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Abstract
Aim People of Black African ancestry, who are known to be at disproportionately high risk of type 2 diabetes (T2D), typi-
cally exhibit lower hepatic insulin clearance compared with White Europeans. However, the mechanisms underlying this 
metabolic characteristic are poorly understood. We explored whether low insulin clearance in Black African (BA) men could 
be explained by insulin resistance, subclinical inflammation or adiponectin concentrations.
Methods BA and White European (WE) men, categorised as either normal glucose tolerant (NGT) or with T2D, were 
recruited to undergo the following: a mixed meal tolerance test with C-peptide modelling to determine endogenous insulin 
clearance; fasting serum adiponectin and cytokine profiles; a hyperinsulinaemic–euglycaemic clamp to measure whole-body 
insulin sensitivity; and magnetic resonance imaging to quantify visceral adipose tissue.
Results Forty BA (20 NGT and 20 T2D) and 41 WE (23 NGT and 18 T2D) men were studied. BA men had significantly 
lower insulin clearance (P = 0.011) and lower plasma adiponectin (P = 0.031) compared with WE men. In multiple regression 
analysis, ethnicity, insulin sensitivity and plasma adiponectin were independent predictors of insulin clearance, while age, 
visceral adiposity and tumour necrosis factor alpha (TNF-α) did not significantly contribute to the variation.
Conclusion These data suggest that adiponectin may play a direct role in the upregulation of insulin clearance beyond its 
insulin-sensitising properties.
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Abbreviations
BA  Black African(s)
BMI  Body mass index
HbA1c  Glycated haemoglobin
IFN-ɣ  Interferon gamma
IL  Interleukin
NGT  Normal glucose tolerance
OGTT   Oral glucose tolerance test
T2D  Type 2 diabetes
TNF-α  Tumour necrosis factor alpha
VEGF  Vascular endothelial growth factor
WE  White European(s)

Introduction

A consistently recognised feature of physiology in Black 
African (BA) populations is low insulin clearance in com-
parison with White Europeans (WE), with studies indicating 
up to 74% lower insulin clearance in BA compared with WE 
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subjects [1]. Modelling methods have found that this dif-
ference lies in hepatic, as opposed to extra-hepatic, insulin 
clearance [2].

Hepatic insulin clearance is predominantly mediated 
by binding of insulin to its receptor [3]; therefore, it is an 
integral part of insulin’s action on the liver. Greater insulin 
sensitivity has been associated with greater clearance [4], 
including in BA populations [5]. Accordingly, as there is 
evidence that BA populations may be more insulin resist-
ant compared with other ethnicities [6], it is believed that 
impaired insulin sensitivity drives their low insulin clear-
ance [7].

However, an emerging counterargument proposes that 
low hepatic insulin clearance may not be purely compensa-
tory, but a primary abnormality in the development of type 2 
diabetes (T2D) [8, 9]. According to this hypothesis, defects 
in hepatic insulin clearance promote chronic hyperinsulinae-
mia, which in turn leads to insulin receptor desensitisation, 
target tissue insulin resistance and subsequent glucose intol-
erance. In this model, low hepatic clearance in certain ethnic 
groups is the a priori risk factor underlying their increased 
prevalence of T2D and precedes the development of insulin 
resistance. Supporting this hypothesis, insulin clearance has 
been identified as an important predictor of T2D develop-
ment in longitudinal studies of African-Americans [10].

Thus, there is considerable interest in understanding the 
mechanisms underlying low insulin clearance in BA popula-
tions. If it occurs independently of insulin resistance, then 
alternative explanations must be sought. Chronic, low-grade 
inflammation may be a factor, with evidence that elevated 
C-reactive protein (CRP) [11], white cell counts [12] and 
plasminogen activator inhibitor 1 (PAI-1) levels [13] are 
associated with impaired insulin clearance. Ethnic differ-
ences in inflammatory profiles have been recognised, includ-
ing higher levels of C-reactive protein and interferon gamma 
(IFN-ɣ) in BA subjects [14, 15]; therefore, it is plausible that 
subclinical inflammation may account for the variation in 
hepatic insulin clearance rates observed in different ethnic 
groups.

Another possibility is that low insulin clearance is sec-
ondary to ethnic differences in concentrations of adiponec-
tin, an adipokine which has numerous roles in glucose and 
lipid metabolism. Studies have consistently shown that BA 
subjects have lower plasma adiponectin levels compared 
with WE [16–18]. An association between adiponectin 
and hepatic insulin clearance has also been observed [19, 
20], and the upregulation of liver adiponectin receptors is 
associated with greater hepatic insulin clearance in animal 
models [21]. However, to date, no studies have looked at 
the role of adiponectin in relation to insulin clearance in 
BA populations.

Therefore, the aim of this study was to assess eth-
nic differences in insulin clearance and explore its 

predictors—particularly insulin sensitivity, inflammatory 
biomarkers and adiponectin—in BA and WE men with nor-
mal glucose tolerance (NGT) and early T2D in a secondary 
analysis of the SouL-DeEP study [22].

Materials and methods

The data were collected as part of the South London Eth-
nicity and Diabetes Phenotyping study (SouL-DeEP). The 
SouL-DeEP study was an observational cross-sectional 
study aimed at exploring ethnic differences in a range of 
mechanisms underlying the development of T2D between 
men of WE and BA ethnicity with NGT and early T2D. 
The study was designed to enable the exploration of a wide 
range of hypotheses, several of which have been published 
[22–24]. Data collection took place between April 2013 and 
April 2019. The full protocol has been published [22].

Recruitment was carried out through advertising in local 
press and via primary care. Eligible participants were male, 
18–65 years of age and with a body mass index (BMI) of 
20–40 kg/m2. Participants self-identified as either WE or 
BA. WE participants had four self-declared European grand-
parents with at least two of them of north-west European 
ancestry. BA participants had four self-declared grandpar-
ents from West African countries.

Eligible NGT participants had a fasting venous plasma 
glucose of < 6.1  mmol/L and a 2-h OGTT glucose 
of < 7.8 mmol/L. Eligible T2D participants had a diagnosis 
of T2D with a duration of ≤ 5 years, treated with lifestyle 
measures and/or metformin monotherapy and a screening 
HbA1c ≤ 64 mmol/mol (8.0%). Exclusion criteria were: 
treated with other diabetes medications, steroids or beta-
blockers; serum creatinine > 150 mmol/l; serum alanine 
transaminase level > 2.5-fold above the upper limit of the ref-
erence range; positive auto-antibodies for insulin, glutamic 
acid carboxylase (GAD) or islet antigen 2 (IA2); sickle cell 
disease (trait permitted); or any contraindication to magnetic 
resonance imaging.

Endogenous insulin clearance

Following an overnight fast, participants underwent a mixed 
meal tolerance test (MMTT). A cannula was inserted into an 
antecubital fossa vein; following sampling of fasting blood 
at − 10 and 0 min, participants consumed a specified volume 
of Ensure Plus milkshake drink (63% carbohydrate, 22% 
protein and 15% fat) (Abbott Nutrition, UK) based on 6 cal 
(4 ml) per kg body weight within a 5-min period. Further 
samples were drawn at 10, 20, 30, 40, 50, 60, 75, 90, 120, 
150 and 180 min for assessment of glucose, C-peptide and 
insulin concentrations. The glucose and C-peptide curves 
were modelled to determine area under the curve of total 
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endogenous insulin secretion over the 180-min duration 
(AUC ISR) [22], using SAAM-II 1.2 software (SAAM Insti-
tute, Seattle, Washington). Mean endogenous insulin clear-
ance was then calculated according to the following formula:

where AUC I = area under the curve of insulin concentration, 
 IFinal = insulin concentration at end of study,  IBasal = insulin 
concentration at start of study,  MRTins = mean residence 
time of insulin.

For the purposes of this calculation, the  MRTins is taken 
as 18 min for non-diabetics and 27 min for diabetics as 
described in Navalesi et al. [25].

Whole‑body insulin sensitivity

A 240-min two-step hyperinsulinaemic–euglycaemic clamp 
was conducted. Euglycaemia (5.0 mmol/l) was achieved 
using variable rate 20% (wt/vol) dextrose. Whole-body insu-
lin sensitivity was assessed in the high-dose insulin phase: 
40 mU  m−2 BSA  min−1. Blood was drawn at 150, 180, 210, 
220, 230 and 240 min for the assessment of plasma glucose 
and insulin concentrations. Insulin sensitivity was quantified 
using the M value (mg  m−2 BSA min −1), which was meas-
ured during the final 30 min of the high-dose insulin phase 
of the clamp, calculated as total glucose disposal corrected 
for deviations in plasma glucose concentration. Whole-body 
insulin sensitivity was then expressed as M/I, the M value 
corrected for the steady-state insulin concentration during 
the last 30 min of the clamp (mg  m−2 BSA min −1)/ (pmol 
 L−1).

Visceral fat

A Dixon-based MRI sequence was used on a 1.5-Tesla Sie-
mens scanner to obtain images from the neck to the knee 
(excluding arms). Three hundred and eighty-four contigu-
ous, axial T1-weighted gradient-echo images with a slice 
thickness of 3 mm were acquired, from which fat and water 
images were produced as part of the Dixon sequence. MRI 
data were analysed using the open-source image analysis 
software HOROS V 1.1.7 (www. horos proje ct. org; accessed 
21/10/2017) by a single analyst who was blinded to clinical 
data. Areas of visceral adipose tissue (VAT) were quanti-
fied from an axial MRI image at the L4-5 spinal anatomical 
position.

Assessments were performed in random order at the 
Clinical Research Facility, King’s College Hospital, Lon-
don, UK, while MRI imaging took place at Guy’s Hospital, 
London, UK, with at least 7 days between visits.

Clearance
Ins

=
AUC

ISR

AUC
I
+ (I

Final
− I

Basal
) ⋅MRT
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Laboratory analysis

Plasma adipokines and cytokines were measured on fasting 
plasma taken during the MMTT assessment using immunoas-
says (Affinity Biomarker Labs, UK). Plasma total adiponectin 
was measured using Human Quantikine enzyme-linked immu-
nosorbent assay (ELISA) kits (Bio-Techne, USA). Plasma 
TNF-α, IFN-γ, IL-6, IL-8, IL-10 and vascular endothelial 
growth factor (VEGF) were determined by electrochemi-
luminescence using a Human Proinflammatory multiplex 
immunoassay, Mesoscale Quickplex Discovery SQ120 (Meso 
Scale Discovery, USA). Plasma glucose concentrations were 
determined in duplicate using an automated glucose analyzer 
(Yellow Spring Instruments, 2300 STAT Glucose Analyzer, 
Ohio, USA). Plasma insulin concentrations were determined 
by immunoassay using chemiluminescent technology (ADVIA 
Centaur System, Siemens Healthcare Ltd., Camberley, UK). 
Plasma C-peptide concentrations were determined by radioim-
munoassay (Millipore Ltd., Hertfordshire, UK).

Statistics

The study is a secondary analysis of the SouL-DeEP study 
which included 20 samples per ethnic group with type 2 diabe-
tes to allow the detection of a difference of one standard devia-
tion with power 90% and two-sided statistical significance 5% 
in the primary outcome variable (first-phase insulin secretion 
determined from the hyperglycaemic clamp test).

Normality of continuous variables was determined by 
inspection of histograms and Shapiro–Wilkes test. Where 
variables significantly deviated from normality, log trans-
formation was carried out to achieve a normal distribution 
prior to the use of parametric tests. Categorical variables 
were analysed using Fisher’s exact test for ordinal data. A 
two-way between-group ANOVA was used to analyse the 
dependent variables of ethnicity and glucose tolerance on 
the outcome measures. Relationships between variables of 
interest were assessed with Pearson’s correlation coefficient. 
Multiple linear regression models were built step-wise to 
explore the determinant of insulin clearance with covari-
ates of ethnicity, age, BMI, insulin sensitivity, visceral fat, 
adiponectin and TNF-α concentrations. As this study was 
a secondary analysis and exploratory, we have not adjusted 
for multiple testing. All analyses were conducted with SPSS, 
version 25.0.

Results

The clinical characteristics of the 40 BA (20 NGT and 20 
T2D) and 41 WE (23 NGT and 18 T2D) participants are 
presented in Table 1. The ethnic groups were similar overall 
in mean age, BMI, fasting glucose and HbA1c.

http://www.horosproject.org
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Insulin clearance, insulin sensitivity, adiponectin and 
inflammatory biomarker data, by ethnic group and glucose 
tolerance status, are presented in Table 2. There were no 
significant ethnic differences in insulin sensitivity across 
either glucose tolerance group. BA men had significantly 
lower mean endogenous insulin clearance (Fig. 1), plasma 
adiponectin and visceral adipose tissue compared with WE 
men. Mean IL-10 was higher in BA men. There were no 
significant ethnic differences in plasma TNF-α, IFN-ɣ, IL-6, 
IL-8 or vascular endothelial growth factor (VEGF) concen-
trations. Men with T2D had lower mean insulin sensitivity, 
insulin clearance and adiponectin but higher VAT, TNF-α, 
IL-8 and VEGF concentrations compared with NGT men.

Associations between insulin clearance and the adipo-
cytokines for each ethnic group and the cohort as a whole 
are shown in Table 3. Plasma adiponectin was significantly 
correlated with insulin clearance in the cohort as a whole 
(r = 0.46, P < 0.001), but when examined within ethnicity, 
the association was statistically significant in only BA men. 
TNF-α was inversely correlated with insulin clearance in the 
cohort as a whole (r = − 0.24, P = 0.037), but when exam-
ined within ethnicity, this was significant in only WE men 
(Table 3). There were no significant relationships found 
between insulin clearance and IFN-ɣ, IL-6, Il-8, IL-10 or 
VEGF (Table 3). Multiple regression analysis showed that 
both ethnicity and adiponectin were significant predictors 

of insulin clearance in a mutually adjusted model that also 
included insulin sensitivity and BMI as covariates. In that 
model, the adjusted mean difference in insulin clearance in 
WE vs BA was 96 mL  m−2 BSA  min−1 (Table 4, Model 1). 

The use of visceral fat in place of BMI as a marker of 
adiposity, and the addition of age and plasma TNF-α as co-
variates, made no appreciable difference to the estimated 
effects of ethnic group (99 compared to 96 mL  m−2 BSA 
 min−1). The effect of adiponectin was even greater in the 
fuller model and remained statistically significant (Table 4, 
Model 2).

Discussion

The importance of insulin clearance as a modulator of 
peripheral insulin levels is increasingly recognised [26], 
particularly in BA populations who, in comparison with 
other ethnicities, have consistently been shown to exhibit a 
distinctly hyperinsulinaemic response to glucose, predomi-
nantly driven by relatively low insulin clearance [27]. Here, 
we have presented data which find that insulin clearance may 
be determined by ethnicity independently of insulin resist-
ance, adiposity and subclinical inflammation and that plasma 
adiponectin may play a direct role in the upregulation of 
insulin clearance beyond its insulin-sensitising effects.

Table 1  Characteristics of study participants

Data presented as mean (SD)
A two-way between-group ANOVA was used to analyse the dependent variables of ethnicity and glucose tolerance on the clinical characteristics
BA Black African, WE White European, NGT normal glucose tolerance, T2D type 2 diabetes, BMI body mass index, DCCT  Diabetes Control 
and Complications Trial, HbA1c glycated haemoglobin, HDL high-density lipoprotein, IFCC International Federation of Clinical Chemistry, 
LDL low-density lipoprotein, OGTT  oral glucose tolerance test

BA WE P (ethnicity) P (glucose 
tolerance)

All NGT T2D All NGT T2D

(n = 40) (n = 20) (n = 20) (n = 41) (n = 23) (n = 18)

Age (years) 43.4 (15.0) 32.4 (12.1) 54.4 (7.7) 44.4 (15.1) 35.9 (13.9) 55.8 (6.8) 0.307 < 0.001
Weight (kg) 88.7 (13.0) 85.0 (13.4) 92.4 (11.8) 92.2 (17.9) 86.5 (16.5) 99.8 (17.2) 0.182 0.003
BMI (kg/m2) 28.4 (3.8) 26.9 (3.5) 30.0 (3.5) 28.5 (5.0) 26.5 (4.6) 31.3 (4.2) 0.612 < 0.001
Fasting glucose (mmol/ L) 5.9 (1.1) 5.1 (0.5) 6.7 (1.0) 6.0 (1.3) 5.2 (0.4) 7.0 (1.3) 0.381 < 0.001
HbA1c IFCC (mmol/mol) 44.0 (9.2) 37.5 (5.2) 50.4 (7.8) 41.6 (8.6) 35.9 (2.9) 49.2 (7.8) 0.321 < 0.001
HbA1c (DCCT) (%) 6.2 (0.8) 5.6 (0.5) 6.8 (0.7) 6.0 (0.8) 5.4 (0.2) 6.7 (0.7) 0.340 < 0.001
Systolic blood pressure (mmHg) 129.9 (15.3) 122.3 (13.0) 137.5 (13.7) 126.1 (12.4) 121.9 (9.1) 131.6 (14.3) 0.271 < 0.001
Diastolic blood pressure (mmHg) 78.9 (12.3) 71.7 (12.0) 86.1 (7.4) 75.9 (10.4) 71.1 (8.2) 82.4 (9.7) 0.325 < 0.001
LDL cholesterol (mmol/L) 2.51 (0.70) 2.71 (0.81) 2.32 (0.53) 2.70 (0.82) 2.99 (0.82) 2.31 (0.67) 0.403 0.002
HDL cholesterol (mmol/L) 1.25 (0.41) 1.32 (0.45) 1.18 (0.37) 1.24 (0.29) 1.27 (0.31) 1.21 (0.25) 0.903 0.196
Total cholesterol (mmol/L) 4.22 (0.88) 4.36 (1.03) 4.09 (0.70) 4.56 (0.94) 4.76 (1.05) 4.29 (0.72) 0.137 0.071
Triglycerides (mmol/L) 1.01 (0.62) 0.72 (0.25) 1.30 (0.74) 1.36 (0.70) 1.10 (0.56) 1.71 (0.73) 0.004 < 0.001
2-h OGTT glucose (mmol/L) – 5.2 (1.1) – – 5.1 (1.3) – 0.727 –
Duration of T2D (years) – – 2.73 (1.3) – – 3.10 (0.98) 0.298 –
Treatment with metformin (%) – – 70 – – 55 0.320 –
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The BA men in this study exhibited the metabolic features 
characteristic of their ethnic group, including lower visceral 
fat, lower adiponectin and lower insulin clearance compared 
with WE men of similar age and BMI. A body of literature 
proposes that low insulin clearance in BA populations is 
secondary to insulin resistance. Lorenzo et al. presented data 
showing that ethnic differences in the metabolic clearance 
rate of insulin (MCRI) of African-American (versus His-
panic and White American) participants could be entirely 
explained by insulin resistance and adiposity [7]. However, 
in our study, by contrast, ethnicity determined insulin clear-
ance independently of insulin sensitivity, BMI and visceral 
fat. The discrepancy in findings may be due to the meth-
odologies used to measure insulin clearance. The MCRI 
measures the clearance of peripherally infused exogenous 
insulin, rather than the clearance of endogenous insulin, 
the latter being secreted directly into the portal vein and 
undergoing extraction by the liver prior to entering the sys-
temic circulation [28]. Our measurement of insulin clearance 

Table 2  Metabolic measurements of participants by ethnicity and glucose tolerance

All biomarkers measured during fasting
Data presented as mean (SD) or geometric mean (95% CI) for logged data
†BSA, body surface area. IL, interleukin; VAT, visceral adipose tissue; VEGF, vascular endothelial growth factor; TNF-α, tumour necrosis fac-
tor alpha; IFN-ɣ, interferon gamma. Data from subjects included in this study have been previously published in [22–24]. A two-way between-
group ANOVA was used to analyse the dependent variables of ethnicity and glucose tolerance on the outcome measures

BA WE P (ethnicity) P (gluc 
tolerance)

All NGT T2D All NGT T2D

(n = 40) (n = 20) (n = 20) (n = 41) (n = 23) (n = 18)

Insulin 
sensitivity 
(mg  m−2 
BSA  min−1)/
(pmol  L−1) †

0.41 (0.32, 
0.52)

0.53 (0.45, 
0.62)

0.31 (0.21, 
0.40)

0.39 (0.30, 
0.51)

0.53 (0.41, 
0.69)

0.24 (0.17, 
0.34)

0.413  < 0.001

Insulin clear-
ance (mL 
 m−2 BSA 
 min−1) †

556.1 (470.8, 
657.1)

681.1 (601.3, 
771.4)

476.1 (394.9, 
574.0)

686.6 (593.8, 
794.0)

800.0 (725.9, 
881.5)

568.9 (430.3, 
752.0)

0.011 < 0.001

VAT  (cm2) † 66.2 (46.8, 
66.2)

46.9 (34.2, 
64.3)

121.0 (100.3, 
146.0)

108.3 (81.6, 
143.7)

79.0 (55.4, 
112.5)

184.4 (148.3, 
229.3)

0.001 < 0.001

Adiponectin 
(mg/L) †

2.54 (1.90, 
3.40)

3.18 (2.42, 
4.18)

2.07 (1.57, 
2.72)

3.62 (3.05, 
4.32)

4.39 (3.72,5.20) 2.73 (1.99, 
3.73)

0.031 0.001

TNF-α 
(ng/L)†

2.61 (2.42, 
2.81)

2.26 (1.92, 
2.66)

2.76 (2.14, 
3.55)

2.74 (2.21, 
3.40)

2.43 (2.20, 
2.67)

2.91 (2.54, 
3.33)

0.481 0.016

IFN-ɣ (ng/L)† 4.81 (3.88, 
5.96)

4.85 (4.02, 
5.84)

4.08 (2.59, 
6.42)

4.85 (4.16, 
5.66)

4.29 (3.62,5.07) 5.98 (4.44, 
8.04)

0.328 0.576

IL-6 (ng/L)† 0.93 (0.80, 
1.10)

0.90 (0.72, 
1.12)

1.02 (0.77, 
1.35)

0.96 (0.81, 
1.14)

0.88 (0.71, 
1.09)

1.12 (0.86, 
1.44)

0.901 0.087

IL-8 (ng/L)† 8.51 (7.18, 
10.09)

7.55 (6.58, 
8.67)

10.55 (7.77, 
14.32)

8.31 (7.21, 
9.58)

7.99 (6.82,9.35) 8.88 (6.54, 
12.07)

0.479 0.023

IL-10 (ng/L)† 0.74 (0.58, 
1.00)

0.75 (0.62, 
0.92)

0.72 (0.42, 
1.25)

0.50 (0.44, 
0.58)

0.53 (0.44, 
0.63)

0.47 (0.36, 
0.61)

0.004 0.250

VEGF (ng/L)† 79.2 (59.4, 
105.6)

62.1 (42.6, 
90.6)

104.5 (65.9, 
165.5)

62.8 (49.2, 
80.1)

51.8 (37.4, 
71.7)

86.8 (62.3, 
120.9)

0.560 0.002

Fig. 1  Endogenous insulin clearance by ethnicity and glucose toler-
ance status. BA, Black African; WE, white European; NGT, normal 
glucose tolerance; T2D, type 2 diabetes. Data shown as median (95% 
confidence intervals)
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takes account of first-pass hepatic insulin extraction, which 
is not captured by the MCRI. It is known that the MCRI is 
poorly correlated with both directly measured hepatic insulin 
extraction in animal models [29] and surrogate measures of 
hepatic insulin clearance derived from the hyperglycaemic 
clamp [30]. While hepatic insulin clearance is lower in BA 
in comparison with WE, extra-hepatic clearance is simi-
lar [2] and both these processes appear to be differentially 
regulated [5, 20]. Therefore, the MCRI may not be a wholly 
representative measure of insulin clearance when comparing 
these ethnic groups.

It has been argued that low insulin clearance is a pri-
mary determinant of peripheral insulin levels rather than 
a compensatory mechanism for insulin resistance [8, 31]. 
Our findings support this, as endogenous insulin clearance 
in the BA subjects remained low even when adjustments for 
insulin sensitivity were made. We have previously shown 

that low insulin clearance compensates for postprandial 
insulin secretion deficiencies in BA subjects and therefore 
may act as a protective mechanism [24]. However, under 
conditions where insulin secretion rates are excessively 
stimulated (such as during the hyperglycaemic clamp), low 
insulin clearance leads to a marked hyperinsulinaemia [27]. 
Chronic hyperinsulinaemia is thought to be metabolically 
deleterious, predisposing to insulin resistance, beta-cell 
stress and glucose intolerance [32]. Therefore, a metabolic 
characteristic which under some conditions may be an evo-
lutionary advantage, relieving the demand on the beta cell 
to upregulate insulin secretion, may in other environments 
prove unfavourable. As this was not a longitudinal study, it 
cannot provide evidence of a causative relationship between 
low insulin clearance and T2D. However, the significantly 
lower insulin clearance in NGT BA men, in the presence of 
comparable insulin sensitivity to their WE counterparts, sup-
ports the hypothesis that impairments in insulin clearance 
precede the development of other metabolic abnormalities in 
the progression to glucose intolerance. Therefore, manipula-
tion of hepatic insulin clearance may offer a novel therapeu-
tic target for T2D in this high-risk ethnic population.

Much remains to be understood in relation to insulin 
clearance and its regulation; therefore, any interpretations 
of these data are necessarily speculative. Although insu-
lin resistance does not account for low insulin clearance in 
BA men, we did not find that ethnic differences in cytokine 
admixture provided an alternative explanation. Consistent 
with the literature, where various inflammatory markers 
have been linked to impaired insulin clearance [12, 13], we 
found a negative correlation between TNF-α and insulin 
clearance. However, in agreement with others, this did not 
persist following correction for insulin sensitivity and adi-
posity [13]. Thus, subclinical inflammation per se does not 
appear to directly affect insulin clearance but accompanies 
it through associations with other features of metabolic dys-
function. It must be acknowledged that in a small sample, 
the failure to observe a relationship between two variables 
does not mean that a relationship is absent, and further work 
into the link between inflammation and insulin clearance is 
indicated.

Table 3  Relationships 
between insulin clearance and 
adipocytokines using Pearson’s 
correlation

All r and P values for correlation with endogenous insulin clearance

BA (n = 40) WE (n = 41) All (n = 81)

Adiponectin (mg/L) r = 0.53, P = 0.001 r = 0.31, P = 0.059 r = 0.46, P < 0.001
TNF-α (ng/L) r = − 0.17, P = 0.32 r = − 0.42, P = 0.008 r = − 0.24, P = 0.037
IFN-ɣ (ng/L) r = 0.23, P = 0.27 r = − 0.14, P = 0.42 r = 0.04, P = 0.79
IL-6 (ng/L) r = 0.05, P = 0.75 r = − 0.26, P = 0.10 r = − 0.10, P = 0.37
IL-8 (ng/L) r = − 0.05, P = 0.75 r = − 0.14, P = 0.39 r = − 0.11, P = 0.32
IL-10 (ng/L) r = 0.14, P = 0.41 r = 0.02, P = 0.93 r = 0.01, P = 0.95
VEGF (ng/L) r = − 0.08, P = 0.63 r = 0.04, P = 0.83 r = − 0.04, P = 0.95

Table 4  Multiple regression analysis of predictors of insulin clear-
ance (mL  m−2 BSA  min−1)

a Regression coefficient is adjusted difference in mean insulin clear-
ance, BA-WE bVariable is log-transformed. Regression coefficient 
and 95% CI are scaled so that each is the adjusted change in insulin 
clearance for a 10% increase in that variable
c Regression coefficient is the adjusted change in insulin clearance per 
10-year increase in age

Independent variables Regression 
coefficient

95% CI P value

MODEL 1: R2 = 0.418
Ethnicity (BA-WE)a − 96 − 180 to − 12 0.025
Body mass  indexb − 36.4 − 70.8 to − 2.0 0.038
Insulin  sensitivityb 9.0 0.2–17.8 0.046
Plasma  adiponectinb 7.9 0.5–15.3 0.036
MODEL 2: R2 = 0.434
Ethnicity (BA-WE)a − 99 − 196 to − 1 0.047
Insulin  sensitivityb 38.9 18.0–59.8 < 0.001
Plasma  adiponectinb 20.4 2.2–38.6 0.029
Plasma TNF-α2 − 6.3 − 35.7 to 23.2 0.67
Agec 1.6 − 40.4 to 43.6 0.94
Visceral adipose  tissueb 5.1 − 16.7 to 27.0 0.64
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On the other hand, adiponectin was associated with 
increased insulin clearance independently of insulin sensi-
tivity and adiposity. Higher adiponectin concentrations are 
associated with a reduced risk of T2D in BA subjects [33, 
34], which is thought to be mediated via adiponectin’s ben-
eficial effects on both insulin sensitivity [34] and beta-cell 
proliferation and survival. However, the importance of adi-
ponectin as an independent modulator of insulin clearance 
in BA populations has never been examined. Adiponectin 
receptors are abundantly expressed in the liver, and adi-
ponectin has pleiotropic effects on hepatic metabolism, 
including suppression of hepatic glucose production and 
lipogenesis [35]; but adiponectin’s role in hepatic insulin 
clearance has been little explored. While an association 
between adiponectin and insulin clearance has been pre-
viously observed [19, 20], this is the first time a relation-
ship has been demonstrated independently of adiposity and 
insulin sensitivity. The findings of this study suggest that 
an examination of adiponectin signalling and hepatic insu-
lin clearance is warranted at a molecular level, in order to 
investigate whether adiponectin is an active player in the 
mechanisms of clearance.

While low adiponectin concentrations appear to be an 
important factor, they do not entirely explain the low insulin 
clearance of the BA men. Low insulin clearance has been 
demonstrated in a wide variety of BA subjects, including 
healthy men [27] and women [36], obese adolescents [37] 
and adults with T2D [38]. The highly conserved nature of 
this trait is well illustrated by Osei et al. who demonstrated 
that while African-Americans, native Ghanaians and Gha-
naian immigrants to the USA have similar rates of insulin 
clearance to each other, all three BA groups have lower insu-
lin clearance compared with White Americans [39]. The 
consistency of this observation in disparate BA populations, 
regardless of sex, age or indigenous or diasporic origin, is 
suggestive of an inherent rather than environmental cause, 
although to date no responsible genetic variant in BA popu-
lations has been identified.

While the mechanisms underlying this ethnic character-
istic remain elusive, given that insulin clearance appears 
to be regulated in the BA men independently of insulin’s 
action on glucose uptake, we hypothesise that specific sig-
nalling pathways may be involved. One study has identified 
lower insulin-degrading enzyme (IDE) activity in the liver 
tissue of African-Americans [40] as a possible explanation, 
although the importance of IDE in the regulation of hepatic 
insulin clearance has been questioned [41, 42]. Other poten-
tial avenues of interest include the role of carcinoembry-
onic antigen-related cell adhesion molecule-1 (CEACAM-1) 
[28], zinc ion transport [43] and the signals which determine 
rates of retro-endocytosis (by which a variable proportion 
of receptor-bound, internalised insulin undergoes rapid 
exocytosis from the hepatocyte and is returned back to the 

circulation [44]). The findings of this study present an appeal 
to basic scientists to re-examine the intracellular pathways 
of insulin trafficking and degradation, an area which needs 
further exploration.

The strengths of this study are its measurement of endog-
enous as opposed to exogenous insulin clearance and the use 
of the reference-standard hyperinsulinaemic–euglycaemic 
clamp to measure insulin sensitivity. The use of magnetic 
resonance quantification of visceral adipose tissue provided 
a more accurate measure of adiposity than BMI alone. Fur-
thermore, the subjects were tightly characterised, with the 
BA men of strict West African ancestry. In terms of limita-
tions, the modelled measure of endogenous insulin clear-
ance does not enable differentiation between hepatic and 
extra-hepatic insulin clearance. The assumption is made 
that whole-body clearance is a good proxy of hepatic insu-
lin clearance, as hepatic insulin clearance is responsible for 
around 80% of whole-body clearance [45]. However, others 
have found that in BA populations, the proportion of total 
endogenous insulin clearance attributable to the liver may 
be as little as 30% [5]. The inability to distinguish between 
the two processes means that the specific effect of ethnicity 
in relation to hepatic insulin clearance—and its relationships 
with hepatic insulin sensitivity—could not be isolated. Our 
small sample size means that only large differences in the 
mean could be detected. Furthermore, our study is a second-
ary exploratory analysis, so we have not adjusted for mul-
tiple testing. Hence, our findings need replicating in other 
larger datasets. Finally, these findings apply to adult men 
only; therefore, they cannot necessarily be generalised to 
female or child/adolescent populations.

In conclusion, in a cohort of BA men, neither insulin 
resistance, inflammatory cytokines nor adiponectin con-
centrations appear to fully account for their low insulin 
clearance. We hypothesise that an inherent ethnic variation 
in intracellular insulin degradation pathways is responsible 
for this metabolic phenomenon, one that has evolved due 
to adaptive advantage but, in accordance with emerging 
hypotheses, has potentially deleterious effects on glucose 
tolerance in the setting of excessive beta-cell stimulation. 
The identification and manipulation of such pathways offer 
a novel avenue of investigation for the prevention and man-
agement of T2D.
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