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Abstract
Background There is a growing need for new improved classifiers of prognosis in hepatocellular carcinoma (HCC) patients 
to stratify them effectively.
Methods A deep learning model was developed on a total of 1118 patients from 4 independent cohorts. A nucleus map set 
(n = 120) was used to train U-net to capture the nuclear architecture. The training set (n = 552) included HCC patients that 
had been treated by resection. The liver transplantation (LT) set (n = 144) contained patients with HCC that had been treated 
by LT. The train set and its nuclear architectural information extracted by U-net were used to train the MobileNet V2-based 
classifier (MobileNetV2_HCC_class). The classifier was then independently tested on the LT set and externally validated 
on the TCGA set (n = 302). The primary outcome was recurrence free survival (RFS).
Results The MobileNetV2_HCC_class was a strong predictor of RFS in both LT set and TCGA set. The classifier provided 
a hazard ratio of 3.44 (95% CI 2.01–5.87, p < 0.001) for high risk versus low risk in the LT set, and 2.55 (95% CI 1.64–3.99, 
p < 0.001) when known prognostic factors, remarkable in univariable analyses on the same cohort, were adjusted. The Mobile-
NetV2_HCC_class maintained a relatively higher discriminatory power [time-dependent accuracy and area under curve 
(AUC)] than other factors after LT or resection in the independent validation set (LT and TCGA set). Net reclassification 
improvement (NRI) analysis indicated MobileNetV2_HCC_class exhibited better net benefits for the Stage_AJCC beyond 
other independent factors. A pathological review demonstrated that tumoral areas with the highest recurrence predictability 
featured the following features: the presence of stroma, a high degree of cytological atypia, nuclear hyperchromasia, and a 
lack of immune cell infiltration.
Conclusion A prognostic classifier for clinical purposes had been proposed based on the use of deep learning on histological 
slides from HCC patients. This classifier assists in refining the prognostic prediction of HCC patients and identifies patients 
who have been benefited from more intensive management.
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Introduction

Hepatocellular carcinoma (HCC) is the seventh most 
common malignant tumor and the third primary cause of 
mortality worldwide [1, 2]. The prevalence of HCC is rela-
tively high in the Asia–Pacific countries [3]. Hepatectomy 
and liver transplantation (LT) are still the main treatment 
approaches of HCC. Despite significant progress in diag-
nostic and management techniques for HCC, the recur-
rence rate is still high (up to 70–80%) following hepatec-
tomy and 20–40% following LT [4–6]. A refinement of 
prognostic models, especially those based on the acces-
sible data, could easily allow for detection of early warn-
ing signs during follow-up and prolonging adjuvant thera-
peutic decisions [7]. The establishment of precise HCC 
recurrence model for HCC patients after operation is dif-
ficult. Several clinical risk factors, using conventional Cox 
proportional hazards regression, have been identified to 
predict HCC recurrence, including maximum tumor diam-
eter, tumor number, tumor differentiation, macrovascular 
invasion, serum alpha-fetoprotein (AFP) level [8–11]. 
Metroticket 2.0 Model was developed based on level of 
AFP, tumor size, and tumor number, to determine risk of 
death from HCC-related factors after liver transplantation 
using a competing-risk Cox_PH regression analysis [12]. 
In addition, the biomarkers such as genes, proteins, and 
miRNAs are investigated and integrated into the diagnosis 
and prognosis model [13–15]. miRNAs with the advantage 
of reliability are good choice for biomarkers. The biomark-
ers were proved to have a better survival prediction power 
than tumor-node-metastasis (TNM) stage (miRNA-AUC 
test = 0.64 vs. TNM-AUC test = 0.61) [16]. However, the 
biomarkers suffer from economic and time costs. The 
widely available pathology slides contain morphological 
markers of disease progression [17, 18], which is not rou-
tinely used to objectively extract prognostic biomarkers.

The prognosis of a disease is closely associated with its 
pathological features. Histological analysis of tumor tis-
sues can certainly provide information for patient stratifi-
cation and treatment allocation. Histological slides contain 
a vast amount of information that can be quantitatively 
assessed by deep learning algorithms. In recent times, 
convolutional neural networks (CNNs) have been exten-
sively employed in the fields of speech recognition, traf-
fic sign management, and face recognition [8–10]. CNNs 
have successfully passed numerous image interpretation 
tests and also retrieved extra information from histopatho-
logical images. Recently, a pioneering survey revealed that 
simulating routine pathology workflows, i.e., using sub-
set algorithms based on deep learning, achieved a better 
diagnostic performance than an exert group consisting of 
11 pathologists in monitoring lymph node metastasis in 

breast cancers [19]. Coudray et al. have shown in their 
work that CNNs successfully identified the prime histo-
logical subtypes of non-small cell lung cancer and pre-
dicted the gene mutation status of genes such as STK11 
and EGFR [20]. CNNs are also found to be useful for 
predicting the aggressiveness of colorectal cancer [21]. 
More recently, there is growing evidence that suggests the 
computational processing applied on histological slides 
better refines prediction for patient prognosis, thus lead-
ing to an improvement in treatment allocation. A model 
based on deep learning developed by Saillard et al. could 
correctly predict the survival in HCC patients. They used 
pre-trained CNNs to extract features from images and then 
the network selected 25 tiles with maximum and minimum 
scores to predict patient survival [22]. Skrede et al. suc-
cessfully developed a marker to predict the prognosis of 
colorectal cancer in large cohorts using MobileNet V2, 
one of the CNNs [17], building the model using Multiple 
Instance Learning (MIL). Interestingly, the local spatial 
arrangement of nuclei in the histopathology images proved 
to be vital information of high prognostic value in cases of 
oropharyngeal cancer [23].

In the present study, four independent cohorts of postop-
erative HCC patients were investigated for developing and 
validating a MobileNet V2-based model to improve prog-
nosis and prediction. The scientific and innovative features 
of our method are inspired by two studies: (1) the study by 
Skrede et al. trained MobileNet V2 using the MIL, which 
allowed training on large tile collections labeled with the 
associated whole-slide images [17], and (2) the study by Ji 
et al. in which nuclear architectural information was used 
in building a model, which proved to be effective for cancer 
grading and prediction of patient outcomes [24]. To capture 
localized nuclear architectural information in the independ-
ent cohort, local nuclei measurements were constructed 
by U-net, a convolutional networks for biomedical image 
segmentation [25]. Here we conclude that the models have 
higher accuracy in survival prediction relative to conven-
tional methods. Our research aimed at using MobileNet V2 
to analyze histopathology images and propose an automatic 
prognostic classifier exclusive to HCC patients that have 
undergone liver resection. In addition, we validated the 
prognostic power of MobileNet V2 across different cohorts.

Methods

Patients and samples

Four different cohorts were enrolled in this study. Stained 
tumor tissue sections obtained from patients with adequate 
quality and tiles were used. The first cohort was used to train 
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U-net to capture the localized nuclear architectural informa-
tion (Nucleus map set, n = 120). The second cohort was from 
HCC patients who had received surgical resection treatment 
from the First hospital of Zhejiang University in 2010–2016 
and have a so-called distinct outcome (Train set, n = 552). 
Patients exhibiting obvious good or bad outcomes (good: 
274, poor: 278) were used as training cohorts. Patients with 
a 4-year follow-up history after resection and no recorded 
recurrence were grouped under the good outcome cohort. At 
the same time, the bad outcome group included patients who 
relapsed within a period of 1.6 years (exclusive) after sur-
gery. The third cohort was from HCC patients who received 
liver transplantation from the First hospital of Zhejiang 
University between 2015 and 2019 (LT set, n = 144). The 
nucleus map set, train set, and LT set were collated from 
these three different batches of HCC patients after obtain-
ing approval from the ethics committee of the institution. A 
fourth dataset, namely the TCGA set, with complete follow-
up data (n = 302) from the TCGA database, was included for 
external validation.

The nucleus map set, train set, and LT set were scanned 
and digitized using a P250FLASH2 (3DHISTECH3) at 
20 × magnification. Nucleus map sets were used for training 
U-net. The train set was used to train the MobileNet V2, 
while the LT set was used to externally validate the model 
in HCC treated by LT. The histology slides, clinical follow-
up data, and histological annotation were retrieved from the 
TCGA database (https:// cance rgeno me. nih. gov/).

Tile cropping and color normalization

Due to the limitations of graphic card memory, it was almost 
impossible to process whole-sliced pathological images, 
which are usually at a resolution of 100,000 × 100,000, on 
GPU or main memory during the training phase. To cir-
cumvent this problem, the current best practice is to cut 
large images into hundreds of smaller images, which are 
called tiles or patches [17, 26, 27]. In our study, these tiles 
were 512 × 512 pixels (px) and 0.25 µm per px. They were 
cropped from the nucleus map set, train set, and LT set. They 
were finally resized to a resolution of 224 × 224 px. The tiles 
were normalized as described previously [28].

Extending features with a segmentation heat map 
of nuclear architectural information using U‑net

Before feeding these data into the model, we used a trained 
image segmentation model to get the heat map of nuclei 
segmentation for each tile. The segmentation model was a 
U-net neural network trained with a nucleus map set. Let 
I denote an image slice, p indicate the U-net output, and 

y denote the ground-truth label in the image slice where 
� = 0.00000001 is a smoothing term to make the denomi-
nator non-zero. The loss function is Dice loss (1) and the 
final Dice Score on the TCGA test set can reach up to 82%. 
The segmentation result is not desired to be too perfect, 
since information other than nuclei, such as cytoplasm and 
shape of the whole cell, also contributes to the heat map.

Realization of MIL in the MobileNet V2

The main guiding methodology in our work is MIL, which 
is a kind of weak supervised learning method to deal with 
a lack of annotations. All the tiles could be fed to train the 
learning model. However, such an approach has serious 
drawbacks during classification. In many cases, the con-
tent of one small tile conflicts with the label of the original 
pathological image, especially in HCC cases with great 
heterogeneity. To solve this problem, MobileNet V2 was 
developed using MIL for training only on tile collections 
that carried a label for the associated whole-slide image. In 
this way, we could use MIL to take information on features 
from every tile. Instead of annotating each tile with its 
ancestor’s label and dumping it into the network directly, 
we packed all the tiles into a bag with a label identical to 
the original pathological image. Each bag, which repre-
sents one pathological image, was then passed through 
a trained neural network to calculate the scores of each 
tile in the bag, and an aggregational function was used 
to produce a weight-average score for the whole bag. By 
setting a threshold, the pathological image was classified 
into a certain class.

Each 224 × 224 tile was color-normalized using the 
method described by Vahadane et al. [28]. After nuclei 
segmentation, the color-normalized RGB tiles were then 
concatenated with their heat map in channel level to pro-
duce a four-channel tile. Then, these bags of four-channel 
tiles were dumped into a feature extractor, which is a 
MobileNet V2 model, and the score of each tile was cal-
culated. A generalized mean was used as the aggregation 
function since it could keep the extremes while taking into 
account the average. The aggregation function reads as (2), 
where p is a hyperparameter.

The output of the aggregation function, which repre-
sents the score of the pathological image, was activated by 

(1)Ldice = 1 − 2 ×

∑
i∈I piyi + �∑

i∈I pi +
∑

i∈I yi + �

(2)S =

(∑
s
p

i

) 1

p

https://cancergenome.nih.gov/
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a sigmoid function and compared with a given threshold t  , 
where t  is also a hyperparameter. Based on this, the image 
was finally classified into a certain class.

Training strategy

During the training process, we deployed a decay learning 
rate, which was initiated with 0.0001 and halves every 10 
epochs. Due to the limitation of GPU memory, the training 
batch size could only be set to 1. Besides, threshold t  was 
0.4457, and aggregation function p was 3. Cross-entropy 
with L2 regulation (3)–(4) was selected as the loss function, 
and regularized factor � was 0.02.

Analysis on tiles with high predictive value

To deepen our understanding of features related to tumor 
aggressiveness, tiles having high and low-risk scores were 
retrieved for further in-depth analysis. Altogether four histo-
logical features of tumoral liver tissues have been systemati-
cally documented.

Statistical analysis

Sample size for survival analysis was determined by power 
analysis using PASS15.0.5 software. For the validation 
dataset, the type I error is controlled for RFS at α = 0.01 
(two-sided) with the power of 90% (i.e., Hazard Ratio 
(HR) is set at 2.0), sample size is 137 (low risk: 68 vs 
high risk: 69). The sample size of two validation dataset 
(LT and TCGA) provides more than 90% power to detect 
a difference for RFS. Log-rank tests were performed to 
compare the stratification of patients into subgroups in 
terms of survival distribution. Time-dependent accuracy 
(at the best Youden index) and AUC (area under curve) 
methods were adopted as an index to assess the proposed 
model’s performance and the baseline clinical, biologi-
cal, and pathological features [29]. Net reclassification 
improvement (NRI) has been widely used to assess the 

(3)pi =

⎧
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performance of a prediction model by comparing the new 
variables with the established model [30]. NRI was used 
to query the additional effect of our model on survival 
prediction. Statistical analyses were carried out with R 
(version 3.6.0) using ggplot2, survival, and Survminer 
packages. The training and deployment of CNNs were 
conducted with Python using a standard desktop worksta-
tion (Nvidia Tesla P40 GPUs each with 24GM memory). 
p value < 0.05 indicated statistical significance.

Results

Patient characteristics and model development

The nucleus map set was used to train U-net to capture 
localized nuclear architectural information (n = 120). The 
other three sets that were used for training and valida-
tion were: (1) 552 patients from the train set that joined 
in the development of the model, (2) 144 patients from 
the LT set, and (3) the TCGA set (n = 302) that was used 
to externally validate the model. Patients from the train 
set exhibited obvious outcomes (good: 274, bad: 278) and 
were enrolled for obtaining definite facts. The patients’ 
demographics are presented in Table 1.

First, we used an image segmentation model to get the 
heat map of nuclei segmentation for each tile. This seg-
mentation model was a U-net neural network trained using 
the nucleus map set. The loss function was Dice and the 
final Dice Score for the nucleus map set could reach 82%. 
The segmentation result was not desired to be too precise, 
since information other than nuclei, such as cytoplasm 
and shape of the whole cell, was also accountable in the 
heatmap. A total of 57,415 tiles (small image patches with 
224 × 224 pixels) were extracted from the train set (good: 
28,534, poor: 28,881). The pre-trained U-net was used to 
get a heat map of nuclei segmentation for each tile before 
finally training our model. We concatenated the heat map 
of nuclei segmentation and the color-normalized RGB 
tiles at channel level and produced a four-channel tile. 
The bags containing four-channel tiles were then dumped 
onto a feature extractor of the MobileNet V2 model. We 
used a generalized mean with a sign as the aggregation 
function since it could keep the extremes while simultane-
ously taking the average into account. The output of the 
aggregation function, which represents the score of the 
pathological image was activated using a sigmoid func-
tion and then compared with a given threshold of 0.4457, 
where 0.4457 is a hyperparameter. Finally, the images are 
classified into certain a class based on their scores. The 
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pipeline for MobileNet V2 HCC classification (MobileNet 
V2_HCC_Class) is shown in Fig. 1.

The model generalized to LT for the HCC dataset

The output of our neural networks could categorize patients 
into low-risk and high-risk subgroups. In the LT set, 144 
patients with complete follow-up data were included, of 
which 65 patients relapsed during follow-up. The available 
variables for analysis are age at diagnosis, gender, serum 
alpha-fetoprotein (AFP), Child–Pugh score, the model for 
end-stage liver disease (MELD), tumor size, tumor num-
ber, grade, and tumor stage according to the American Joint 
Committee on Cancer (Stage AJCC). Univariable analyses 
indicated that the variables AFP, tumor size, grade, tumor 
number, and Stage AJCC were associated with a shorter 
RFS (Table S1). Tiles from the tissue array of these patients 
were retrieved and processed under the proposed model. The 
MobileNetV2_HCC_class was a strong predictor of RFS in 
the whole LT set and was even capable of stratification for 
other common prognostic features (Stage AJCC, AFP, tumor 
number, and tumor size) (Fig. 2).

Multivariate analyses showed that the Mobile-
NetV2_HCC_class had an independent prognostic value 
(HR = 3.44 (2.01–5.87), p < 0.001) after adjusting known 
prognostic markers remarkable in the univariable analy-
ses, such as Stage AJCC, AFP, tumor number, and tumor 
size (Fig. S1). The time-dependent accuracy and AUC 
curves are depicted in Fig. 3a and b. During the entire 
course of the 3-year follow-up, the MobileNetV2_HCC_
class maintained relatively higher accuracy and AUC 
values than the other factors in the first 2 years after LT 
(Tables 2 and 3). Next, we assessed the contribution of 
MobileNetV2_HCC_class to the established predictors 
for RFS in the independent LT set. Stage_AJCC was well 
established based on the TNM staging system and could 
identify patient groups with substantially different RFS 
in the LT set (Fig. S2). Therefore, we examined if the 
addition of the MobileNetV2_HCC_class as well as the 
other independent factors (AFP, tumor size, tumor num-
ber) to Stage_AJCC could improve their abilities for risk 
stratification. It was found that MobileNetV2_HCC_class 
exhibited better net benefits for the Stage_AJCC beyond 
other previously established factors (Fig. 3c). The cate-
gory-free NRI of the supplementing Stage_AJCC with 

Table 1  Baseline characteristics 
in the nucleus map set, train set, 
LT set, and TCGA set

Data are median (IQR) or n (%)
a Not available = 1
b Not available = 71

Variables Nucleus map set (n = 120) Train set (n = 552) LT set (n = 144) TCGA set (n = 302)

Age (year) 59 (49–65) 55 (47–63) 52 (45–58) 60 (51–68)
Gender (male) 104 (86.7%) 478 (86.6%) 130 (90.3%) 208 (68.9%)
AFP (ng/ml) 34.7 (6.6- 708.0) 76.5 (7.2–888.0) 49.3 (7.7–1418.3)a 11.0 (4.0–231.5)b

Grade
 G1 15 (12.5%) 32 (5.8%) 3 (2.1%) 43 (14.2%)
 G2 54 (45.0%) 243 (44.0%) 42 (29.2%) 142 (47.0%)
 G3 42 (35.0%) 217 (39.3%) 35 (24.3%) 103 (34.1%)
 G4 9 (7.5%) 54 (9.8%) 0 (0.0%) 10 (3.3%)
 Missing 0 (0.0%) 6 (1.1%) 64 (44.4%) 4 (1.3%)

Total tumor size
  < 5 cm 79 (65.8%) 334 (60.5%) 35 (24.3%)
  ≥ 5 cm 41 (34.2%) 210 (38.0%) 109 (75.7%)
 Missing 0 (0.0%) 8 (1.4%) 0 (0.0%) 302 (100.0%)

Tumor number
 Single 108 (90.0%) 479 (86.8%) 52 (36.1%)
 Multiple 12 (10.0%) 67 (12.1%) 92 (63.9%)
 Missing 0 (0.0%) 6 (1.1%) 0 (0.0%) 302 (100.0%)

Stage_AJCC
 Stage I 90 (75.0%) 335 (60.7%) 25 (17.4%) 144 (47.7%)
 Stage II 25 (20.8%) 145 (26.3%) 34 (23.6%) 66 (21.9%)
 Stage III 5 (4.2%) 53 (9.6%) 63 (43.8%) 69 (22.8%)
 Stage IV 0 (0.0%) 12 (2.3%) 21 (14.6%) 3 (1.0%)
 Missing 0 (0.0%) 7 (1.3%) 1 (0.7%) 20 (6.6%)
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MobileNetV2_HCC_class for predicting 2-year RFS was 
37.8% (95% CI 20.8–55.5). The time-dependent NRI of 
HCC patients according to different factors in comparison 
with the Stage_AJCC are shown in Table 4.

The model generalized to the TCGA dataset

The robustness of our model was evaluated on an inde-
pendent series from the TCGA. 302 patients satisfied the 
inclusion criteria, and 165 of them with recurrence were 
recorded. The slides were gathered from various centers. The 
available variables that were entered for analysis are age at 

diagnosis, age, gender, AFP, vascular invasion, stroma tumor 
ratio (STR), tumor-infiltrating lymphocyte (TIL), grade, and 
Stage AJCC. The clinical, biological, and pathological fea-
ture most related to a shorter survival should be the AJCC 
stage in univariable analyses (Table S5). Tiles from WSIs of 
the 302 patients were retrieved and processed under the pro-
posed model. In the TCGA set, MobileNetV2_HCC_class 
predicted the RFS while also following the stratification of 
other significant prognostic features like Stage AJCC, AFP, 
grade, or vascular invasion (Fig. 4).

The classifier seemed strong during multivariable analy-
sis (HR = 2.55 (1.64–3.99), p < 0.001), upon adjusting the 

Fig. 1  The pipeline for MobileNetV2_HCC_Class. From the small 
image patches in 224 × 224 pixels of the train set, the heat map of 
nuclei segmentation for each tile was obtained using a pre-trained 
U-net. The heatmap of nuclei segmentation and the color-normalized 

RGB tiles were concatenated at channel level, and a four-channel tile 
was obtained. Bags containing four-channel tiles were then dumped 
into a feature extractor of the MobileNetV2 model. A generalized 
mean with a sign was used as the aggregation function
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known prognostic markers remarkable in univariable analy-
ses, such as Stage AJCC, AFP, grade, and vascular inva-
sion (Fig. S3). The results show that the model can capture 
complicated non-redundant patterns in which baseline vari-
ables influence HCC patients’ survival. The time-dependent 
accuracy and AUC curves are depicted in Fig. 5a and b. 
During the entire course of the 6-year follow-up, the Mobile-
NetV2_HCC_class maintained relatively higher accuracy 
and AUC values than other factors after HCC resection 
(Tables S3 and S4). Stage_AJCC was the prognostic indi-
cator of RFS in the TCGA set (Fig. S4). NRI analysis was 
also performed in TCGA set. Similarly, MobileNetV2_
HCC_class exhibited better net benefits for the Stage_AJCC 
beyond other independent factors (Fig. 5c). The improve-
ment of MobileNetV2_HCC_class was obvious and the 
category-free NRI of the supplementing Stage_AJCC with 
MobileNetV2_HCC_class for predicting 3-year RFS was 
20.1% (95% CI 5.7–47.1). The time-dependent NRI of HCC 

patients according to different factors in comparison with the 
Stage_AJCC are shown in Table S5.

Histological analysis of tiles

The MobileNetV2_HCC_class could extract tiles with the 
highest predictability from thousands of tiles. The prime 
histological features related to recurrence could be sur-
veyed by retrieving 400 tiles with the highest predictability 
(high recurrence risk: 200, low recurrence risk: 200) among 
302 patients of the TCGA with MobileNetV2_HCC_class. 
Four such histological features were found from tumoral 
areas. The presence of stroma, high degree of cytological 
atypia, and nuclear hyperchromasia were related to high 
risk (p = 0.0003, p = 0.0010, p = 0.0012, respectively), 
while immune cell infiltration was associated with low risk 
(p = 0.0019) (Fig. 6, Table S6). The above findings show that 
the proposed deep learning model detects established histo-
logical patterns related to recurrence among HCC patients.

Fig. 2  Prognostic value of MobileNetV2_HCC_Class in LT set and 
the stratification of common prognostic variables. MobileNetV2_
HCC_Class categorized patients into low-risk and high-risk sub-
groups. The prognostic value for MobileNetV2_HCC_Class was 

conservative, even following the stratification of common clinical 
and pathological variables. AFP: alpha-fetoprotein, Tumor No: tumor 
number, Diameter: total tumor diameter
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Discussion

Based on the latest developments in deep learning, this study 
proposed the use of MobileNetV2_HCC_class for automatic 
prognosis prediction in HCC patients. This would enable 
automated analyses of standard histological sections stained 
with H&E. These algorithms exhibit a higher accuracy in 

prognosis prediction relative to classical clinical, biological, 
and pathological features.

Deep learning-driven methods in medical image process-
ing have proven to be extremely useful in standardizing can-
cer diagnosis as well as in improving patient stratification 
[19, 31]. Recently, a pioneering survey reported that deep 
learning-based models can detect and categorize lung can-
cer cases with accuracy similar to that of pathologists [20]. 
Previous studies suggest that deep learning is highly effi-
cient in developing markers, which utilize basic morphology 
for the prediction of outcomes in cancer patients [32, 33]. 
A deep learning-based model developed by Coudray et al. 
could even predict six of the most frequent genetic altera-
tions directly from the slides [20]. In cases of gastrointestinal 
cancer, a deep learning-based model could directly estimate 
microsatellite instability based on just histological images 
[27]. Kather et al. also reported that a CNN could extract the 
tumor components and predict patient survival directly from 
histology images [21]. Saillard et al. predicted the survival 
of HCC patients by extracting features from images using 
a pre-trained CNN, following which the network selected 
25 tiles having maximum and minimum scores to predict 
survival [22]. In our study, a different method was used to 
develop the MobileNetV2_HCC_class to improve the pre-
diction of prognosis in HCC patients treated by surgical 
resection and LT. The innovative features of our method 
were: (1) random tiles were used for each patient, like Skrede 
et al. [17], (2) the MobileNet V2 was trained using MIL, 
which allowed for training on tile collections labeled with 
the associated whole-slide image, and (3) the use of nuclear 
architectural information in building of the model, which 
proved to be efficient for cancer grading and prediction of 
patient outcomes [24]. Genetic instability was demonstrated 
through diversifying nuclear shape and texture, which had a 
major effect on metastasis and proliferation that might lead 
to cancer recurrence. The MobileNetV2_HCC_class proved 
to be a strong predictor of RFS in HCC patients treated with 
resection or LT and generalized in the TCGA set across dif-
ferent centers.

Fig. 3  The performance of different risk factors for tumor recur-
rence after LT. The time-dependent accuracy (a) and AUC value (b) 
for different criteria based on tumor recurrence. NRI (c) according to 
different factors compared with the Stage_AJCC.  Stage AJCC: the 
American Joint Committee on Cancer, AFP: serum alpha-fetoprotein, 
Tumor_No: tumor number, Total_diameter: total diameter of the 
tumor

Table 2  The time-dependent accuracy values (95% CI) in LT set

Stage AJCC the American Joint Committee on Cancer, AFP serum alpha-fetoprotein, Tumor_No tumor number, Total_diameter total diameter of 
the tumor

Time point MobileNetV2_
HCC_class

Stage_AJCC AFP Tumor_No Total_diameter

6 months 0.631 (0.620–0.642) 0.583 (0.574–0.592) 0.607 (0.598–0.616 0.534 (0.524–0.544) 0.477 (0.469–0.485)
12 months 0.731 (0.722–0.741) 0.629 (0.620–0.637) 0.593 (0.585–0.601) 0.585 (0.576–0.594) 0.571 (0.563–0.578)
18 months 0.708 (0.698–0.718) 0.639 (0.630–0.647) 0.611 (0.603–0.619) 0.615 (0.606–0.624) 0.629 (0.622–0.636)
24 months 0.683 (0.672–0.694) 0.665 (0.656–0.675) 0.631 (0.621–0.640) 0.610 (0.600–0.620) 0.638 (0.629–0.647)
30 months 0.660 (0.647–0.672) 0.692 (0.681–0.702) 0.610 (0.599–0.621) 0.646 (0.636–0.657) 0.687 (0.678–0.697)
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Table 3  The time-dependent AUC values (95% CI) in LT set

Stage AJCC the American Joint Committee on Cancer, AFP serum alpha-fetoprotein, Tumor_No tumor number, Total_diameter total diameter of 
the tumor

Time point MobileNetV2_
HCC_class

Stage_AJCC AFP Tumor_No Total_diameter

6 months 0.658 (0.645–0.670) 0.650 (0.641–0.659) 0.663 (0.649–0.677) 0.616 (0.606–0.626) 0.604 (0.595–0.612)
12 months 0.736 (0.726–0.746) 0.645 (0.636–0.653) 0.595 (0.585–0.605) 0.607 (0.598–0.616) 0.609 (0.601–0.616)
18 months 0.708 (0.698–0.717) 0.637 (0.628–0.645) 0.615 (0.606–0.625) 0.612 (0.603–0.621) 0.624 (0.617–0.631)
24 months 0.684 (0.674–0.694) 0.644 (0.634–0.653) 0.655 (0.645–0.665) 0.578 (0.568–0.588) 0.579 (0.570–0.588)
30 months 0.664 (0.653–0.675) 0.656 (0.647–0.666) 0.641 (0.630–0.652) 0.591 (0.581–0.601) 0.587 (0.578–0.596)

Table 4  The time-dependent NRI of patients according to different factors compared with the Stage_AJCC (NRI with 95% CI) in LT set

Stage AJCC the American Joint Committee on Cancer, AFP serum alpha-fetoprotein, Tumor_No tumor number, Total_diameter total diameter of 
the tumor

Time point Stage_AJCC AFP Tumor_No Total_diameter MobileNetV2_
HCC_class

6 months Reference 0.042 (− 0.119–0.192) 0.037 (− 0.120–0.180) 0.100 (0.048–0.157) 0.072 (− 0.106–0.233)
12 months Reference 0.000 (0.000–0.000) 0.000 (0.000–0.000) 0.000 (0.000–0.000) 0.027 (− 0.105–0.165)
18 months Reference − 0.047 (− 0.159–0.066) − 0.034 (− 0.186–0.119) 0.000 (0.000–0.000) 0.421 (0.274–0.577)
24 months Reference − 0.070 (− 0.169–0.037) − 0.033 (− 0.192–0.134) − 0.079 (− 0.227–0.078) 0.378 (0.208–0.555)
30 months Reference − 0.077 (− 0.193–0.029) − 0.046 (− 0.197–0.130) − 0.093 (− 0.248–0.086) 0.348 (0.180–0.510)

Fig. 4  Prognosis of MobileNetV2_HCC_Class in TCGA set and the 
stratification of common baseline variables. MobileNetV2_HCC_
Class predicts RFS while also following the stratification of other 

common baseline variables.  Stage AJCC: the American Joint Com-
mittee on Cancer, AFP: serum alpha-fetoprotein, VI: vascular inva-
sion
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It is well established that molecular and/or genetic fea-
tures can predict the survival of patients with HCC [34, 
35]. Chaudhary et al. had adopted deep-learning methods 
for RNA sequencing and methylation data from the TCGA 
database and successfully predicted HCC survival in multi-
ple patient cohorts. High-throughput gene expression profil-
ing/sequencing techniques are restrictive due to high cost 
and poor reproducibility clinically. The proposed method 
uses merely the histological slides that are routinely avail-
able at surgical treatment centers. We provide additional 
evidence suggesting that CNNs learning from pathology 
slides will improve precision medicine. Indeed, our mod-
els outperformed all other common clinical or pathologi-
cal features for predicting survival. Pathology images from 

centers around the world can be accumulated, which would 
further improve the performance of the current deep learn-
ing model. With the well-developed prediction models, they 
would likely become more widely applied to support clini-
cal decision-making, and can benefit patients by stratifying 
risks and guiding treatment options, as well as by avoiding 
ineffective or unnecessary treatments. Additionally, the pro-
cessing and computing time in this approach is brief enough 
to avoid delay in therapy. Therefore, this method facilitates 
the easy application of the risk stratification system clini-
cally. However, this study is limited by the lack of interpret-
ability. CNNs are generally seen as “black boxes” [36]. This 
is particularly true for image analysis, and the limitation of 
this phenomenon is an active area of research. Data are pro-
cessed through complex layers of CNNs, and it is difficult to 
identify the most relevant features used by trained models 
for final classification. We extracted the most pertinent tiles 
and did the subsequent analysis. We show that the classifi-
cation obtained is at least partly based on known pathologi-
cal features associated with the prognosis of tumor, such as 
the presence of stroma, a high degree of cytological atypia, 
nuclear hyperchromasia, and a lack of immune cell infiltra-
tion [37]. However, these features are just what pathologists 
know strongly linked to a high risk of poor survival. We 
thus believe that some other important features which can-
not be recognized or microstructural features that cannot be 
consistently identified by the naked eye, but these features 
which could potentially be reflective of tile classification 
may be ignored. The so-called high risk or low risk are the 
overall output result of tiles via considering all risk features 
on tiles learned by CNNs. That maybe can explain why low-
risk tiles contain some high-risk features, although the ratio 
is small. The proposed deep learning model detects not all 
but the majority of established histological patterns related 
to recurrence in HCC patients.

To sum up, we successfully built a prognostic model for 
clinical use based on deep learning approaches applied on 
histological slides from patients. The model was widely 
assessed among independent patient populations receiving 
different types of treatments and gave consistently excellent 
results across the classical clinical, biological, and patho-
logical features. The proposed CNN-based approach can 
potentially improve patient prognosis evaluation and help 
guide clinicians in their decision-making process about the 
use of adjuvant therapy on their patients.

Fig. 5  Performance of different risk factors in tumor recurrence after 
resection. The time-dependent accuracy (a) and AUC value (b) for 
different criteria based on tumor recurrence. NRI (c) according to 
different factors compared with the Stage_AJCC.  Stage AJCC: the 
American Joint Committee on Cancer, TIL:  tumor-infiltrating lym-
phocyte
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