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Type IV secretion (T4S) systems are large dynamic

nanomachines that transport DNAs and/or proteins through the

membranes of bacteria. Because of their complexity and multi-

protein organisation, T4S systems have been extremely

challenging to study structurally. However in the past five years

significant milestones have been achieved by X-ray

crystallography and cryo-electron microscopy. This review

describes some of the more recent advances: the structures of

some of the protein components of the T4S systems and the

complete core complex structure that was determined using

electron microscopy.
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Introduction
Nearly all types of bacteria (Gram-negative, Gram-

positive, cell wall-less bacteria) and some archaea have

evolved secretion systems essential for both their survival

and virulence [1�]. Secretion systems transport DNA and

effector molecules such as enzymes or toxins from the

bacterial interior to its exterior. Understanding the prin-

ciples of action of these nanomachines has broad clinical

significance not only due to delivery of bacterial toxins or

effector proteins straight into targeted host cells, but also

for the direct involvement in the rapid horizontal spread

of antibiotic resistance genes among the microbial popu-

lation.

Open access under CC BY-NC-ND license.
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Secretion systems found in bacteria are classified cur-

rently into seven major classes, among which type IV

secretion (T4S) systems form the most functionally ver-

satile class [2–7]. The variety of substrates and their

nature (single proteins, protein complexes, DNA and

nucleoprotein complexes) secreted by the T4S systems

indeed single out this class of secretion systems from the

others. The T4S systems are classified into three func-

tional groups. The first group mediates the transfer of

DNA from one bacterial cell to another in a process called

conjugation that plays an important role in bacterial

genome plasticity and diversity. Another group of T4S

systems mediates the translocation of proteins, ranging

from small protein effectors to large protein complexes.

Pathogenic Gram-negative bacteria such as Helicobacter
pylori, Brucella suis and Legionella pneumophila use the T4S

system to inject virulence proteins into mammalian host

cells [8–10] and Bordetella pertussis use the T4S systems to

secrete pertussis toxin into the extracellular milieu [11].

The third group mediates DNA release and uptake. H.
pylori and Neisseria gonorrhoeae typify bacteria with this

type of T4S systems [13]. T4S systems of the first class

represent an enormous public-health problem as they are

involved in the rapid dissemination of antibiotic-resist-

ance genes and other virulence traits among pathogens.

While the fact that DNA can move from one cell to

another has been established a long time ago [12,15],

the mechanism of secretion was poorly understood since

no structural information was available until very

recently.

The T4S systems are evolutionarily related: all nucleo-

protein and protein complexes are secreted by the T4S

systems in an ATP-dependent process using a specific

channel through a cell envelope [14]. The T4S systems

share a number of main components and it seems that the

secretion process of all types of substrates has common

features [16]. In this review we describe the latest pro-

gress in structural studies of the T4S system components

and their major complexes.

Overall organisation of T4S systems
It has been shown that the T4S systems span the entire

bacterial cell envelope, creating a translocation channel

for various substrates [1�]. Almost all T4S systems of

Gram-negative bacteria minimally consist of 12 proteins

named VirB1 to VirB11 and VirD4 (based on the nomen-

clature used for Agrobacterium tumefaciens T4S system)

that form a multi-protein envelope-spanning  transport

apparatus (Figure 1). Each protein is present in multiple

copies. The twelve components are organised in three

major subcomplexes. A cytoplasmic-inner membrane

(IM) subcomplex is composed of three ATPases (VirB4,
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Overall organisation of the T4S system. VirD4 (in pink), VirB11 (in blue), VirB4 (in gold) ATPases, polytopic VirB6 (in purple), bitopic VirB8 (in light green)

and VirB3 (in orange) form the cytoplasmic IM part of the complex. VirB7 (in brown), VirB9 (in green), and VirB10 (in blue) compose the periplasmic part

of the secretion system. VirB2 and VirB5 constitute the outer part of the secretion system. Red dot indicates the path of the substrate through the

machinery as established by Cascales and Christie [22�]. The stoichiometry of the various components in a native, fully assembled, T4S system is

unknown.
VirB11 and VirD4) and the VirB3, VirB6 and parts of the

VirB8 and VirB10 proteins. The ATPases power system

assembly  and substrate translocation [17–21]. VirB3,

VirB6, and VirB8 are likely to anchor VirB4 (and also

perhaps VirB11) to the IM, participate in the IM chan-

nel, and provide a link to the core complex (CC). The

CC is composed of three proteins: VirB7, VirB9 and

VirB10, and is a large central structure of the T4S

system, that serves as scaffolding for the rest of the

T4S system components. This complex forms a trans

membrane spanning pore inserted both in the outer

membrane (OM) and IM of Gram-negative bacteria

and participates actively in T4S substrate transfer

through the bacterial envelope [1�,22�,23,24]. The third

subcomplex is formed by the VirB2 and VirB5 proteins

that make the extracellular pilus that is important for

direct contact with the recipient cell surface and may act

as a conduit delivering the substrate to the recipient cell

(Figure 1). While there are some deviations in the

composition of these subcomplexes between different

types of T4S systems they are likely conserved in their

overall organisation [1�].
www.sciencedirect.com 
Advances in the structural analysis of T4S
systems
The complexity and dynamics of the T4S systems and

their multiprotein organisation represent serious difficul-

ties for the structural analysis of T4S systems or even their

components. Only during the last decade structural infor-

mation has emerged for the VirB/D system from A.
tumefaciens and the closely related systems from Escher-
ichia coli encoded by the conjugative plasmids F, R388,

pKM101 and RP4 [25�,26]. X-ray crystallographic studies

of the T4S system have been performed on soluble

protein components (VirB11, the cytoplasmic regions of

VirD4 and VirB4, the periplasmic domain of VirB8, and

VirB5) and on the OM-embedded region of the CC

(Figure 2).

Structures of ATPases
VirD4 homologues are essential T4S ATPases that act as

substrate receptors at the entry of the T4S apparatus and

might power substrate translocation through the IM [21].

Because of their role in delivering the substrate to the

translocation channel, VirD4 proteins are termed
Current Opinion in Microbiology 2014, 17:24–31
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Figure 2
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Structures of T4S system components or domains. (a) VirD4: structure of the soluble domain of TrwB. One subunit of the hexamer is shown (coils are

shown in cyan, helices in blue, and strands in red). (b) VirB4: C-terminal domain of Thermoanaerobacter pseudethanolicus VirB4; (c) VirB11: crystal

structures of B. suis VirB11 and H. pylori HP5025, CTD-C terminal domain, NTD-N terminal domain (shown in red dashed oval on B. suis VirB11). Red

arrow indicates the shift of the NTD in H. pylori Vir11 compared to B. suis VirB11. (d) VirB8: crystal structure of the periplasmic domain (C-terminal

domain) of VirB8 from B. suis (left panel), A. tumefaciens (middle panel), TraM214–322 protein (right panel); the central and C-terminal domains of the

TcpC99–359 structure are shown in the bottom panel. (e) VirB5: crystal structure of TraC encoded by the E. coli conjugative plasmid pKM101. (f) Crystal

structure of the CC’s O-layer composed of VirB7 (in dark red), VirB9CT (in green) and VirB10CT (blue). All structures are shown in the ribbon

representation.
‘coupling proteins’. The crystal structure of the soluble

�50 kDa cytoplasmic domain of TrwB (VirD4 homol-

ogue) from the R388 conjugative plasmid (PDB 1GKI,

Figure 2A) revealed a homohexamer in which each sub-

unit has two distinct domains: an all-alpha domain facing

the cytoplasm and an ATP-binding domain linked to the

IM by the N-terminal membrane anchor [17]. The struc-

ture implies that VirD4 could function as a rotary motor

that assists ssDNA and/or protein translocation through
Current Opinion in Microbiology 2014, 17:24–31 
the IM. Another recent evidence of involvement of

coupling proteins in engagement of substrates and acti-

vation of the secretion system was demonstrated for

DotL, an IM component of the Dot/Icm secretion system

in L. pneumophila. DotL acts as an IM receptor for sub-

strates and requires adaptor proteins for the secretion of a

major class of substrates [27]. The DotL protein is ana-

logous to VirD4 in A. tumefaciens, and TraB in E. coli
pKM101 plasmid [28]. As in all members of the VirD4
www.sciencedirect.com
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family, DotL also contains a Walker A motif for ATP

hydrolysis and is believed to provide energy to actively

drive the export of substrates across the inner and outer

membranes of the bacterial cell wall [27].

The VirB4 ATPase of the T4S system is also essential for

the assembly of the system and substrate transfer.

Recently the crystal structure of the C-terminal domain

of Thermoanaerobacter pseudethanolicus VirB4 (PDBs 4AG6

and 4AG5) has been obtained [20]. This structure is

similar to VirD4, although it shares only 12% sequence

identity. The VirB4 domain crystallizes as a monomer,

but the full-length protein is observed in monomer–dimer

equilibrium, even in the presence of nucleotides and/or

DNAs. The VirB4 proteins share four common sequence

motifs including the consensus Walker A and B nucleo-

side triphosphate-binding motifs (Figure 2B). A VirB4

topology model suggests possible periplasmic loops, one

near the N terminus and a second on the N-terminal side

of the Walker A motif [20]. The cellular localization,

topology and oligomerization state of VirB4 remain

unclear: different studies have reported dimeric and

higher oligomeric (tetrameric and hexameric) forms of

the protein [29–32]. It was shown that VirB4 can be bound

through its N-terminal domain to the core’s VirB9 protein

[20]. VirB4 is involved in earlier steps of substrate engage-

ment, and makes a number of additional interactions,

notably with VirB3 and VirB8 [33–35].

VirB11 is a peripheral membrane protein and belongs to a

family of ATPases termed ‘traffic ATPases’ [19,18,36].

Recent studies have shown that conformation of

VirB11(TrwD) can be regulated by magnesium, that at

physiological concentrations induces a more rigid confor-

mation of the enzyme hence slowing down its activity

[37]. The crystal structure of the ADP-bound H. pylori
VirB11 homologue (PDB 2PT7) revealed that each

monomer consists of two domains formed by the N-

terminal and C-terminal halves of the protein [19].

The nucleotide-binding site is at the interface between

the two domains. In the hexamer, the N-terminal domain

and C-terminal domain form two separate rings defining a

chamber of �50 Å. Comparison of the structures of B. suis
(2GZA) and H. pylori VirB11 (PDB 2PT7) showed that

the B. suis VirB11 monomer differs significantly from that

of H. pylori by a N-terminal domain swap that greatly

modifies the nucleotide-binding site and the interface

between subunits (Figure 2C) [18].

Structures of VirB5 and VirB8 proteins
VirB8 homologues are essential for substrate transfer

through the IM. It has been proposed that they are part

of the inner-membrane pore and interact with VirB3,

VirB4, VirB5 and VirB6 [35,38,39]. The N-terminal extre-

mity of the structure is connected to a transmembrane

segment inserted in the IM. A structure of the periplasmic

domain (C-terminal domain) of VirB8 has been obtained
www.sciencedirect.com 
for B. suis and A. tumefaciens (PDBs 2BHM and 2CC3)

[38–40]. Structural comparison of B. suis and A. tumefaciens
VirB8 confirms that the monomers have a similar fold

(Figure 2D). It comprises an extended b-sheet flanked

with a-helices. Both proteins exist as homodimers, and

amino acids at the dimer interface are critical for protein

function. Smith et al. have found that E115 and K182

interact with inhibitors which apparently induce confor-

mational changes that prevents VirB8-VirB8 and VirB8-

VirB10 interactions [41�]. Recently it was shown that the

C-terminal component of the transfer TraM protein (214–
322 aa, PDB 4EC6) from the Enteroccocus faecalis conju-

gative plasmid pIP501 and the conjugation protein

TcpC99–359 (PDB 3UB1) from Clostridium perfringens
(Gram-positive) plasmid pCW3 are structurally homolo-

gous to the periplasmic region of VirB8 [42��,43��]. TraM

and TcpC are found localized to the cell membrane.

Despite the absence of sequence-based similarity, the

crystal structures of both proteins display folds similar to

the T4S system VirB8 proteins from B. suis and A.
tumefaciens. Surprisingly, the TcpC99–359 structure com-

prises two VirB8-like domains separated by a linker. The

C-terminal domain is critical for interactions with other

conjugation proteins (Figure 2D). The structure, molecu-

lar dynamics, and cross-linking studies indicate that

TraM is active as a trimer. The oligomerization state of

TcpC is not known.

The crystal structure of TraC, a VirB5 homologue

encoded by the E. coli conjugative plasmid pKM101

(PDB 1R8I, Figure 2E), has been obtained at 3 Å resol-

ution [44]. The VirB5 structure comprises a 3-helix bun-

dle flanked by a smaller globular domain. Together with

the main pilin VirB2, VirB5 homologues form the T4S

pilus, possibly acting as adhesins.

Structures of the CCs
The most advanced structural work described to date is the

X-ray crystal structure for the part of the CC that locates in

and near the OM. This part, termed the ‘O-layer’, forms

the OM pore of the T4S system (PDB 3JQO) [45��]. It is

composed of three proteins/domains: the TraF/VirB10 C-

terminal domain (TraF/VirB10CT), the TraO/VirB9 C-

terminal domain (TraO/VirB9CT), and TraN/VirB7, each

in 14 copies. The structure has unveiled a surprisingly

intricate network of interactions between these three major

components of the CC (Figure 2F). VirB7 seems to work as

a stapler that fastens VirB9 and VirB10 together; the inner

surface of the OM channel is lined by VirB10. A diameter of

the a-helical pore in the crystal structure is �32 Å that

could accommodate the passage of DNA and unfolded

protein substrates.

Experiments combining cryo-EM structure determi-

nation of full-length CC and partly deleted CCs, docking

of X-ray crystallographic and pseudo atomic models, and

immuno-labelling have resulted in the elucidation of the
Current Opinion in Microbiology 2014, 17:24–31
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Figure 3
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Electron microscopy of the T4S system. (a) Structure of the CC complex at 15 Å; (b) structure of the CC complex at 12 Å; (c) schematic illustration of

the regions of TraN/VirB7, TraO/VirB9, and TraF/VirB10 present in the CCelastase complex. Domains corresponding to the VirB9 binding domain (B9BD),

the signal peptide (SP), the N-terminal trans-membrane (TM) helix and the C-terminal domains (CTD) are shown in darker colours; (d) Cryo-EM

structure of the CCelastase complex. (e) Cutaway view of the superposition of the difference map (in green) between the full length CC and CCelastase and

the cryo-EM structure of the CCelastase complex (in gold).
structure of the entire CC (Figure 3). The first structure of

the complete CC (Figure 3A) was solved by cryo-electron

microscopy (cryo-EM) at 15 Å resolution using images of

frozen samples [25�]. The overall dimensions of the

complex are 185 Å in both height and diameter. It consists

of two layers, termed O and I. The O-layer has an inner

chamber that is open to the extracellular media through

an opening of 10–20 Å in the cap. The complex has an

inner channel that spans the structure from the OM to the

IM. Later on, the CC structure was refined to a resolution

of 12.4 Å (Figure 3B) which revealed more details of the

inner central channel [46��]. In this higher resolution

structure, the I-layer has a diameter of �50–55 Å and

its inner wall is formed by 14 columns of density with a

diameter of �8 Å. The columns project from the O-layer

of the CC to the bottom of the I-layer where they are

connected to the base of the complex defining an opening

of �55 Å in diameter on the cytoplasmic side of the

complex.

Digestion of the CC with elastase produced a stable

truncated complex, termed the ‘CCelastase’ complex.

The sequencing of the bands in SDS-PAGE gels confirms

that the complex is made of full-length TraN/VirB7 and
Current Opinion in Microbiology 2014, 17:24–31 
TraO/VirB9, and TraF/VirB10CT (Figure 3C). A structure

of CCelastase was obtained at a resolution of 8.5 Å using

cryo-EM and single particle analysis (Figure 3D) [46��].
Comparison of full length CC and CCelastase demon-

strated considerable differences in the I-layer region.

In the full-length CC, the I-layer comprises the N-term-

inal domains of VirB9 (TraF/VirB9NT) and VirB10 (TraF/

VirB10NT) and is inserted in the IM via the VirB10 N-

terminal trans-membrane segment. The removal of TraF/

VirB10NT by elastase results in an increase of the opening

on the cytoplasmic side (65 Å compared to �55 Å in the

CC) and a shortening of the I-layer (Figure 3D).

In the CCelastase complex, the columns within the central

channel are absent (Figure 3E). Therefore the inner

columns of the CC I-layer were assigned to TraF/

VirB10NT (Figure 4A). The major part of TraF/VirB10NT

was shown to be unstructured; the only secondary struc-

tural elements that were reliably identified were three

short helical elements: the helix corresponding to the

inner-membrane spanning region (aA: K40AF-LVF53)

and two other a-helical regions (aB: A107RA-QAA113;

aC: P138EE-QRR146). Their length is compatible with

the diameter and the length of the observed columns in
www.sciencedirect.com
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Figure 4
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Schematic model for the full length organisation of the core complex. (a) Four TraF/VirB10CT subunits of the 14-mer present in the O-layer atomic

structure are shown. One subunit is highlighted in blue. The density of one subunit column in the difference map (in light green) is shown with the

tentative docking of the three TraF/VirB10NT a-helical regions. This subunit is located immediately below TraF/VirB10CT shown in dark blue. The

connections are shown in dashed lines. (b) Central slice of the full length CC with fitted O-layer atomic structure (in cyan) and atomic models obtained

for TraO/VirB9NT (in dark red) and the a-helices predicted in TraF/VirB10NT (shown as in (a)).
the CC cryo-EM map ([46��], and references herein]). At

the very bottom of the complex these stretches join each

other to form a ring at the base of the CC. This ring might

correspond to the 14 trans-membrane segments (helix

aA) associated with detergent micelles. VirB10 is linked

to the IM by the VirB10 N-terminal trans-membrane

helix (30–50 aa) characterised with two types of putative

dimerization motifs: a GxxxA (GA4) motif and two leu-

cine (Leu1, Leu2) zippers. While mutations in the Leu1

motif disrupt T-pilus biogenesis, this and other mutations

in the GA4 or Leu2 motif do not abolish substrate transfer

[47].

The modelling of the atomic structure of TraO/VirB9NT

(residues 24–135) and the examination of its possible

docking into EM maps helped locate this domain within

the structure. The results suggest that TraO/VirB9NT

adopts a beta-sandwich fold (Figure 4B). Fitting of

models for TraO/VirB9NT, and labelling experiments

with nanobodies targeted against TraO/VirB9NT are all

pointing towards the conclusion that TraO/VirB9NT is

located at the outside surface of the I-layer.

Conclusions
During the last decade structural analysis has made a

great impact on our understanding of how T4S systems

are organised and function.

The EM structures have greatly altered our conception of

the entire T4S system architecture and its possible

mechanism of action. It was found that the CC is an
www.sciencedirect.com 
essential structural portion of T4S systems. It is self-

assembling and therefore is likely to be assembled first.

The CC forms the IM channel and is a major component

of the OM pore. It provides the central scaffold for

assembly of all other components. Structural comparison

of the complete and truncated CCs demonstrate that

TraF/VirB10 spans the entire cell envelope. This obser-

vation together with fitting of crystal and modelled

structures into EM maps of large complexes is of particu-

lar interest since it provides the explanation how VirB10

is able to sense conformational changes induced by ATP

binding to or ATP hydrolysis by the T4S system ATPases

situated at the T4S channel’s entrance on its cytoplasmic

side [23]. VirB10 responds to these changes by under-

going its own structural modifications that are required

for substrate transfer. Cascales et al. have demonstrated

that DNA binding to VirD4 and VirB11 stimulates ATP

binding/hydrolysis, which in turn activates VirB10

through a structural transition [48�]. Segure and co-

authors have shown that the transmembrane domain of

TrwB/VirD4 is needed for the interaction with the

transmembrane domain of TrwB/VirB10 and for R388

conjugative transfer. The removal of first 64 amino acids

in TrwB/VirB10 reduced conjugation by six orders of

magnitude [47]. Thus proteins analogues to VirB10 may

serve as a signal transmitter throughout the secretion

complex [1�,21,23,25�,47,48�,49�].

The next mission in T4S studies is to establish the

organisation and structure of even larger complexes of

T4S system components. For example, it is important to
Current Opinion in Microbiology 2014, 17:24–31
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complete our understanding of the IM channel by deter-

mining the structure of VirB6 and VirB8 bound to the CC.

Ultimately, the structure of the entire translocation

machine will need to be determined. A related question

is how substrate transfer takes place. This task represents

a tremendous challenge that can only be met by imple-

menting novel biochemical and genetic approaches

resulting in trapping T4S systems at different stages of

substrate transfer. The elucidation of T4S mechanisms

will thus require joint efforts from biochemistry and

structural biology. The derived knowledge might be used

to find ways of inhibiting these systems to combat infec-

tions and control the spread of antibiotic resistance genes.
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