statistical analyses

We created a consensus set of nonoverlapping IDR peaks from the
ATAC-seq pipeline for ¢SNAIL ATAC-seq and Mo et al. (2015),
INTACT samples (Tissue: Ctx, CPU, and NAg; Celltype: EXC, PV, SST,
VIP, D1, D2). We extended the peak set 200 bp upstream and down-
stream, count overlapping fragments with Rsubread version 2.0.1 using
the de-duplicated BAM files from the pipeline (Liao et al.,, 2014), and
created with DESeq2 version 1.26.0 a variance-stabilized count matrix
aware of experimental Group (combination of Tissue and Celltype) with
~Group (Love et al., 2014). We plotted the principal component analy-
sis in Figure 4A for the first two components with this variance-stabi-
lized count matrix. We used Deeptools version 3.5.0 to convert the same
BAM files to normalized bigWig files and average over replicates of the
same Group (Ramirez et al, 2016). We plotted the tracks using
pyGenomeTracks version 3.5 around marker genes for each cell type
(Slc17a7, Drdl, Adora2a, Pvalb, Sst, Vip; see Fig. 4B). (Ramirez et al.,
2018). We computed the mean accessibility for each group 2kb
upstream and downstream the transcription start sites (TSSs) and corre-
lated log;o (TSS accessibility + 1) with gene expression log;o(meta gene
counts + 1) of Drop-Seq annotated cell types from PFC and striatum
(Saunders et al., 2018). We used the Saunders et al. (2018) tissue subclus-
ter metagene profiles (sum of gene expression in all cells) and summed
subclusters to cluster-level metagene profiles. Most tissue cluster meta-
gene profiles corresponded to cSNAIL ATAC-seq celltype and tissue
profiles, with the exception of cSNAIL cortical PV* samples were
matched to Saunders et al. (2018) cortical MGE™ interneuron clusters.

We computed the conditioned heritability of CREs for GWAS var-
iants using the stratified LDSC regression pipeline for cell type-specific
enrichment as outlined in https://github.com/bulik/ldsc/wiki/Cell type-
specific-analyses (Bulik-Sullivan et al., 2015b). We downloaded the
GWAS summary statistics files and processed them with the LDSC
munge_sumstats function to filter rare or poorly imputed SNPs
with default parameters. We munged the summary statistics files for
HapMap3 SNPs, excluding the MHC regions downloaded at http://
ldsc.broadinstitute.org/static/media/w_hm3.noMHC.snplistzip. We ins-
pected GWAS file to ensure the effect allele, non-effect allele, sample
size, p value, and signed summary statistic for each SNP in each
GWAS were included and appropriate for LDSC. The addiction-
associated GWASs measure genetic predisposition for age of smok-
ing initiation (Ageoflnitiation) (M. Liu et al., 2019), heaviness of
smoking (CigarettesPerDay) (M. Liu et al., 2019), having ever regu-
larly smoked (SmokinglInitiation) (M. Liu et al., 2019), current ver-
sus former smokers (SmokingCessation) (M. Liu et al., 2019),
alcoholic drinks per week (DrinksPerWeek) (M. Liu et al., 2019), cannabis
consumption (Cannabis) (Pasman et al, 2018), and risk tolerance
(RiskyBehavior) (Karlsson Linnér et al, 2019). GWAS traits related to
addiction include multisite chronic pain (ChronicPain) (Johnston et al.,
2019) and number of coffee cups drank per day (CoffeePerDay) (Coffee
and Caffeine Genetics Consortium et al,, 2015). Other addiction-related
traits come from underpowered GWAS, including opioid dependence
(OpioidDep) (Cheng et al, 2018), cocaine dependence (CocaineDep)
(Cabana-Dominguez et al,, 2019), and diagnosis of obsessive-compulsive
disorder (OCD) (International Obsessive Compulsive Disorder Foundation
Genetics Collaborative and OCD Collaborative Genetics Association
Studies, 2018). GWASs from strong brain-related traits used are schizophre-
nia risk (Schizophrenia) (Schizophrenia Working Group of the Psychiatric
Genomics Consortium, 2014), highest level of educational attainment
(EduAttain) (J. J. Lee et al, 2018), and sleep duration (SleepDuration)
(Dashti et al., 2019). The non-brain-related traits measure genetic liability
for lean body mass (LBM) (Zillikens et al., 2017), bone mineral density
(BMD) (Kemp et al., 2017), and coronary artery disease (CAD) (Howson et
al., 2017).

We estimated LD scores for each foreground set and corresponding
background set (see LDSC Regression GWAS Enrichment Backgrounds)
with the LDSC regression pipeline make_annot and ldsc functions using
hg38 1000 Genomes European Phase 3 European super-population
(1000G EUR) cohort plink files downloaded from https://data.
broadinstitute.org/alkesgroup/LDSCORE/GRCh38/. An example of an
ATAC-seq optimal set of reproducible peaks mapped to hg38 in
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narrowPeak format is annotated with 1000G EUR LD scores using the
following call:

python make_annot.py\

-bed-file optimal_peak.narrowPeak.gz\

-bimfile 1000G.EUR hg38.${chr}.bim\

—annot-file foreground.${chr}.annot

We downloaded the baseline v1.2 files for cell type-specific enrich-
ment in hg38 coordinates from the same link above as well as the corre-
sponding weights weights.hm3_noMHC file, excluding the MHC region
from https://data.broadinstitute.org/alkesgroup/LDSCORE/. HapMap
SNPs and corresponding weights file used in the LDSC analyses only
refer to the SNP rsIDs, rather than genomic coordinates, so only the
baseline and LD statistics used to annotate the foreground and back-
ground files must be in hg38 coordinates. In accordance with the LDSC
regression script input format, we created an enrichment.ldcts file listing
the annotated foreground/background pair for each foreground set. We
estimated the conditional heritability enrichment using the ldsc function,
which integrates the foreground and background LD score estimates,
munged GWAS SNP data, baseline variant data, and variants weights.
The final function call to GWAS enrichment was as follows:

python ldsc.py —h2-cts $Munged_ GWAS\

—ref-ld-chr baseline_v1.2/baseline.\

-w-ld-chr weights. hm3_noMHC.\

—ref-1d-chr-cts enrichment.Idcts\

—out $Output_Label

The pipeline was run using the —h2-cts parameter produces the con-
ditional coefficient estimate of tau_C (the additive difference in heritabil-
ity per SNP in SNPs inside versus outside the foreground conditional on
the background and baseline annotations) (Finucane et al., 2015, 2018),
coefficient error, and coefficient p value estimates. We adjusted for mul-
tiple testing using the false discovery rate (FDR) on coefficient p values
of the LD score regression coefficients (aw=0.05) on all 18 GWAS traits
intersected on within the same foreground/background set. A significant
FDR value indicates enrichment of the foreground genomic regions for
GWAS SNPs relative to the background. Last, we computed genetic cor-
relations in Figure 1A between GWAS of addiction-associated traits
using the pre-munged summary statistics as described by Bulik-Sullivan
et al. (2015a).

We trained a set of CNN models to learn the regulatory code of a
given cell type from the DNA sequences underlying the cell type’s OCRs.
The models take in one-hot encoded 501 bp genomic sequences to pre-
dict 1 for an OCR or 0 for a non-OCR sequence. Positive sequences were
centered on IDR peak summits that are annotated to be in introns and
nonpromoter noncoding regions, and negative sequences are ~10 times
the number of positives sequences that are G/C-matched and not over-
lapping IDR peaks. We excluded promoters, which we defined as within
5000 bp of the TSS (based on GRCH38.p12), and exons because distal
sequences have been shown to confer more enhancer cell type specificity
and be more predictive of expression levels of regulated genes (Roadmap
Epigenomics Consortium et al., 2015). We constructed the negative set
by first building a sequence repository $BGDIR according to https://
bitbucket.org/CBGR/biasaway_background_construction/src/master/
from the mouse mm10 genome using 501 bp sequences. Then we used
the biasaway (Worsley Hunt et al., 2014; Khan et al., 2020) command-
line interface to generate negative sequences with the matching nucleo-
tide distribution along a sliding window of the 501bp IDR peak
sequence as follows:

biasaway ¢ —foreground $FORGEGROUND_FASTA -nfold 10 -
deviation 2.6 —step 50 —seed 1 —~winlen 100 —-bgdirectory $BGDIR

We used a fivefold cross-validation chromosome hold-out scheme to
train 5 models per set of IDR peaks, enabling us to evaluate the stability
and consistency of learned regulatory patterns. (A model that was train-
ing a fold did not see sequences during training from the validation set
for that fold, and no model saw the test set until final model performance
evaluation.) Sequences from these chromosomes were used as the valida-
tion set for each fold as follows:

fold1: {chr6, chr13, chr21}

fold2: {chr7, chr14, chr18}

fold3: {chr11, chr17, chrX}

Srinivasan, Phan et al. o Cis-Regulatory Elements in Addiction Neurobiology

>

AgeO

Percent

DrinksPerWeek Ci i isky B upstream

B upstream:downstream
W intergenic
| intronic

exonic

splicing

UTRs

UTR3

unknown

B RiskyBehavior

Cannabis

AgeOfinitiation
DrinksPerWeek mu:w
Smokinglnitiation

SmokingCessation

CigarettesPerDay

6

0
40
20 I
0 II-__IlI-____ _____

Smokinglnitiation & l I
RiskyBehavior = 8 l ] ] i ]
DrinksPerWeek -] I
CigarettesPerDay ] I ]
B
B
B

count

SmokingCessation

AgeOfinitiation

Cannabis
Phenotype

Figure 1. Shared and unique genetic architecture of genetic risk variants of addiction-
associated traits. 4, Pie chart of ANNOVAR-annotated (K. Wang et al., 2010) SNP function of
addiction-associated trait lead and off-lead SNPs in LD R* > 0.8. Dark colors represent
untranscribed/noncoding annotations; light colors represent transcribed/exonic annotations.
SNP annotation labels are according to ANNOVAR using ENSEMBL build 85 gene annotations
(see Materials and Methods). B, Pairwise LDSC genetic correlation (ry) matrix of seven addic-
tion-associated traits. Bold represents FDR-significant correlations. Gray represents nonsignifi-
a@nt correlations (FDR << 0.05). C, UpSet plot of nonoverlapping genomic loci shared or
unique to each addiction-associated trait. Genomic loci are clustered and identified by shared
GWAS-significant SNPs and genomic region overlap.

fold4: {chr9, chr12}

fold5: {chr10, chr8}.

We used sequences from chromosomes {chrl, ch2, chr19} for the
test set.

We trained the models with Keras version 2.3.0-tf (https://keras.io/)
implemented through Tensorflow version 2.2.0 and used stochastic gra-
dient descent with Nesterov momentum to learn model parameters that
minimized the binary cross entropy loss. All models used the same CNN
architecture after a grid-search of hyperparameters found stable and
high validation performance by area under the precision-recall curve
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(auPRC) in an architecture with five ConvlD layers [kernel_size=11,
filters =200, activation = relu, kernel_regularizer = 12(1e-10)] with a
Dropout layer (rate = 0.25) between each pair of consecutive layers, then
one MaxPooling1D layer (pool_size = 26, strides = 26), one Flatten layer,
one Dense layer [units =300, activation = relu, kernel regularizer = 12
(1e-10)], one Dropout layer (rate =0.25), a final output Dense layer
[units =1, activation = sigmoid, kernel regularizer = 12(1e-10)],
and a final Dropout layer (rate =0.25) before the sigmoid output
layer to train each fold with batch_size = 1000, epochs=23,
num_cycles =2.35, base_learning_rate =1le-2, max_learning_rate =
le-1, base_momentum = 0.85, max_momentum = 0.99. With these
hyperparameters, we trained models across folds to predict posi-
tive OCRs of all measured cell types against an ~1:10 positive:neg-
ative class ratio. We computed classifier performance metrics,
including weighted accuracy (using threshold=0.5), weighted
f1_score (using threshold=0.5), area under receiver operating
characteristic, and auPRC. We selected the reported hyperpara-
meters because they maximized the validation auPRC, which we
prioritized because of the class imbalance. We report the test set
auPRC, F1 score, and false positive rate in Figure 7A. We provide
both the scripts and trained Keras models at https://github.com/
pfenninglab/addiction_gwas_enrichment.

We used CNN model scores to classify whether a peak from Fullard
et al. (2018), NeuN™ open chromatin data are active in a neuronal sub-
type (EXC, D1, D2). We took NeuN" IDR “optimal peaks” from regions
significantly enriched for addiction-associated traits (OFC, VLPFC,
DLPFC, ACC, STC, PUT, NAg; see Fig. 2A), extracted 501 bp DNA
sequences of each centered on the summit, and scored each peak with
cell type-specific machine learning models trained with the appropriate
tissue context (e.g., score cortical NeuN"t peaks with a model trained
with cortical EXC cell type). We averaged scores across models from dif-
ferent cross-validation folds from the same cell types and classified
NeuN™ peaks with scores >0.5 as active in that cell type, as this thresh-
old was the most discriminative in classifying positive validation set
sequences (see Fig. 7B). We defined these CNN-prioritized peaks as fore-
grounds for the LDSC regression GWAS enrichment analyses as
described above. We created a consensus set of peaks merging all model-
prioritized peaks and the Honeybadger2 set of OCRs to be the matched
background, and we performed GWAS enrichment and computed FDR
for all 18 GWAS traits (only enrichments for addiction-associated
GWAS shown; see Fig. 8).

We collected the addiction-associated SNPs by submitting the summary
statistics files for the seven addiction-associated traits {AgeofInitiation (M.
Liu et al,, 2019), CigarettesPerDay (M. Liu et al., 2019), SmokingInitiation
(M. Liu et al, 2019), SmokingCessation (M. Liu et al, 2019),
DrinksPerWeek (M. Liu et al, 2019), Cannabis (Pasman et al, 2018),
RiskyBehavior (Karlsson Linnér et al, 2019)} to the FUMA webserver
(Watanabe et al, 2017). FUMA computed LD R? based on the 1000
Genomes European (1000G EUR) super-population reference (1000
Genomes Project Consortium et al., 2015) via PLINK (Purcell et al., 2007),
linked GWAS-significant lead SNPs to off-lead SNPs in LD with the lead,
and annotated functional consequences of genetic variants via ANNOVAR
based on ENSEMBL build 85 human gene annotations (K. Wang et al.,
2010). ANNOVAR functional gene annotations for a SNP are as defined in
the primary publication and online: https://annovar.openbioinformatics.
org/en/latest/user-guide/gene/. We scored all effect and non-effect alleles
with each set of CNN models, averaged predictions across folds, and cali-
brated CNN scores that predict activity using the set of validation positive
OCRs. We computed the ASNP probability effect by taking the difference
between the effect allele and the non-effect allele. Most SNPs reported by
GWAS are not expected to be the causal variant for a trait, so the distribu-
tion of ASNP probability can be used to define a null distribution. We com-
puted the p value that an allele has a non-zero ASNP probability by fitting a
normal distribution of null ASNP probabilities. We corrected for multiple
testing using the method swfdr version 1.12.0 to compute g values to con-
trol for a FDR conditioned on potentially informative covariates (Boca and
Leek, 2018). Weighted FDR-correction methods, including swfdr, have
been shown to be robust to uninformative covariates and increase power to
detect real differences for informative covariates while controlling false
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discoveries (Korthauer et al., 2019). We conditioned the proportion of
expected null p values on the following covariates (see Fig. 7E, Step 4): the
difference in GC content of the 501 surrounding the SNP compared with
the average GC content of positive sequences used to train each model (GC
content), the minor allele frequency based on the European ancestry sub-
jects in the 1000G reference panel, whether the SNP overlapped a Fullard et
al. (2018), NeuN™ OCR (inNeuN peak), and whether an SNP was fine-
mapped and predicted to be causal by CAUSALdb using the European LD
structure and an ensemble of statistical fine-mapping tools (isCausal)
(FINEMAP, CAVIARBF, PAINTOR) (W. Chen et al.,, 2015; Benner et al.,
2016; Kichaev et al,, 2017; J. Wang et al,, 2020). We applied an « of 0.05 on
the false-discovery g values for all 14,790 SNPs scored across 5 sets of CNNs
to determine significantly large enough ASNP effects.

To accompany cell type-specific activity predictions, we down-
loaded SNPs that are reported as cis expression quantitative trait
loci (eQTL) in human cortex, frontal cortex (DLPFC), ACC, cau-
date, PUT, and the NAc from the GTEX Consortium from https://www.
gtexportal.org/home/datasets (GTEx Consortium, 2013, 2015). We identi-
fied genes for which at least one of the 170 SNPs is an eQTL and plotted
them as arcs in Figures 6 and 9B. Locus plots are generated with
pyGenomeTracks version 3.5 tools (Ramirez et al., 2018).

For Figure 9A, we compared calibrated SNP probabilities of the ei-
ther effect or non-effect allele across each model and grouped them
by whether they overlapped a cortical or striatal NeuN" OCR,
NeuN~ OCR, both, or neither, depending on whether the model was for
EXC or D1/D2 neuronal subtypes, respectively. We computed two-tailed
t tests between groups and corrected for multiple comparisons with the
familywise Bonferroni method for N= 18 tests from three models and (4
choose 2) six possible comparisons per model. * p < 0.05/N. ** p < 0.01/
N.** p<0.001/N.

LDSC regression GWAS enrichment backgrounds

We found that LDSC regression GWAS enrichment analysis is sensitive to
the selected background set of matched regions. To construct appropriate
background sets for each GWAS enrichment, we used the ENCODE and
RoadMap Honeybadger2 (Roadmap Epigenomics Consortium et al., 2015)
and Mouse DHS peak sets for the respective human and mouse-based open
chromatin GWAS enrichment. The Honeybadger2 set, downloaded
from https://personal.broadinstitute.org/meuleman/reg2map/, con-
sists of DNaseI-hypersensitive OCRs across 53 epigenomes consist-
ing of promoter, enhancer, and dyadic regions. Honeybadger2 is an
appropriate epigenetic reference for enrichment of cell type-specific
open chromatin from various foregrounds, such as Fullard et al.
(2018) and Lake et al. (2018). Honeybadger2 regions allow the
LDSC algorithm to properly account for the heritability from OCRs
of a particular cell type or regions rather than because they tend to
be more conserved, are enriched for ubiquitously active transcrip-
tion factor motifs, or other factors distinguishing open chromatin
from heterochromatin. The human orthologs of the ENCODE
Mouse DHS peak set, downloaded through the ENCODE ATAC-seq
pipeline at https://storage.googleapis.com/encode-pipeline-genome-data/
mm1l0/ataqe/mm10_univ_dhs ucsc.bed.gz, is a set of peaks combined
from mouse DNasel-hypersensitivity OCRs from ENCODE and provides
a background for human orthologs of mouse OCRs. The mm10 mouse
DHS regions were mapped to hg38 as described in Mapping mouse OCR
orthologs. For each respective foreground-background pairing, the fore-
ground regions were merged with the background reference to ensure the
background always contained the foreground set. The mouse background
was used to calculate the significance of the relationship between mouse
OCRs and GWAS for addiction-associated traits to control for a possible
association between the degree to which a region is conserved and its like-
lihood in influencing the predisposition to an addiction-associated trait.

Interpretation of CNN models

To ensure that the classification task decisions relied on biologically rele-
vant sequence signatures and not artifacts, we performed model inter-
pretation using Deep SHAP version 0.37.0 (Strumbelj and Kononenko,
2014; Shrikumar et al., 2017) and TE-MoDISco (Shrikumar et al., 2018).
For a random subsample of 2000 true positive sequences from the
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validation set, we generated per-base importance scores and hypothetical
importance scores relative to a reference set of 500 true negative sequen-
ces from the validation set. These scores describe the contribution of
each base toward a positive model classification, which is a predicted
OCR in the given cell type. TE-MoDISco is an importance score-aware
method that clusters commonly important subsequences, called “seq-
lets,” to construct the motifs that the model learned. We ran TF-
MoDISco version 0.4.2.3 with the options sliding window_size=11,
flank_size =3, min_seqlets_per_task =3000, trim_to_window_size=11,
initial_flank to_add =3, final_flank_to_add =3, kmer_len=7, num_gaps =
1, and num_mismatches = 1. The resulting motifs were filtered to remove
rare patterns with <100 supporting seqglets. Then, the motifs were visualized
and associated with known motifs using Tomtom (Gupta et al., 2007) ver-
sion 5.3.3 with the HOCOMOCO v11 FULL database and default parame-
ters (Extended Data Fig. 7-1).

Data availability

Code used to run intermediate and final analyses reported in this paper
are available on the GitHub page: https://github.com/pfenninglab/
addiction_gwas_enrichment. Sequencing output files for data generated
in this study are deposited on the GEO at accession GSE161374.

Results

Genetic risk for substance use traits is associated with the
neuronal epigenomes of reward areas

Recent well-powered GWASs have identified dozens of candi-
date genetic risk loci associated with seven addiction-associated
traits: age of smoking initiation (AgeOflnitiation), average num-
ber of cigarettes smoked per day (CigarettesPerDay), having ever
regularly smoked (SmokingInitiation), being a former versus cur-
rent smoker (SmokingCessation), the number of alcoholic drinks
per week (DrinksPerWeek), lifetime cannabis use (Cannabis), and
risk tolerance (RiskyBehavior) (Pasman et al., 2018; Karlsson Linnér
et al,, 2019; M. Liu et al, 2019). These GWASs measure reward,
risk tolerance, and various substance use behaviors, thereby provid-
ing a means of studying genetic variation associated with
addiction. We found that 72%-98% of addiction-associated
genetic variants lie in noncoding regions of the genome (Fig.
1A). Of those risk variants, 47%-85% lie in introns, which is a
substantial overrepresentation in each GWAS (odds ratio,
ORAgeOﬂnitiation =23, ORCannabis =23, ORCigarettesPerDay =14,
ORDrinksPerWeek = 1.6, ORRiskyBehavior =14, ORSmokingCessation
= 1.8, ORSmokingInitiation =1.3, Fisher’s Exact Pgonferroni < 8 X
10~7%). Furthermore, pairwise genetic correlations of risk al-
leles in these seven GWASs indicated shared and distinct
genetic architecture across addiction-associated traits (rg; Fig.
1B). Although common genetic variants are shared between
addiction-associated traits on a genome-wide scale, the
reported significant loci are often unique to a particular trait
and are densely packed with SNPs in high LD (Fig. 1C). SNPs
that are associated with the seven traits span 205 nonoverlap-
ping loci across the human genome and include on average 71
SNPs (minimum 1, median 22.5, maximum 1780) within each
locus that are either genome-wide significant (Pgwas < 5-
x 107%) or in high LD with the lead SNPs (R* > 0.8; Extended
Data Fig. 7-1).

We investigated whether genetic variants implicated by addic-
tion-associated GWASs show a tendency to cluster at putative
CREs of the brain using a stratified LDSC regression approach
(see Statistical analyses), which looks for an enrichment of signif-
icant SNPs from GWAS in human annotations (Bulik-Sullivan et
al., 2015b; Finucane et al., 2018). We applied LDSC to compare
the seven addiction-associated GWASs to OCR annotations of
sorted neuronal (NeuN ") and glial (NeuN") nuclei across 14 brain

Srinivasan, Phan et al. e Cis-Regulatory Elements in Addiction Neurobiology

regions (Fullard et al.,, 2018) (Fig. 2A). We found that genetic
variants associated with SmokingInitiation, SmokingCessation,
DrinksPerWeek, and Cannabis significantly enriched in
NeuN" OCRs of brain regions known and speculated to contrib-
ute to reward and addiction (Volkow and Morales, 2015)
(FDR < 0.05). We found that genetic variants associated with
Smoking]nitiation and Cannabis shared enrichment in NeuN " pre-
frontal cortical OCRs (from OFC and DLPFC; SmokinglInitiation-
OFC FDR=9.1E-03, Cannabis-OFC FDR=14E-02, Smoking-
Initiation-DLPFC FDR = 9.1E-03, Cannabis_ DLFC FDR =2.6E-02),
whereas those associated with SmokingCessation and Drinks-
PerWeek shared enrichment in NeuN" striatal OCRs (both PUT
and NAc;, SmokingCessation-PUT FDR =2.5E-02, Smoking-
Cessation-NAC ~ FDR=4.3E-03,  DrinksPerWeek-PUT
FDR =3.3E-02, DrinksPerWeek-NAC FDR =1.0E-02). The
enrichments of NeuN " OCRs indicate that genetic variation
in epigenomes of neuronal populations from frontal cortex
and striatum contribute to addiction liability. The difference
in NeuN™" enrichments between regions across addiction-
associated traits can likely be explained by the difference in
proportions and identities of neuronal subtypes of each area,
so we sought to dissect the different neuronal subtypes con-
tributing to these enrichments.

Broad marker-gene based labeling approaches, such as using
NeuN to label neurons, do not capture the rich diversity of neu-
ronal subtypes; bulk NeuN" open chromatin signal represents
an average signal from heterogeneous neuronal subtypes, each
with distinct epigenomic landscapes, gene regulation, and net-
work connectivity. Hence, NeuN-labeled open chromatin pro-
files likely do not capture OCRs unique to less populous
neuronal subtypes. The difference in proportions of neuronal
subtypes between brain regions may also contribute to brain
region-specific NeuN " OCR enrichment for GWAS variants of
addiction-associated traits. We therefore applied LDSC regres-
sion GWAS enrichment on single-cell open chromatin profiles
from human postmortem isocortical, striatal, hippocampal, nigral
(Fig. 2B) and occipital cortical cell types (Fig. 2C) (Lake et al., 2018;
Corces et al., 2020). We found that addiction-associated genetic var-
iants largely enriched in both excitatory and inhibitory neuronal
OCRs. Genetic variants associated with SmokingInitiation (FDR =
1.4E-03, Pponferroni = 1.8E-02), SmokingCessation (FDR = 3.6E-03),
DrinksPerWeek (FDR =3.6E-03), and Cannabis enriched in iso-
cortical EXC OCRs (Fig. 2B). We found enrichment of genetic var-
iants associated with CigarettesPerDay (FDR = 2.2E-03, Ppopferroni =
3.3E-02), Smokinglnitiation (FDR =2.5E-03, Ppopferroni = 4.4E-02)
DrinksPerWeek (FDR=4.8E-06, Pgonferroni = 3.4E-05), Cannabis
(FDR=34E-03), and RiskyBehavior (FDR=1.1E-02) in striatal
INs. Genetic variants associated with Cannabis also enriched in iso-
cortical IN (FDR=1.5E-02) and unclassified neuron OCRs
(FDR =4.4E-02). Among the glial cell types, only oligodendrocyte
precursor cell OCRs were enriched for an addiction-associated trait
(Smokinglnitiation; FDR=3.6E-03). We found enrichment of
genetic variants associated with AgeOflnitiation (FDR=1.2E-02)
and SmokingCessation (FDR=1.0E-04, Ppopferroni = 6.1E-04) in
OCRs of occipital cortical EXCs. We found no enrichment of
genetic variants associated with CigarettesPerDay for OCRs of
occipital cortex cell types. Genetic variants associated with
SmokinglInitiation, which enriched in AST (FDR =1.8E-02), endo-
thelial (FDR=5.1E-03), inhibitory (FDR=24E-04, Pgonterroni =
2.1E-03), and oligodendrocyte precursor cell OCRs (FDR =2.5E-
02) from occipital cortex, shared enrichment in NeuN~ OCRs of
MDT (Fig. 24; FDR = 3.2E-02). Interestingly, genetic variants asso-
ciated with SmokingCessation, which showed enrichment for
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Figure 2.  Substance use and risky behavior GWAS risk variants enrich within reward region- and cell type-specific epigenomic profiles. Stratified LDSC regression (GWAS enrichment) finds enrichment
of substance use and risky behavior traits in region-specific and cell type-specific open chromatin profiles of human postmortem brain. A, GWAS enrichment FDRs in ATAC-seq of 14 postmortem human
brain regions coupled with NeuN-labeled fluorescence-activated nuclei sorting (Fullard et al., 2018). Brain regions are stratified by cortical and subcortical regions, with cortical regions ordered frontal to
caudal. Sorted cell types within each brain region are denoted as follows: blue triangle represents NeuN™/neuronal; red cirdle represents NeuN/glial. FDR adjustment was performed across all enrichments
on the Fullard et al. (2018), dataset for Figure 2. Brain regions reported to be significantly enriched (FDR < 0.05, black; Bonferroni p value < 0.05, red) are plotted with bolded points. Dashed red line
indicates the significance threshold. B, Barplot of GWAS enrichment FDRs in single-cell open chromatin profiles of cell dlusters in isocortex, HIPP, and striatum (Corces et al., 2020). Cell types in brain
regions that are significantly enriched (FDR < 0.05) are plotted with bolded bars. Dashed red line indicates the significance threshold. C, Barplot of GWAS enrichment FDRs in single-cell THS-seq OCRs of
major cell clusters in occipital cortex (Lake et al., 2018). Cell types in brain regions that are significantly enriched (FDR < 0.05) are plotted with bolded bars. Dashed red line indicates the significance
threshold. Traits assessed are age of smoking initiation (Ageofinitiation), average number of cigarettes per day for ever smokers (CigarettesPerDay), having ever regularly smoked (Smokinglnitiation), cur-
rent versus former smokers (SmokingCessation), number of alcoholic drinks per week (DrinksPerWeek) (C. Liu et al., 2019), lifetime cannabis use (Cannabis) (Pasman et al., 2018), and risky behavior
(RiskyBehavior) (Karlsson Linnér et al.,, 2019). AMY, Amygdala; Ast, AST; End, endothelial; Ex, EXC; In, IN; Mic, microglia; Oli, oligodendrocyte; Opc, oligodendrocyte precursor.

striatal NeuN" OCRs, enriched only for OCRs of occipital cortical ~ regions, which are largely composed of inhibitory MSNs. We
EXCs and not cortical INs (FDR = 1.1E-03, Pgopferroni = 1.3E-02).  overall found that the enrichments of addiction-associated genetic
Sorted bulk ATAC-seq only showed enrichment of Smoking  variants in Corces et al. (2020), isocortex OCRs agreed with those
Cessation-associated genetic variants in OCRs of NeuN" striatal ~ in Lake et al. (2018), occipital cortex OCRs. Single-cell
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epigenomics of human postmortem brain can further dissect the
genetic risk for substance-use traits into neuronal subtypes that
otherwise would not be parsed with bulk tissue assays.

We confirmed that our pipeline for LDSC regression on
NeuN-sorted OCRs from 14 brain regions is able to reproduce
the GWAS enrichments published by Fullard et al. (2018). While
our approach uses OCRs from reproducible ATAC-seq peaks
rather than differentially accessible peaks, we found consistent
enrichments of genetic variants associated with schizophrenia
risk (Schizophrenia; VLPFC NeuN " FDR = 9.3E-06, OFC NeuN "
FDR = 3.1E-05, STC NeuN " FDR = 6.6E-05, NAC NeuN " FDR =
9.1E-05, DLPFC NeuN" FDR=9.1E-05, ACC NeuN" FDR=
1.0E-04, ITC NeuN" FDR = 1.0E-04, PUT NeuN" FDR = 2.6E-04,
HIPP NeuN" FDR=84E-04, PMC NeuN" FDR=29E-03, INS
NeuN" FDR = 1.4E-02, MDT NeuN" FDR = 2.4E-02), highest level
of educational attainment (EduAttain; NAC NeuN" FDR = 8.4E-06,
VLPFC NeuN" FDR=3.7E-04, PUT NeuN" FDR = 1.1E-03, OFC
NeuN* FDR=13E-03, STC NeuN'* FDR=16E-03, DLPFC
NeuN" FDR=24E-03, STC NeuN~ FDR =6.7E-03, HIPP NeuN "
FDR=67E-03, ITC NeuN' FDR=14E-02, MDT NeuN"
FDR = 1.4E-02, VLPFC NeuN~ FDR = 2.4E-02, ACC NeuN"* FDR =
24E-02, MDT NeuN™ FDR=2.8E-02, PVC NeuN~ FDR =3.2E-02,
PMC NeuN" FDR=35E-02), and habitual sleep duration
(SleepDuration; STC NeuN'" FDR=27E-04, VLPFC NeuN"
FDR =3.7E-04, PUT NeuN" FDR=4.0E-04, NAC NeuN" FDR=
5.0E-04, DLPFC NeuN" FDR = 1.6E-03, ITC NeuN" FDR =14E-
02, OFC NeuN" FDR =24E-03, MDT NeuN" FDR =4.1E-03) (Fig.
3B). We did not find enrichment in brain OCRs of genetic variants
identified in several low-powered GWAS [cocaine dependence
(CocaineDep) (Cabana-Dominguez et al,, 2019), opioid dependence
(OpioidDep) (Cheng et al., 2018), and OCD (International Obsessive
Compulsive Disorder Foundation Genetics Collaborative and
OCD Collaborative Genetics Association Studies , 2018)], each
of which had included <5000 individuals with the trait (Fig. 34). In
addition, we found no enrichments in brain OCR for several well-
powered studies of traits related to addiction behaviors, including
multisite chronic pain (ChronicPain) (Johnston et al., 2019) and
quantity in cups of coffee drank per day (CoffeePerDay) (Coffee and
Caffeine Genetics Consortium et al., 2015). We also found no enrich-
ment in brain OCRs for anthropometric traits, including CAD
(Howson et al., 2017), BMD (Kemp et al,, 2017), and LBM (Zillikens
et al, 2017) (Fig. 3B,C). Last, we validated that human OCRs from
nonbrain tissues would not enrich for risk variants associated with
brain traits. We gathered publicly available OCRs from stomach
ATAC-seq, adipocyte ATAC-seq, preadipocyte ATAC-seq, liver
DNase-seq, and lung DNase-seq profiles (ENCODE Project
Consortium, 2012; Thurman et al., 2012; Davis et al., 2018; Cannon
et al, 2019) (see Fig. 6D) and performed LDSC regression on the
total 18 GWAS from above. To our expectation, we did not find
enrichments of stomach, liver, or lung OCRs for genetic variants
associated with brain-related traits. We did find enrichment of
BMD in lung OCRs (FDR = 9.1E-04, Ppongerron; = 9.1E-04), a con-
nection previously recognized (I. S. Lee et al,, 2016; Kim et al,,
2019; Zeng et al.,, 2019). The secondary GWAS enrichments in
other traits and foregrounds demonstrate two trends: a GWAS
trait would enrich if the GWAS was properly powered to detect
genetic risk variants, and the foreground regions are from cell
types or tissue of that trait’s potential etiologic origin.

Mouse-human conserved cell type-specific open chromatin
enrich for addiction risk loci

In order to further interrogate the different neuronal subtypes
that comprise the enrichment of addiction-associated genetic
variants in OCR sets measured by Fullard et al. (2018), Corces et
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al. (2020), and Lake et al. (2018) (Figs. 2 and 3), we performed
targeted epigenomic experiments in mouse on isolated neuronal
subtypes from key brain regions of the reward circuit: frontal
cortex (CTX), caudoputamen (CPU), and the NAc. We isolated
nuclei from specific cell types for ATAC-seq using a modified
version of the INTACT approach (Mo et al, 2015) called
cSNAIL (see Experimental design). cSNAIL-INTACT was
applied to isolate nuclei marked by Pvalb, Sst, Drdl, and
Adora2a in cre-driver lines using a shortened form of the Suni-
Gfp fusion protein packaged with AAV-PHP.eb and delivered
through retro-orbital injection (see Fig. 5A). We show that cell
type-targeting provided markedly distinct genome-wide ATAC-
seq profiles compared with bulk tissue ATAC-seq alone (Fig.
4A). cSNAIL ATAC-seq specifically captured nuclei with
increased accessibility around the marker gene that was driving
Cre recombinase expression (Fig. 4B). Accessibility around
cSNAIL ATAC-seq TSSs strongly correlated with matched pseu-
dobulk gene expression in the same cell type and tissue (see
Materials and Methods, both Pearson and Spearman correlation
Pyont < 2 X 107", Fig. 4C,D). We applied HALPER, an approach
that leverages reference-free multispecies genome alignments to
produce 1-1 contiguous CRE orthologs (Zhang et al., 2020), to
reliably map ~70% of mouse neuronal subtype OCRs to their
human orthologs in the hg38 human reference genome (see
Statistical methods) for LDSC regression GWAS analysis.

Our GWAS enrichment analysis of human orthologs from
mouse OCRs (mouse-human orthologs) measured in various
neuronal subtypes and bulk tissue (Fig. 5B) show that genetic
variants associated with SmokingInitiation and Cannabis shared
enrichment in cortical EXC and PV neuron OCRs from both Mo
et al. (2015) (Smokinglnitiation- CTX PV+ FDR=2.6E-02,
Cannabis- CTX PV+ FDR=8.9E-03, Smokinglnitiation- CTX
EXC+ FDR=3.6E-02, Cannabis- CTX EXC+ FDR=14E-02)
and the current study (Pfenning data; SmokingInitiation- CTX
PV+ FDR=2.6E-02, Cannabis- CTX PV+ FDR=1.3E-02).
Genetic variants associated with Cannabis further enriched in
CTX bulk tissue OCRs (FDR = 1.8E-02), which could be attributed
to signal from cortical EXC and PV neuron populations. Cortical
PV neuron OCRSs further enriched with genetic variants associated
with DrinksPerWeek (FDR =1.7E-02). SmokingCessation-associ-
ated genetic variants distinctly enriched in cortical VIP neuron
OCRs (FDR = 1.6E-02).

Within neuronal subtypes from CPU and NAc, we found enrich-
ment of genetic variants associated with all measured addiction-asso-
clated traits in CPU D2 MSN (AgeOflnitiation FDR = 1.6E-02,
CigarettesPerDay FDR =7.9E-03, Smokinglnitiation FDR = 1.6E-03,
SmokingCessation FDR =3.5E-02, DrinksPerWeek FDR=14E-
03, Cannabis FDR=7.1E-04, Cannabis Ppopferroni = 1.9E-02,
RiskyBehavior FDR=2.6E-02) and NAc D2 MSN OCRs
(AgeOflnitiation FDR=2.5E-02, CigarettesPerDay FDR =9.8E-
03, Smokinglnitiation FDR =1.6E-02, SmokingCessation FDR =
7.9E-03, DrinksPerWeek FDR=3.7E-03, Cannabis FDR =6.6E-
04, Cannabis Ppopferroni = 1.6E-02, RiskyBehavior FDR = 1.6E-03).
Genetic variants associated with all measured traits, excluding
Smokinglnitiation and RiskyBehavior, all enriched in NAc D1
MSN OCRs (AgeOfInitiation FDR=14E-02, CigarettesPerDay
FDR = 1.6E-02, SmokingCessation FDR = 3.6E-02, DrinksPerWeek
FDR =1.7E-02, Cannabis FDR=5.1E-03). CPU D1 MSN OCRs
were enriched with genetic variants associated with all measured
traits, excluding RiskyBehavior (AgeOflInitiation FDR=3.1E-02,
CigarettesPerDay FDR =3.8E-03, SmokinglInitiation FDR =
1.5E-02, SmokingCessation FDR =1.6E-02, DrinksPerWeek
FDR =3.7E-02, Cannabis FDR=7.8E-03). We found that



Srinivasan, Phan et al. e Cis-Regulatory Elements in Addiction Neurobiology J. Neurosci., October 27, 2021 - 41(43):9008-9030 - 9017

A ChronicPain CocaineDep OpioidDep OoCD CoffeePerDay
OFC1 - l l l l l
VLPFC | | | | |
DLPFCA - 1 1 1 1 1
ACCH - 1 1 1 1 [ P
Nsd - 1 1 1 1 1 g
1 1 1 1 1|3
STC A L] | | | N e
S ITCH I I I | |
D pmcd - 1 1 1 1 1
&:’ A 1 1 1 1 1
PVC b 1 1 1 1 1
T T T T T
AMY 1 1 1 1 o
HIPP - I I I I 1| &
MDT A - 1 1 1 1 1|8
NACH - 1 1 1 1 [ -
PUTA 1 1 1 1 R
U T T T - T T T - T T T - T T T - T T T -
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
-log10(FDR)
B Schizophrenia EduAttain SleepDuration C BMD CAD LBM
oFC{ & e i OFCH: : : :
VLPFCH ! A n a ! a VLPFC o ! ! !
1 1 1 1 1 1
DLPFC - . a A | a DLPFC - 1 1 1
ACC | ! a 'a 1 Acc 4 ! ! 1
1 1 1 1 1 1 Q
INS - 1A “1 1 INS 1 1 1 1 %
stcq a | wa | a sTc | ; 1=
5 ITC 4 1 A lra lra s ITCH 1 1 1
S 1 1 1 S 1 1 1
k3 PMCy 4 A 1 g PMC 4 Y " T
PVC - 1 N ] ! pPvC 4 1 1 1
1 1 1 1 1 1
AMY + 1 1 1 AMY 1+ 1 1 1
1 1 1 | 1 1 1| o
HIPP - | a | a | HIPP A | | | E—
MDT | a 7N a MDT 4+ 1 1 1 g
1 1 1 1 1 1 =1
NAC - | A | 4 | 4 NAC 1 | | | %
PUT A 1 a ! a ! PUTH 1 1 1
T T - T T T T T T - T T T T T T - T T T T T T T - T T T - T T T -
01 2 3 450 12 3 4501 2 3 45 00 05 10 00 05 1.0 00 05 1.0
—log10(FDR —log10(FDR
FDR < 0.05 910( ) 910( )
P.Bonf < 0.05 Celltype ® NeuN- & NeuN+ Celltype ® NeuN- & NeuN+

Figure 3.  Sensitivity of stratified LDSC regression for cell type- and region-specific in the GWAS trait enrichment requires well-powered GWAS in relevant cell types. GWAS enrichment plots
with FDRs in ATAC-seq of 14 postmortem human brain regions coupled with NeuN-labeled fluorescence-activated nuclei sorting (Fullard et al., 2018). Regions are stratified by cortical and sub-
cortical regions, with cortical regions ordered frontal to caudal. Sorted cell types within each brain region are denoted by shape as follows: blue triangle represents NeuN ™ /neuronal; red circle
represents NeuN"/glial. Cell types in brain regions that are enriched at FDR < 0.05 are plotted with bigger shapes and with black outlines and enriched at Bonferroni p value < 0.05 with red
outlines. A, GWAS enrichment of addiction- or substance use-associated traits: multisite chronic pain (ChronicPain) (Johnston et al., 2019), cocaine dependence (CocaineDep) (Cabana-
Dominguez et al., 2019), opioid dependence (OpioidDep) (Cheng et al., 2018), diagnosis of OCD (International Obsessive Compulsive Disorder Foundation Genetics Collaborative and 0CD
Collahorative Genetics Association Studies, 2018), and cups of coffee drank per day (CoffeePerDay) (Coffee and Caffeine Genetics Consortium et al., 2015). The GWASs for OCD, opioid depend-
ence, and cocaine dependence are reportedly underpowered to detect genetic liability for these traits (N << 5000). B, GWAS enrichment in well-powered brain-related traits showss cell
type- and region-specific enrichment: educational attainment (EduAttain) (). J. Lee et al., 2018), schizophrenia risk (Schizophrenia) (Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014), and habitual sleep duration (SleepDuration) (Dashti et al., 2019). ¢, GWAS enrichment in non—brain-associated traits does not show cell type- or region-specific enrichment:
heel BMD (Kemp et al., 2017), CAD (Howson et al., 2017), and LBM (Zillikens et al., 2017).

CPU bulk tissue OCRs were enriched with genetic variants =~ FDR=7.9E-03). Within striatal cell types, we found that CPU
associated with all measured addiction-associated traits, =~ D2 and NAc D1 MSN OCRs were enriched for genetic variants
excluding AgeOfInitiation and RiskyBehavior (CigarettesPerDay  associated with ChronicPain (CPU D2+ FDR=4.9E-02, NAc
FDR =3.4E-03, SmokingInitiation FDR=1.6E-02, Smoking- D1+ FDR=22E-02). In contrast, CPU D1 and NAc D2 MSN
Cessation FDR=9.2E-03, DrinksPerWeek FDR=1.6E-02, OCRs were enriched for genetic variants associated with
Cannabis FDR =1.6E-02). Distinctly, CPU PV+ and SST+  OpioidDep (CPU D1+ FDR=4.5E-02, NAc D2+ FDR=2.0E-
neuron OCRs enriched with genetic variants associated with ~ 02). Genetic variants associated with OpioidDep also
Cannabis (CPU PV+ FDR =9.5E-03, CPU SST+ FDR = 3.3E-02). enriched in CPU PV OCRs (FDR =4.7E-02). Schizophrenia-,

Corresponding to our analysis of human brain OCRs, we also  EduAttain-, and SleepDuration-associated genetic variants
confirmed the specificity of mouse-human orthologous CRE  all enriched in OCRs of all measured cell types (Fig. 6B).
enrichments for genetic variants associated with addiction-  None of these mouse-human orthologs enriched for genetic
related, brain-related, and non-brain-related traits (Fig. 6). We  variants associated with non-brain-related traits: BMD,
found enrichments of genetic variants associated with ~ CAD, and LBM (Fig. 6C). We validated that our approach to
ChronicPain in cortical PV neuron OCRs from both Mo et al. =~ map OCRs from mouse to human did not bias enrichment to
(2015) (FDR=3.9E-02) and the current study (Fig. 6A;  brain traits by performing GWAS enrichment on OCRs from
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Cell type specificity of ¢SNAIL ATAC-seq in mouse cortex and striatum. A, Principal component plots of chromatin accessibility counts from cSNAIL ATAC-seq from cre-driver lines

(see Materials and Methods; sample sizes in Extended Data Table 4-1). Major axes of variation separate cell types by tissue source (PC1) and cell type versus bulk ATAC-seq (PC2). B,
Normalized coverage track plots around marker genes demarcating cell type specificity of cSNAIL ATAC-seq samples. C, Density correlation plot of normalized chromatin accessibility log counts
around the TSSs correlated with matched pseudo-bulk cell type log gene counts from Drop-seq of mouse cortex and striatum (Saunders et al., 2018). Drop-seq cell types meta-gene profiles
report sum gene counts for cell clusters from frontal cortex and striatum. R and p indicate Pearson’s and Spearman’s correlation, respectively. D, Pairwise correlation matrix of TSS chromatin
accessibility log counts with Drop-seq pseudo-bulk log gene counts from cortical and striatal cell clusters.

mouse nonbrain tissues (kidney, liver, and lung) (Fig. 6D).
As expected, we did not find an enrichment for genetic var-
iants associated with a brain-related trait. We did find that
mouse-human orthologs of lung OCRs enrich for BMD
(FDR =8.3E-03), which concords with the enrichment of

human lung OCRs.

CNN models of mouse cell type-specific CRE activity refine
human NeuN" OCRs for GWAS enrichment

The genetic tools available for mouse research allowed us to iso-
late the nuclei of specific neuronal subtypes and generate deep
open chromatin profiles at greater cellular resolution. However,

a lack of directly measured mouse-human conservation could
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ATAC-seq of bulk cortex (CTX), dorsal striatum (CPU), and NAc of ¢SNAIL nuclei of D1-cre, A2a-cre, PValb-2a-cre, and SST-cre mice. ¢SNAIL ATAC-seq experiments report enriched (+) nuclei
populations. B, Stratified LD score regression finds enrichment of substance use and risky behavior traits for brain region- and cell type-specific ATAC-seq open chromatin profiles of mouse
brain. Replication of enrichment is shown using INTACT-enriched OCRs from Mo et al. (2015) of cortical excitatory (EXC™), VIP inteneuron (VIP*), and PV interneuron (PV™). Enrichments that
are enriched at FDR < 0.05 are plotted with black outlines and Bonferroni p value < 0.05 with red outlines. FDR-adjusted p value was performed across all mouse-human ortholog GWAS

enrichment across Figure 5.

lead to false negatives and false positives in the cell type specific-
ity of CRE:s at specific loci that add noise to GWAS comparisons.
To leverage the strengths of the mouse and human approaches,
we developed a procedure to predict the neuronal subtype speci-
ficity of human OCRs using machine learning models trained in
mouse. The OCR profile of each neuronal subtype is largely a
result of a developmental cascade of transcription factors that
cooperatively recognize and bind to specific sequence elements
in the genome, resulting in a neuronal subtype-specific open
chromatin profile (Spitz and Furlong, 2012). These complex
combinations of sequence features comprise a regulatory code
that links genome sequence to neuronal subtype-specific open
chromatin. This regulatory code can be effectively learned using
CNNs and has been demonstrated to be highly conserved
between mouse and human (Zhou and Troyanskaya, 2015; L.
Chen et al., 2018).

The concordant pattern of enrichment for addiction-associ-
ated genetic variants in human and mouse-human orthologous
OCRs suggested that risk variants may affect the regulatory activ-
ity of neuronal subtypes that are conserved between human and
mouse. We therefore devised and trained a collection of CNN bi-
nary classification models to learn the genome sequence features
that distinguish OCRs for cortical EXC neurons, striatal D1
MSNs, and striatal D2 MSNs (Zhou and Troyanskaya, 2015;
Kelley et al., 2016, 2018; L. Chen et al., 2018). For each set of re-
producible OCRs from the mouse INTACT and c¢SNAIL data,
we trained models to predict the reproducible peaks from ~10
times the number of nucleotide content-matched negative

sequences (see Materials and Methods). Our models made confi-
dent predictions on held-out test sequences as reported by high
F1 scores, high auPRCs (Fig. 7A), and low false positive rates at a
threshold of 0.5 (Fig. 7B). These models reproducibly learned
transcription factor motif families that are enriched in human
neuronal subtypes of cortex (MEF2, JUN) and striatum (POU,
NRF1, ZFHX3), as previously reported by Fullard et al. (2018)
(Fig. 7F; Extended Data Fig. 7-1).

We reasoned that NeuN" OCR signal, which is comprised of
OCR signals from several neuronal subtypes, can be parsed into
its component cell types by CNNs that are trained to predict
OCR activity in those component cell types. This enables the
study of human addiction genetics at a cell type-level resolution
from high-quality tissue-level open chromatin profiles. To dis-
cern whether NeuN™ OCR enrichments for addiction-associated
genetic variants come from the same cell types observed in
Figure 2, we applied our trained CNN models to predict whether
bulk cortical or striatal NeuN™ OCRs have activity in either cort-
ical EXC or striatal D1 and D2 neurons, respectively (Fig. 84).
We did not conduct these analyses for PV, SST, or VIP inter-
neurons because they comprise a much lower percentage of cort-
ical and striatal neurons than the other neuron types (Beaulieu,
1993; Lefort et al., 2009). We ran LDSC regression (Finucane et
al,, 2018) GWAS enrichments on the sets of NeuN " OCRs pre-
dicted to be specific to cortical EXC, striatal D1, and striatal D2
neurons. Genetic variants associated with Smokinglnitiation,
which initially were enriched for occurring in OCRs of various
NeuN" frontal cortical areas (Fig. 2A), were enriched for
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Figure 6.  GWAS enrichment in addiction- and non—addiction-related traits using mapped mouse orthologs of tissue- and cell type-specific OCRs. GWAS enrichment plots with FDRs in human
orthologous regions mapped from mouse ATAC-seq of bulk cortex (CTX), dorsal striatum (CPU), and NAc or ¢SNAIL nuclei of D1-cre, D2-cre, and PV-cre mice. cSNAIL ATAC-seq experiments
report both enriched (+) and de-enriched (-) nuclei populations. Enrichments that are enriched at FDR << 0.05 are plotted with black outlines. Replication of enrichment is shown using
INTACT-enriched OCRs from Mo et al. (2015) of cortical excitatory (EXC™), VIP intereuron (VIP™), and PV interneuron (PV*). A, GWAS enrichment of addiction- or substance use-associated
traits: multisite chronic pain (ChronicPain), cocaine dependence (CocaineDep), opioid dependence (OpioidDep), diagnosis of OCD, and cups of coffee drank per day (CoffeePerDay). The GWASs
for OCD, opioid dependence, and cocaine dependence are reportedly underpowered to detect genetic liability for these traits (N z.<< 5000). B, GWAS enrichment in well-powered brain-related
traits shows cell type- and region-specific enrichment: educational attainment (EduAttain), schizophrenia risk (Schizophrenia), and habitual sleep duration (SleepDuration). ¢, GWAS enrichment
in non—brain-associated traits does not show cell type- or region-specific enrichment: heel BMD, CAD, and LBM. D, Heatmap of LDSC regression coefficients of GWAS enrichment for all meas-
ured GWASs in nonbrain OCRs from human or mouse-human mapped orthologs. Tissues for which OCRs are significantly enriched (FDR << 0.05, black; Bonferroni p value < 0.05, red) with
GWAS variants are outlined with a bolded box.
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Figure 7. (NN model performance and selection of candidate functional SNPs. 4, Performance metrics for CNN models show high specificity on the test sets of positive peaks or 10 nucleo-
tide content-matched negatives. Test set performance metrics are reported for auPRC, F1 score (using threshold = 0.5), and false positive rates across all possible thresholds (see Materials and
Methods). Models were trained on IDR peaks of mouse cortical EXCs (Ctx-EXC) and D1 and D2 MSNs from CPU and NAc. B, The models best discriminate the proportion of positives and negative
sequences at a threshold of 0.5. Plots represent the proportion of positives (blue) or negatives (red) that are called “positive” across CNN output thresholds from 0 to 1 averaged across folds for
each set of (NN models. €, Quantile-quantile plots of p values of calibrated ASNP probabilities (see Materials and Methods) from a normal distribution after centering by the mean and scaling
by the SD of & SNP probabilities across all SNPs (n = 14,790 SNPs) for each set of CNN models. A hexbin plot was used to visualize overplotting, where every hexagon is colored by the number
of SNPs in that bin. Black dotted line indicates the equality line y =x. The number of significant SNPs at FDR ¢ value < 0.05 at Tier A or B are reported for each cell type and tissue (see
Materials and Methods). D, Schematic to select for predicted causal impact addiction-associated GWAS SNPs. The pipeline begins with SNPs across addiction-associated GWASs aggregated to
205 nonoverlapping GWAS loci across 14,790 SNPs after LD expansion to include those in LD R? > 0.8 (Extended Data Fig. 7-2). SNPs are further prioritized into three tiers. Tier C includes
SNPs that only overlap Fullard et al. (2018), NeuN™ ATAC-seq peaks. Tier B includes SNPs with only predicted significant differential allelic impact on CNN-predicted CRE activity at q
value < 0.05. Tier A includes SNPs satisfying both criteria (see Materials and Methods). E, Outline of predicting differential CRE activity between alleles using calibrated CNN probabilities of CRE
activity while controlling for FDR with informative covariates (see Materials and Methods). F, Example motif matches from Extended Data Figure 7-1 of TomTom known transcription factor con-
sensus motifs and the learned important features in CNN models for cortical excitatory and striatal D1 and D2 MSNs.

occurring in NeuN™ OCRs predicted to be active in EXC neu-  SmokingCessation-D1 PUT FDR = 1.1E-02, SmokingCessation-
rons (Fig. 8B; VLPFC FDR =5.0E-03, DLPFC FDR=9.4E-03, D2 PUT FDR=19E-02, DrinksPerWeek-D2 PUT FDR=
STC FDR =1.0E-02, ACC FDR=1.5E-02, OFC FDR=1.5E-02). ~ 5.8E-03, DrinksPerWeek-D1 PUT FDR=1.2E-02, Drinks-
Genetic variants associated with Cannabis, which were enriched =~ PerWeek-D1 NAc FDR=2.6E-02, DrinksPerWeek -D2 NAc
for occurring in NeuN™" cortical OCRs (Fig. 2A), were also ~ FDR=29E-02). Thus, our new framework that we applied to
enriched for occurring in NeuN" OCRs predicted to be active in  these addiction-related traits (outlined in Fig. 8A) refines addic-
EXC neurons (OFC FDR=8.7E-03, DLPFC FDR=1.7E-02, tion genetic risk signal to neuronal subtypes within specific brain
VLPFC FDR =3.6E-02). The enrichments of excitatory cortical ~ regions. This framework can be applied to CREs from any tissue-
cell type-specific OCRs for Smokinglnitiation and Cannabis  cell type combination for which bulk tissue open chromatin meas-
associated genetic variants agree with the results from the analy-  urements are available from human and cell type open chromatin
sis of the Fullard et al. (2018), Corces et al. (2020), and Lake etal. = measurements are available from another vertebrate (L. Chen et
(2018) OCR datasets (Fig. 2). Genetic variants associated with  al., 2018; Minnoye et al., 2020).

SmokingCessation and DrinksPerWeek, which were enriched

for occurring in PUT and NAc NeuN" OCRs (Fig. 24), were ~ CNN models predict allele-specific activity of addiction-
enriched for occurring in OCRs predicted to be active in D1 and  associated GWAS SNPs in neuronal subtypes

D2 MSNs of PUT and NAc (SmokingCessation-D2 NAc  Last, we applied our CNN models to screen addiction-associated
FDR=2.3E-03, SmokingCessation-D1 NAc FDR=54E-03, genetic variants for predicted functional activity in EXC, D1, and
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Figure 8.  Cell type-specific (NN models refine human NeuN™ enrichments for substance use genetic risk GWASs. A, Schematic to predict cell type-specific activity of NeuN™ ATAC-seq peaks
enriched from brain regions assayed in Fullard et al. (2018) using CNN models trained on mouse cell type-specific ATAC-seq peaks. CNN-predicted OCRs are used as input for computing GWAS
enrichment. B, Stratified LD score regression of addiction-associated traits in Fullard et al. (2018). NeuN™ OCRs are predicted to be cell type-specific by machine learning models of open chro-
matin. Cell types are colored by the source mouse cell type-specific OCRs from A. Original enrichments from Figure 54 are reproduced in black. Larger, bolded points are significant for

FDR << 0.05 (red dotted line).

D2 neuronal subtypes. CNN-based approaches have been dem-
onstrated to fine-map dense risk loci and select candidate causal
genetic variants (Alipanahi et al., 2015; Zhou and Troyanskaya,
2015; Kelley et al.,, 2016, 2018; Corces et al., 2020), yet none has
been applied in the context of addiction-associated genetic risk
or in the cell types that we have assayed. We identified 14,790
unique SNPs that were collected across the seven addiction-asso-
ciated GWASs to score for differential neuronal subtype OCR ac-
tivity (see Materials and Methods). We expect that many SNPs
reported from GWASs are significantly associated with traits
because of LD rather than being the true causal variant. When
scored with our CNN models, the 96.2% of addiction-associated
SNPs that either do not lie in any OCR or in only NeuN™ OCRs
have low probabilities of being active in excitatory, D1, or D2
neuronal subtypes. We also found that these SNPs have signifi-
cantly lower predicted probabilities of activity than the remain-
ing 3.8% of addiction-associated SNPs in any NeuN" OCR
(Pponferroni < 0.05; Fig. 9A). We then predicted the probability of
activity for both the effect and non-effect alleles and estimated
the differential impact of the alleles to fine-map candidate causal
effect SNP and target neuronal subtypes and tissues. Most SNPs
do not have predicted differential allelic activity (6 SNP) in a
neuronal subtype, while a handful of SNPs have larger

differential activity that deviate from a normal distribution when
visualized on quantile-quantile plots (Fig. 7C; see Materials and
Methods). We outline in Figure 7D an approach to prioritize the
candidate causal SNPs by two lines of evidence: (1) a predicted
differential neuronal subtype OCR activity with large effect size
that is controlled for FDR (g <0.05; see Materials and
Methods); and (2) having physical overlap with measured
human NeuN"* OCR in Fullard et al. (2018) (Fig. 7D). We
are able to prioritize 55 SNPs spanning 37 loci to Tier A that
both have significant predicted ASNP probability effect and
overlap Fullard et al. (2018), NeuN " OCR, 505 SNPs to Tier
B that only have predicted ASNP probability effect, and 502
SNPs to Tier C that overlap NeuN" open chromatin but do
not have a predicted significant ASNP probability effect
(Extended Data Fig. 7-2).

One such SNP from Tier A, rs7604640, lies in human NeuN"
open chromatin specific to striatum 46 kb upstream of the SIX3
locus on chromosome 2. rs7604640 overlaps human orthologs of
mouse OCRs in only D1 and D2 neurons, and we predict the
effect allele of rs7604640 has an increased probability of open
chromatin activity in D1 OCRs of the striatum compared
with the non-effect allele (Fig. 9B). rs7604640 is one of many
off-lead SNPs identified in the SmokingInitiation GWAS
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Figure 9. (NN models for predicting cell type-specific open chromatin predict activity of
addiction GWAS SNPs. A, Cell type activity predicted probability active by each set of CNN
models of cell type activity for genome-wide significant SNPs and off-lead SNPs in LD R* >
0.8 with the lead SNPs. Activity scores for SNPs are stratified by overlap with Fullard et al.
(2018) cortical or striatal NeuN™* (teal), NeuN™ peaks (salmon), both (dark gray), or neither
(light gray). Significance symbols indicate Bonferroni-adjusted p values from two-tailed ¢
tests for N=18 possible pairwise comparisons: *p << 0.05/N; **p << 0.01/N; ***p < 0.001/
N. B, Locus plot for candidate SNPs with predicted function SNP impact in cortical excitatory
and striatal D1, and D2 MSN cell types. Genome tracks from top to bottom: human (h)
NeuN™ MACS2 ATAC-seq fold change signal of cortical and striatal brain regions enriched in
Figure 5A. SNP tracks show lead SNPs from seven addiction-associated GWASs and the SNPs
either in LD with the lead SNPs (Lead SNPs) or independently significant SNPs (LD/Sig.
SNPs). Each SNP is colored by increasing red intensity that indicates the degree of LD with a
lead SNP. Prioritized candidate causal SNPs by predicted differential cell type activity and
overlap with Fullard et al. (2018). NeuN™* OCRs are plotted as follows: red represents Tier A;
yellow represents Tier B; teal represents Tier C (see Materials and Methods). Tier A SNP
rs7604640 is predicted to have a strong ASNP effect by CPU-D1 and NAc-D1 CNN models,
and the bars are colored by the % change in probability active. Gene annotation tracks plot
GENCODE genes from the GRCh38 build. eQTL link tracks of FDR-significant GTEX cis-eQTL
from cortical or striatal brain regions, and orthologs of mouse (m) putative CREs mapped
from excitatory or striatal neuronal subtypes measured by cSNAIL ATAC-seq. Cell type colors
label cortical EXCs (EXG; red), D1 MSNs (D1; blue), or D2 MSNs (D2; green). C, Representative
importance scores of 50 bp flanking either side of the SNP rs7604640 that measure relative
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(Pgwas = 3.04x 107 '%) and is in high LD with the SNP
rs163522 (R* = 0.856, Pgwas = 1.11 x 107!, which is inde-
pendently significant from the lead SNP, rs1004787 (R> =
0.630, Pgwas = 5.27 x 107"7). rs7604640 was reported by
HaploRegv4 to overlap a POU1F1 motif (Ward and Kellis,
2016), which our D1 models predict to contribute toward
increased probability of being active in D1 MSNs (Fig. 9C).
Furthermore, this SNP is a known cis-eQTL for the antisense
SIX3-ASI gene in striatal regions from the Genotype-Tissue
Expression (GTEX) project (GTEx Consortium, 2013, 2015,
2017; Melé et al., 2015). Antisense gene expression is one
mechanism of regulating their sense gene (Pelechano and
Steinmetz, 2013; Barman et al., 2019), and deletion of the
gene SIX3 has been shown to inhibit development of D2
MSNs (Xu et al., 2018). Together, this evidence formulates
the hypothesis that common genetic variant rs7604640 has
D1 MSN-specific, allelic impact on open chromatin activity
in a mouse-human conserved putative CRE regulating the
MOSN regulator SIX3.

In addition to rs7604640, we report four loci with 1-4 candi-
date SNPs each in Tier A that may be putative causal SNPs with
cell type-specific activity in addiction-associated traits (Fig. 10).
The SNPs in these loci all have reported eQTL in frontal cortex
or striatum tissues from GTEx, and they overlap corresponding
NeuN" OCRs and mouse-human orthologous OCRs. In some
cases, our prioritized Tier A SNPs were predicted to have ASNP
effects (see Materials and Methods) in only striatal MSNs, show-
casing our frameworK’s ability to predict cell type-specific
impact. These SNPs include rs11191352 (Psmokingtnitiation =
2.12 x 1077; Fig. 10A), 1s9826458 (Prigiyehavior = 4.36 X 107>,
Psmokinginitiation = 121X 107'% Fig. 10B), and rs9844736
(P RiskyBehavior = 3-04 X 1077, Psmokinglnitiation = 3-58 X 1077 Fig.
10C). In a few cases, our models predicted SNPs to have
strong ASNP effects across both cortical excitatory and
striatal cell types. These include two SNPs in the highly
pleiotropic MAPT-CRHRI locus that are 152 bp apart and
in perfect LD with each other, rs11575895 and rs62056779
(Fig. 10D). The prioritized SNPs in the MAPT-CRHRI locus
are genome-wide significant for 5 of the 7 addiction-associ-
ated traits (Extended Data Fig. 7-1), and the locus has been
implicated in other neuropsychiatric traits, such as
Alzheimer’s disease (Hoffman et al., 2019; Corces et al.,,
2020; Ramamurthy et al., 2020). We provide the summary
of CNN predictions in these reported loci across all 14,790
analyzed SNPs along with the accompanying annotations
that we incorporated into our prioritization of candidate
causal SNPs and their predicted cell types (Extended Data
Fig. 7-1).

Discussion

In this study, we demonstrate the first analyses integrating neu-
ronal subtype OCRs across human and mouse brain epigenom-
ics using CNN models to select candidate addiction-associated
SNPs acting at putative neuronal subtype-specific CREs. We
trained CNN models to predict neuronal subtype-specific

«—

contribution of that sequence being active in D1 MSNs. CNN importance score interpretations
are shown for effect and non-effect alleles, and the difference in importance scores reveals
the relatively more important DNA motif in the effect allele that matches consensus POU1F1
motif overlapping the rs7604640 SNP. The model interprets this POUTF1 motif and a nearby
NRF1 motif as contributing to the effect allele having more activity in D1 MSNs.
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activity of OCRs and used the models to predict whether addic-
tion-associated genetic variants in risk loci impact putative CRE
function. Our findings link the genetic heritability of addiction-
associated behaviors to the OCR profiles of neuronal subtypes
and brain regions and present specific hypotheses describing
how genetic variants may impact gene regulation in addiction-
associated behaviors. These analyses in conjunction suggest that

genetic variation-associated nicotine, alcohol, and cannabis use
behaviors may impact putative CREs in different combinations
of excitatory (EXC), D1, and D2 neuronal subtypes. These find-
ings provide a foundation for future investigations into the cell
type-specific genetic mechanisms underlying addiction-related
traits. More broadly, our cross-species integrative computational
framework leverages high-resolution cell type-targeted epige-
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nomics in model organisms to interpret the genetic risk variants
of complex traits in humans.

We initially found that addiction-associated genetic variants
were enriched in human NeuN " OCRs of the PFC and striatum,
known areas involved in addiction and reward circuitry (Volkow
et al., 2013; Koob and Volkow, 2016) (Fig. 11A). Genetic variants
associated with SmokingInitiation and Cannabis, initiating
behaviors of substance use, were enriched in NeuN" OCRs of
prefrontal areas, including DLPFC, VLPFC, and OFC (Fig. 2A).
These OCRs were predicted to be active in cortical EXCs of these
brain regions (Fig. 8B). Addiction-associated genetic variants
that enrich in OCRs of cortical EXCs in these areas may reduce
corticostriatal activation from PFC to inhibit behaviors predis-
posing the initiation of substance use (Koob and Volkow, 2010,
2016; Volkow et al.,, 2013; Volkow and Morales, 2015). These
genetic variants may contribute to reduced prefrontal self-con-
trol reward, leading to behaviors observed in addiction, such as
impulsivity, reduced satiety, and enhanced motivation to procure
drugs (Volkow et al., 2013; Volkow and Morales, 2015). In addi-
tion, we found enrichment of striatal NeuN™ OCRs for genetic
variants associated with SmokingCessation and DrinksPerWeek
(Fig. 2A). In Figure 8B, we showed that these genetic variants are
predicted to affect open chromatin in both D1 and D2 MSNs,
which are coordinators of mesocorticostriatal dopamine systems
(Koob and Volkow, 2010, 2016; Volkow et al., 2013). Genetic var-
iants affecting open chromatin in these MSN subtypes may predis-
pose individuals to increased alcohol use (DrinksPerWeek) or
decreased nicotine use (SmokingCessation), perhaps driving the
neuroplastic changes in D1 and D2 MSNs observed in human and
rodent drug dependence studies (Volkow et al,, 1996, 1997, 2003;
G.]. Wang et al., 1997; Fehr et al.,, 2008; Cheng et al., 2017; Wilar et
al., 2019). While drug addiction has been attributed to various areas
of the reward circuit, our investigations into heritable genetic risk
for addiction-associated traits unravel how regulatory DNA
sequence variation in OCRs of projection neurons in implicated
areas link genetic risk to neural circuits to behavior.

Since key component cell types of the reward circuit, such as
D1 and D2 MSNs, have not been profiled for high-quality open
chromatin measurements in a human reference genome to our
best knowledge, we leveraged high-quality mouse cell type open
chromatin measurements using a cross-species OCR mapping
framework. We first conducted ATAC-seq of MSN and inter-
neuron subtypes in mouse brain to identify neuronal subtype-
specific OCRs. Then, we used a multiple genome sequence align-
ment framework to identify the orthologous regions of the
human genome. By leveraging reference-genome free CRE
ortholog mapping tools, we retained high-quality cell type-spe-
cific measurements within relevant brain regions of the reward
circuit, enabling analysis of cell populations from brain regions
where we lack primary human open chromatin profiles. Across
these brain regions, we found remarkably concordant enrich-
ments of cell type OCRs between mouse and human profiles as
well as shared enrichments between traits (Fig. 11B). Genetic
variants associated with both SmokinglInitiation and Cannabis
enriched in mouse-human orthologous OCRs of cortical EXC
(Fig. 5B), concordant with enrichments in human cortical
NeuN™ OCRs (Fig. 2A), which were predicted to include EXC
neurons (Fig. 9B). Genetic variants from these two traits showed
replicable enrichment in human EXC neuron OCRs of isocortex
and occipital cortex (Fig. 2B,C), providing strong evidence that
genetic variation in cortical EXC OCRs confers susceptibility to
nicotine and cannabis use behaviors. The enrichments of genetic
variants associated with Cannabis in isocortical IN OCRs (Fig.
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2B) and mouse-human orthologous OCRs of cortical PV neu-
rons (Fig. 5B) suggest that genetic variation in cortical PV neu-
ron OCRs also confer susceptibility of cannabis use behavior.
Within striatal regions, D1 and D2 MSN mouse-human or-
thologous OCRs enriched for genetic variants of all meas-
ured addiction-associated traits (Fig. 5A), with strongest
concordance in human OCRs for genetic variants associated
with SmokingCessation and DrinksPerWeek (Figs. 2A and
11B). The enrichments in conserved OCRs of MSN subtypes
in the dorsal striatum and NAc unsurprisingly emphasize
known roles of MSNs of both areas to drive and maintain
addiction behaviors (Ferguson et al., 2011; Ji et al., 2017).
Our validations of enrichments both at the tissue and cell
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type level across human and human-orthologous OCRs agree
with LDSC regression GWAS enrichments of noncoding
regions around differentially expressed genes in DLPFC and
NAc measured from postmortem human subjects who were
diagnosed with opioid use disorder versus neuropsychiatric
controls (Seney et al., 2020). Because of the conservation of
reward circuit between mouse and human, our approach is
able to unravel the cell types in which genetic variation at the
epigenome level predisposes addiction-related traits even
from measurements in organisms that have not been exposed
to addictive substances. Further, this level of OCR conserva-
tion is present at the level of excitatory cell types in cortical
brain regions (Yao et al., 2021). This may explain why we
found enriched cell types in occipital cortex (Fig. 2C), which
is not well defined for its role in addiction-related traits.

In an orthogonal approach to mapping mouse-human orthol-
ogous OCRs, we devised and trained CNN models to classify the
neuronal subtype membership of mouse and human NeuN "
OCRs to refine GWAS enrichments of bulk tissue to the
major neuronal subtypes of cortex and striatum. This
approach can provide further validation for enrichments of
human and mouse-human orthologous OCRs in cell types
and tissues. Refinement of NeuN " OCRs revealed that addic-
tion-associated traits enriched for two clusters of cell types
and brain regions. The first group, which displays concord-
ant cortical excitatory enrichments between human and
mouse, consists of Smokinglnitiation and Cannabis (Fig.
8B); and the second group, which displays concordant D1
and D2 MSN enrichments, consists of SmokingCessation and
DrinksPerWeek. A drawback of assigning human NeuN" OCR
membership to individual cell types lies in the considerably low
representation of interneurons in both cortical and striatal neuron
populations, as low as 12% in neocortex (Beaulieu, 1993; Lefort et
al.,, 2009) and ~5% in striatum (Tepper and Kods, 2017; Krienen
et al., 2020). NeuN " open chromatin profiles alone do not always
capture OCRs unique to rare interneurons, some of which had
OCRs identified by human single-cell assays and mouse-human
orthologs enriched for addiction GWAS variants (Fig. 5B,C). As a
result, we did not train CNN models for PV, SST, or VIP inter-
neurons. However, the striking enrichments of OCRs from certain
interneuron populations for addiction GWAS variants begin to
demonstrate these populations’ roles in the addiction neural cir-
cuits (Bracci et al,, 2002; Lansink et al., 2010; Wiltschko et al.,
2010; Ribeiro et al.,, 2018; Jiang et al., 2019; J. H. Lee et al., 2020;
Schall et al., 2020).

The overall concordance of enrichments across human and
mouse-human orthologous OCRs suggests a conserved regula-
tory code between mouse and human CREs. Correspondence in
the neural circuitry has been well appreciated between human
studies and rodent models of addiction (Berke and Hyman,
2000; Koob and Volkow, 2016; Farrell et al., 2018), and our study
further demonstrates that mouse-human conserved OCRs may
explain considerable heritability of addiction-associated traits.
This makes animal models suitable not only for studying the
neural circuits of addiction but also cell type-specific gene-regu-
latory mechanisms of addiction.

We used several selection criteria along with CNN models to
predict the functional impact of genetic variants associated with
addiction-related traits (Figs. 7 and 11; Extended Data Fig. 7-1).
The fine-mapping pipeline described effectively narrows down a
set of 14,790 SNPs to a putatively functional set of 55 Tier A can-
didate causal SNPs that can be experimentally tested to deter-
mine which brain regions and neuronal subtypes they would
have function in. The candidate functional SNPs that our models
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prioritize demonstrate how a candidate SNP within a locus, such
as rs7604640 (Fig. 9B), might act in distinct neuronal subtypes
and brain regions. Cell type and brain region specificity adds
complexity to identifying how genetic variation may alter gene
regulation to predispose an individual to addiction-associated
traits. Our approach often reported 1-4 candidates per loci, even
in stretches of SNPs in perfect LD, such as the MAPT-CRHRI
locus (Fig. 7D). This reflects the idea that many SNPs in the
same loci are significantly associated with addiction because of
LD with only one or a few causal SNPs and are unlikely to influ-
ence addiction-associated genetic predisposition. We report that
many candidate SNPs that also overlap mouse-human orthologs
from the same predicted cell type raise the idea that altering the
conserved regulatory DNA sequence may be a mechanism of cell
type-specific gene regulatory tuning in a population or even
across species (Gjoneska et al., 2015).

Our study depends solely on assays of open chromatin as a
proxy for putative CREs. While our study utilizes well-character-
ized cell types from cre-driver lines against a C57BL/6] genetic
background, we recognize the limitation of relying on one mouse
strain in light of evidence that mouse genetic backgrounds have
unique tissue-specific open chromatin (Halow et al, 2021).
Epigenetic assays for chromatin conformation, histone modifica-
tions, and methylation would further inform how putative CREs
regulate nearby gene expression. While eQTL studies do not con-
trol for inflated associations because of LD and report gene
expression differences from bulk tissue, we do note that our
approach prioritizes several SNPs known to be cis-eQTLs in rele-
vant brain regions, which indirectly affirms our framework’s
ability to select SNPs with functional impacts on gene regulation.
Although c¢is-EQTLs are often not cell type- or tissue-specific,
our findings of risk loci in brain regions implicated in addiction-
related traits reflect a strength of our approach in discerning
brain-specific signal. In order to validate our predictions, it will
be necessary to further investigate candidate genetic variants,
such as rs7604640 (Fig. 9B), in future studies using a fluorescence
reporter assay or ISH studies. These methods can measure regu-
latory activity differences between risk and nonrisk alleles to ver-
ify our predictions of SNP impact on putative CREs and indicate
whether the reported differences in regulatory activity are cell
type-specific. The candidate SNPs we identified provide possible
mechanisms linking differences in genetic makeup with the
genes, cell types, and brain regions that could influence addiction
and substance use behaviors (Fig. 9).
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