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Abstract

Cranberry (Vaccinium macrocarpon) is a member of the Heath family (Ericaceae) and is a

temperate low-growing woody perennial native to North America that is both economically

important and has significant health benefits. While some native varieties are still grown

today, breeding programs over the past 50 years have made significant contributions to

improving disease resistance, fruit quality and yield. An initial genome sequence of an

inbred line of the wild selection ‘Ben Lear,’ which is parent to multiple breeding programs,

provided insight into the gene repertoire as well as a platform for molecular breeding. Recent

breeding efforts have focused on leveraging the circumboreal V. oxycoccos, which forms

interspecific hybrids with V. macrocarpon, offering to bring in novel fruit chemistry and other

desirable traits. Here we present an updated, chromosome-resolved V. macrocarpon refer-

ence genome, and compare it to a high-quality draft genome of V. oxycoccos. Leveraging

the chromosome resolved cranberry reference genome, we confirmed that the Ericaceae

has undergone two whole genome duplications that are shared with blueberry and rhodo-

dendron. Leveraging resequencing data for ‘Ben Lear’ inbred lines, as well as several wild

and elite selections, we identified common regions that are targets of improvement. These

same syntenic regions in V. oxycoccos, were identified and represent environmental

response and plant architecture genes. These data provide insight into early genomic selec-

tion in the domestication of a native North American berry crop.

Introduction

The American or large-fruited cranberry, Vaccinium macrocarpon, is one of only three culti-

vated fruit species that are native to North America. The tart fruit is valued for its many

human health benefits when consumed. For example, cranberry fruit is high in antioxidants,

helps prevent urinary tract infections, has anti-atherogenic effects, and helps prevent dental
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caries [1–6]. The U.S. is the leading producer of cranberries with production of over 359,000

metric tons in 2019. The total value of the U.S. cranberry production in 2019 was $224.8 mil-

lion dollars [7]. Canada and Chile are also major producers of cranberries with annual produc-

tion in 2018 of about 195,000 and 106,000 metric tons, respectively [8] with minor production

in other parts of the world. The most important products marketed are sweetened-dried-cran-

berries (SDCs) and juice products.

Vaccinium macrocarpon is a member of the Heath family (Ericaceae). Although wetland-

adapted, cranberries are low-growing woody perennial vines typically growing in well-drained

low pH (<5.5) sandy soils that are also low in nutrients. The roots lack root hairs and are colo-

nized with Ericoid mycorrhizae that aid in nutrient uptake [9]. The vines produce stolons that

root at various points, forming solid mats of vegetation, and cultivars are clonally propagated

from cuttings. The leaves are simple and ovate with blades that measure 5–17 mm in length

and 2–8 mm wide [10]. V.macrocarpon is diploid (2 n = 2 x = 24) and self-fertile [10]. Vertical

shoots called ‘uprights’ bear the flowers and developing fruit. Cranberry blooms in early sum-

mer and each upright typically bears 5–7 white to pinkish hermaphroditic protandrous flowers

(S1 Fig). The flowers are 4-merous with eight anthers and an inferior ovary. The inflorescence

is semi-determinate, with the flowering shoot resuming vegetative growth post-flowering. The

size and number of fruit that develop per upright vary depending on the cultivar and pollina-

tion efficiency. Most modern cultivars have an average mature fruit weight of about 1.5–2.5

grams. There are four air-filled locules in the mature fruit, allowing them to float during water

harvesting. Like most temperate woody perennials, cranberries go through a winter dormancy

period and require 1,000–2,500 hours of chilling to resume growth and bloom in the spring

[11, 12].

The small-fruited cranberry, V. oxycoccos, is similar to V.macrocarpon in many ways

(Fig 1). It has a similar growth habit (low-growing perennial woody vines) and it thrives in

similar soils and habitats as V.macrocarpon. V. oxycoccos, has limited commercial production

in Russia, Estonia, and Lithuania, but is mostly harvested from the wild. The ripe berries are

usually red and contain similar classes of phytochemicals (e.g. anthocyanins, proanthocyani-

dins, flavonols, etc.) as the large-fruited cranberries. Fruit size is variable, but smaller (0.6–1.2

cm) than V.macrocarpon. The native range of V. oxycoccos is circumboreal, including north-

ern Europe, northern Asia and northern North America (S1 Fig). One of the key differences is

in ploidy level. As noted above, V.macrocarpon is diploid, while V. oxycoccos occurs as diploid

(2n = 2 x = 24), tetraploid (2n = 48) and hexaploid (2n = 72) levels [13]. Diploid V. oxycoccus
occurs only above the 51st parallel except at high elevation, such as the Columbia mountain

range [14]. Isozyme and recent sequence-based data suggest the North American diploid and

tetraploid V. oxycoccos are likely different species [15, 16]. How the hexaploids fit into the

overall taxonomy is still under debate. The leaves of V. oxycoccos are generally smaller (8–10

mm long and 1–2.5 mm wide) than those of large-fruited cranberry, but length varies depend-

ing on ploidy level. The leaves of the diploid representatives, that are the subject of this paper,

are about 3–5 mm long and 1–2 mm wide. Flowering is determinate and this species does not

produce flowering uprights. Rather, the flowers arise from the stolons and tend to be darker

pink than those of V.macrocarpon.

Breeding of large-fruited cranberry is in its infancy relative to most other crops, with com-

mercial cultivars removed only one to three generations from the wild. In fact, some varieties

grown today are still wild selections. The first breeding program was started in 1929 by the

USDA in response to an outbreak of false blossom, a phytoplasma-incited disease. The first

varieties developed in this program that were considered more ‘resistant’ to the phytoplasma

(less preferable in feeding studies to the leafhopper vector of the disease) were released between

1950–1961. One of those varieties, ‘Stevens,’ is still one of the most widely grown cultivars.
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Breeding programs in New Jersey and Wisconsin, as well as a few private companies, are

releasing new varieties with superior attributes, such as increased yield and uniform fruit

color. Thirteen new varieties were released between 1994 and 2017. One focus area, particu-

larly in the New Jersey breeding program, is fruit rot resistance. Still, all cranberry breeding to

date has been limited to a single species, V.macrocarpon.

It is likely that in the wild, cranberries went through a genetic bottleneck during the ice age,

potentially limiting variation in the available germplasm [17]. Thus, interspecific hybridization

offers the opportunity to expand the genepool. V. oxycoccos is also reported to be very high in

antioxidants and bioactive compounds, some of which may be more bioavailable than those

found in V.macrocarpon [18]. Although there is some overlap in native range, V. oxycoccos is

adapted to more northern latitudes, e.g., north of the 51st parallel, and may be more cold toler-

ant than V.macrocarpon (S1 Fig). In addition, V. oxycoccos, being circumboreal, responses to

photoperiod are expected to differ as this species typically has a much shorter growing season

and day length varies with nearly 24 hours of light during summer. Finally, V. oxycoccosmay

offer disease resistance genes that are not found in large-fruited cranberries. Crop loss due to

fruit rot remains one of the biggest challenges in the sustainable production of cranberries.

We have successfully produced F1 interspecific hybrids between V.macrocarpon and dip-

loid V. oxycoccos and have a large F2 population segregating for many morphological, horticul-

tural and fruit chemistry traits. However, F1 hybrids exhibit lower gametophytic fertility, e.g.,

Fig 1. Vaccinium macrocarpon (Vmac) and Vaccinium oxycoccos (Voxy) are interfertile and have distinct morphology. A) Fruit, B) plants, C) pistils

(attached to pedicels), and D) leaves from Vmac, Voxy and the interspecific F1 hybrid.

https://doi.org/10.1371/journal.pone.0264966.g001
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lower pollen staining, than the parental species. As part of the ongoing breeding and genetics

program, we are interested in comparing the genomes of these two cranberry species. We pre-

viously published a draft reference genome for the V.macrocarpon cultivar Ben Lear (BL) that

was very useful, yet still rather fragmented [19]. Recently, a genome for a second cultivar Ste-

vens (ST) and a fragmented assembly for V. oxycoccos was published [20]. Here we report an

updated chromosome scale assembly for the BL reference genome and an improved draft

genome of diploid V. oxycoccos. We further compared the genomes and transcriptomes of

these two species to begin documenting their similarities and differences, as we more inten-

sively use interspecific hybridization for domesticated cranberry improvement.

Results

Cranberry genome size

The first Vaccinium macrocarpon (Vmac) genome draft provided a resource for gene discovery

and marker development [19]. The initial draft was based on a fifth generation inbred of ‘Ben

Lear’ (BL-S5) and sequenced using Illumina short reads, resulting in an assembled genome

size of 420 Mb and a scaffold N50 length of 4,237 bp (Table 1). We endeavored to improve the

draft genome, as well as sequence the undomesticated diploid V. oxycoccos (Voxy) with which

we can make interspecific hybrids (Fig 1). First, we estimated the genome size of the Vmac,

Voxy and the F1 hybrid (Vmac X Voxy) using k-mer frequency analysis based on short read

sequence [21]. The Vmac and Voxy genomes both had single k-mer frequency peaks consis-

tent with diploid and homozygous backgrounds with genome size estimates of 487 and 585

Mb respectively (Table 1, S2 Fig and S1 Table). The k-mer frequency genome size estimate for

Vmac is very close to the reported flow cytometry genome size estimate of 470 Mb [22]. Con-

versely, the F1 hybrid had a double peak, consistent with a hybrid of two genomes that have

distinct nucleotide compositions, suggesting there are distinct differences between the

genomes that can be exploited for applications such as breeding (S2 Fig and S1 Table).

One indicator of interspecific compatibility is fertility of the offspring resulting from inter-

specific crosses. Pollen in Vaccinium spp. is shed as a tetrad; four microgametophytes result

from a meiotic event held in a tetrahedron. Staining of the tetrads with lacto-phenol blue and

counting those pollen grains within each tetrad that take up the stain as potentially viable can

be used as an indicator of pollen viability. Pollen from ‘Stevens’ and other commercial cultivars

was estimated to be 99% viable, while accession NJ96-20 of Voxy was 56% and NJ96-127 of

Voxy was 80%. This shows that there is some pollen infertility in this limited representation of

Voxy. The F1 hybrids varied from about 29%-53% pollen stainability. This suggests at least

some interspecific meiotic recombination leads to interlocus allelic instability in the gameto-

phytic generation in the F1 (Vmac x Voxy) hybrids.

Updated V. macrocarpon (Vmac) genome

Long read sequencing has enabled a new wave of near-complete plant genomes [23]. We

sequenced the same fifth generation inbred (BL-S5) using Oxford Nanopore Technologies

(ONT) long read sequencing, and assembled the reads using a correction-free overlap, layout,

consensus (OLC) strategy [24]. The resulting genome was an extremely contiguous assembly

with a total length of 484 Mb in 124 contigs and a 15 Mb N50 length, representing whole chro-

mosome arms with few repeats in the genome assembly graph consistent with the inbred

nature of the line (Vmac_v1; Fig 2A and Table 1). The genome assembly was collinear with the

chromosome-scale, haplotype-resolved blueberry (Vaccinium corymbosum) genome (S3 Fig)

[25]. We scaffolded the Vmac_v1 genome into chromosomes leveraging the high contiguity of

the chromosomes and the synteny with haplotype1 of blueberry, and then validated the order
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and orientation of the Vmac scaffolds (chromosomes) reported here using high-density

genetic map markers [26]. The resulting Vmac chromosome-scale assembly was contiguous

with other closely related species that have chromosome-scale assemblies such as rhododen-

dron (Rhododendron williamsianum) [27], persimmon (Diospyros lotus) [28], tea (Camellia
sinensis) [29] and kiwi (Actinidia chinensis) [30] (Fig 2B).

The V. oxycoccos (Voxy) genome

Next, we sequenced the diploid Voxy genome using the same long read approach as with

Vmac. Unlike Vmac, Voxy did not assemble into chromosome arms, yet was of high quality

Table 1. Cranberry genome assembly statistics.

Vmac_v1 (Draft_2014) Vmac Voxy

CNJ99-125-1 CNJ99-125-1 NJ96-20

Estimated genome size Kmer19 (Mb) 487 487 585

Estimated genome size flow cytometry (Mb) 470 470 NA

Assembled genome size (Mb) 420 484 484

Contig (#) 231,033 124 1,692

Contig N50 length (bp) 4,214 15,310,187 1,785,328

Scaffold (#) 229,745 13 NA

Scaffold N50 length (bp) 4,237 39,611,093 NA

BUSCO 85 95 94

Repeat content (%) 39.5 44.8 43.9

Predicted genes (#) 36,364 48,647 50,621

Anchor Coverage (%) NA 71 71

Anchors> 1kb NA 30,112 30,090

Genome Block Coverage (%) NA 93 94

Genome Block Coverage Duplicated (%) NA 4 4

Genes within Block (%) NA 67 69

Blocks > 100kb NA 412 412

NA, not available.

https://doi.org/10.1371/journal.pone.0264966.t001

Fig 2. Chromosome scale assembly of Vacciniummacrocarpon (Vmac). A) Genome assembly graph of the cranberry genome resulted in

chromosome scale, reference quality, contigs and very few “hairballs” (graph bubbles, or multiple connections due to heterozygosity and repeats).

Contig size (bp) labeled, and color is randomly assigned. B) Protein based alignment of the cranberry (red; Vaccinium macrocarpon) genome with

blueberry (blue; Vaccinium corymbosum), rhododendron (purple; rhodo; Rhododendron williamsianum), persimmon (orange; persim;Diospyros lotus),
and kiwi (green; Actinidia chinensis). Lines (grey) symbolize pairwise syntenic blocks between genomes.

https://doi.org/10.1371/journal.pone.0264966.g002
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with a total length of 484 Mb in 1,692 contigs with an N50 length of 1.8 Mb (Table 1 and S4

Fig). The more fragmented nature of the Voxy assembly most likely reflects the underlying

heterozygosity relative to the near-homozygous Vmac fifth generation inbred (BL-S5). Both

Vmac and Voxy assemblies were very complete with 95 and 94 BUSCO percentages, respec-

tively (Table 1 and S2 Table). Repeat annotation that leveraged a de novo pipeline [31], pre-

dicted that 44.8 and 43.9% of the Vmac and Voxy genomes were repeat sequences, respectively

(Table 1 and S3 Table). We generated full-length cDNA sequences using the ONT platform

and used these reads to predict protein coding genes in Vmac and Voxy and found 48,647 and

50,621 respectively (Table 1). We annotated the telomeres (AAACCCT), which revealed Vmac

has longer telomeres (~12 kb) than Arabidopsis (~3 kb) [32] (S5 Fig). In addition, we found

centromeres with higher order repeats and base arrays of 124 bp (S5 Fig).

The genomes of Vmac and Voxy are highly syntenic, with 80% of the genomes contained in

syntenic blocks (Fig 3A, Table 1 and S6 Fig). Highly conserved syntenic gene connections are

maintained between Vmac and Voxy, such as the tight linkage between the core circadian

clock genes LONG ELONGATED HYPOCOTYL 1 (LHY) and PSEUDO RESPONSE REGULA-
TOR 9 (PRR9) that dates back to mosses (Fig 3D). Vmac does have a tandem duplication of

LHY that is specific to Vmac. It is not found in Voxy or blueberry (S7 Fig). Within the syntenic

blocks, there is 60% fractionation (4/10 genes are lost between Vmac and Voxy) and remnants

of a previous whole genome duplication (WGDs) at 10% fractionation (Fig 3B). While both

Vmac and Voxy maintain 5% of their genomes in 2 syntenic blocks (S6 Fig), there are 54 and

70 genes that are specifically duplicated between them respectively (and retained in both).

Voxy genes retained in duplicate are overrepresented for phenolic glucoside

Fig 3. V. macrocarpon is highly syntenic to its wild relative V. oxycoccos. A) Voxy syntenic blocks (black) visualized on Vmac (grey) chromosomes.

B) Fractionation of Vmac genes (chromosomes labeled in color) across Voxy scaffolds shows 2:2 syntenic depth with 60% genes present in the most

recent whole genome duplication (WGD). C) Non-synonymous (Ka) by synonymous (Ks) base changes between Vmac and Voxy syntenic pairs reveals

genes under positive (blue; far left) and negative (green; far right) selection. D) Conserved linkage between core circadian clock genes LATE
ELONGATED HYPOCOTYL (LHY; red lines) and PSEUDO RESPONSE REGULATOR 9 (PRR9; blue line) maintained on Vmac Chr11 and Voxy

Scaffold92; other syntenic genes in the region (grey). Vmac has a tandem duplication of LHY (LHY1 and LHY2) not found in Voxy, and under positive

selection (�) in the cranberry cultivar Mullica Queen (MQ).

https://doi.org/10.1371/journal.pone.0264966.g003

PLOS ONE Domestication of the cranberry genome

PLOS ONE | https://doi.org/10.1371/journal.pone.0264966 March 7, 2022 6 / 22

https://doi.org/10.1371/journal.pone.0264966.g003
https://doi.org/10.1371/journal.pone.0264966


malonyltransferase that is involved with pest defense [33], providing a possible source of genes

for Vmac improvement.

Vmac and Voxy have different growth habits, architecture, flower and fruit sizes, as well as

distinct ecological ranges (Fig 1 and S1 Fig). We looked at the syntenic genes to determine

those under selective pressure between Vmac and Voxy and found that there were 617 genes

under positive selection (Ka/Ks>1) and 2,398 under negative selection (Ka/Ks<1) (Fig 3C and

S4 Table). The genes under negative selection are related to primary processes such as energy

acquisition and DNA repair. In contrast, the genes under positive selection are transcription

factors, architecture genes (e.g.WUSCHEL RELATED HOMEOBOX 4,WOX4), and flowering

genes (e.g. SUPPRESSOR OF OVEREXPRESSION OF CO 1, SOC1) (Fig 3C and S4 Table). Tan-

dem duplications (TDs) also provide clues as to the differences between closely related species.

Vmac and Voxy have 2,619 and 2,580 TD clusters, which is similar for other genomes of this

size range. While many of the TDs are shared between the two species, there are 37 and 41

unique GO terms that separate Vmac from Voxy respectively (S5 and S6 Tables). Vmac spe-

cific TDs were focused on GO categories associated with plant architecture, lipid metabolism,

hormone stimulus, and phenol-containing compound metabolism. In contrast, Voxy unique

TDs were more focused on response to the environment (cold, wounding), toxin catabolic

processes, and root development (S8 Fig).

Often crop wild relatives retain disease resistance genes that are lost in a crop during

domestication, resulting in the wild relatives having more or different disease resistance genes

[34]. Leveraging an approach that identifies genes with disease resistance domains [35], we

found that Voxy had 9,950 domains in 1,787 genes, while Vmac had 10,081 domains in 1,795

genes. 65% of the predicted disease resistance genes were shared between Vmac and Voxy in

syntenic blocks, which means 35% represent presence/absence variation (PAV) between the

two genomes (S7 Table). Of the disease gene PAVs, 62 and 65% were in TD regions, consistent

with each species having amplification of disease resistance genes specific to their genomes (S9

Fig).

Cranberry genome evolution

Cranberry differs in specific ways from its close relative, highbush blueberry (V. corymbosum),

such as in stature (low-growing vine vs. crown-forming bush), fruit chemistry, and berry types

(e.g. ripe cranberries are firm, high in proanthocyanidins, high in acidity [36], and low in

sugar (< 6%), while blueberries are soft and sweet (>12%). The contrast in fruit chemistry

reflects divergence in seed dispersal mechanism, i.e., abiotic (cranberries float on the water)

versus animal (blueberries are eaten by birds etc. that disperse the seeds). We clustered the

proteomes of Vmac, Voxy, blueberry, rhododendron, persimmon, tea, and kiwi to identify

both shared and cranberry-specific genes and pathways (Fig 4A). We found 8,089 orthogroups

(OGs) shared across all genomes, 6,076 specific to Vmac and Voxy, 5,223 specific to blueberry,

and 3,119 shared in the Vaccinium spp. (Fig 4B). There are fifteen overrepresented gene ontol-

ogy (GO) terms from cranberry specific orthogroups as compared to blueberry (Fig 4E and S8

Table). There were also 718 and 518 OGs specific to Vmac and Voxy respectively. The overrep-

resented GO terms from these OGs in Voxy are pantothenate biosynthesis (vitamin B5) and

plant architecture; the latter being consistent with the genes under positive selection (S4 and

S8 Tables). In contrast, the overrepresented GO terms in Voxy were focused on nitrogen pro-

cesses (S8 Table).

The chromosome-resolved Vmac genome provided the opportunity to gain a better under-

standing of the evolution of the cranberry genome. The recent chromosomal-scale assembly of

rhododendron (R. williamsianum) suggested that there are two shared WGDs in the Ericales
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lineage [27] (Fig 4C). Consistent with Vmac containing these two WGD is the 4:1 syntenic

ortholog pattern between Vmac and amborella, which is the basal plant lineage without a

WGD (Fig 4D). Based on synonymous substitutions (Ks) between syntenic ortholog pairs,

Vmac is separated from its two closest relatives with chromosome-resolved genomes, blue-

berry and rhododendron, by 5 and 22 million years ago (mya) respectively. Moreover, while

Vmac and Voxy diverged 1–2 mya, the Ks for its paralogous genes suggests the most recent

WGD occurred 58 mya, which is consistent with the timing of the WGD found in kiwi (Ac-α)

and rhododendron (Ad-β), but not persimmon (Fig 4A and 4C) that has its own WGD event

(Dd-β) [27, 37, 38]. Therefore, Vmac and Voxy contained the two WGDs Ad-β and ƛWGDs

that have shaped their genomes.

Resequencing inbreds and parents reveal regions of selection

Cranberry is a relatively young crop in terms of years post domestication, and many high

value cultivars are only modestly improved over wild selections [22]. We resequenced several

cultivars important to the cranberry breeding program to identify regions of the genome that

may still provide genetic resources for breeding as well as genes that are under selection in

these cultivars. We looked at four cultivars that represent three generations of breeding: Ste-

vens (ST), #35, Mullica Queen (MQ), and the Ben Lear (BL) parent. BL is a wild selection from

1901, while ST and #35 are first generation selections from crosses of wild selections, and MQ

is a second-generation offspring between a wild selection and #35 [26]. We also resequenced

Fig 4. Whole genome duplication evolution of cranberry. A) Phylogenetic tree built with single copy proteins across amborella (Amborella
trichopoda), arabidopsis (Arabidopsis thaliana), grape (Vitis vinifera), persimmon (Diospyros lotus), tea (Camellia sinensis), kiwi (Actinidia chinensis),
rhododendron (Rhododendron williamsianum), blueberry 4x (tetraploid Vaccinium corymbosum), Vmac, and Voxy. Circles symbolize whole genome

duplications (WGD) events. B) Upset plot of the overlap between gene families. Red, pink and blue dots emphasize some of the similarities and

differences among the Vaccinium spp. C) Synonymous substitution (Ks) distribution plot across species. D) Shared syntenic blocks compared to

amborella across species. E) Significant gene ontology (GO) terms for cranberry (Vmac and Voxy) specific orthogroups (OGs) plotted in semantic

space.

https://doi.org/10.1371/journal.pone.0264966.g004
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each generation from the BL-Self series (BLS1-BLS7) to identify the variation that was lost dur-

ing the inbreeding process. We mapped the reads, identified SNPs between the cultivars and

inbreds, and then looked for trends in variation in 250 kb bins, which highlighted the regions

of the Vmac genome with high diversity (Fig 5A and 5B).

Voxy had the greatest SNP diversity, with over 99% of the 250 kb bins across the genome

containing a significant number of unique heterozygous SNPs. In fact, only two bins were

found to have a significantly lower number of unique heterozygous SNPs for Voxy. ST was the

next genotype to exhibit a relatively high amount of unique SNPs, with nearly 45% of the bins

containing a significantly large number of unique SNPs and only 7% of the bins being signifi-

cantly low in unique SNPs. The other Vmac cultivars had a reduced number of unique SNPs.

#35 had a high unique SNP count in 16% of the bins, and a low unique SNP count in 28% of

the bins. MQ had a high unique SNP count in 11% of the bins and a low unique SNP count in

31% of bins. BL had the lowest number of unique SNPs outside of the inbred line (BL-S5) with

only 4% of the bins containing a significantly high count of unique SNPs, and a low unique

SNP count in 79% of the bins across the genome. As expected, the 5th generation self of Ben

Lear (BL-S5) had a very low number of unique SNPs, with only a single bin having a

Fig 5. Regions of high and low SNP diversity in a wild selection and breeding-derived cranberry cultivars. A) Unique SNPs identified in early ‘bred’

cultivars of cranberry (#35, MQ, and ST) compared to the wild selection (BL) and a series of inbred lines (BS1-BS7) B) Shared SNPs identified in early

cultivated lines of cranberry (#35, MQ, and ST) compared to Voxy, the wild selection (BL), and a series of inbred lines (BS1-BS7). Overrepresented GO

terms from shared SNPs across cranberry cultivars C) ST, D) #35 and D) MQ plotted in semantic space.

https://doi.org/10.1371/journal.pone.0264966.g005
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significantly high number of unique SNPs and over 99% of the bins being significantly devoid

of unique heterozygous SNPs (Fig 5A and S9 Table).

These variable regions represent standing variation in wild populations as well as regions of

early domestication in this young crop. We next assessed the functional significance of these

highly variable regions by examining the GO terms of the underlying genes (S10–S12 Tables).

The significant GO terms based on the genes in the variable regions of ST were related to plant

architecture, metabolism, and environmental response (Fig 5C and S10 Table). In contrast,

#35 and MQ both had significant GO terms related to terpene based phytoalexins (pest inhibi-

tory compounds), and nitrogen metabolism (Fig 5D and 5E, S11 and S12 Tables). #35 did have

significant GO terms in xenobiotic metabolism (metabolism of foreign chemicals) that was

not found in either ST or MQ, which must have been lost in the breeding and selection process

leading to MQ.

Underlying these regions of higher variation, are genes that are under selection, represent-

ing potential breeding targets. We looked at the selective pressure on the genes among the cul-

tivars to identify possible targets of improvement. We only found 18 genes under positive

selection (Ka/Ks >1) between BL and ST consistent with these lines being either a wild selec-

tion (BL) or a 1st-generation breeding selection (ST) (S13 Table). In contrast, #35 and MQ had

785 and 786 genes under positive selection (Ka/Ks >2) (S13 Table), although there were no

significant (P<0.01) GO terms associated with these genes. We looked at specific genes in

these lists for genes that have been the targets of selection. #35 and MQ share 34% (266) genes

under positive selection with genes associated with plant architecture and photomorphogene-

sis: EPIDERMAL PATTERNING FACTOR-like (EPFL), SHOOT GRAVITROPISM (SGR), STE-
ROLMETHYLTRANSFERASE (SMT1), and HEMERA (HMR). Moreover, MQ had additional

genes under positive selection in the photomorphogenesis, flowering and circadian pathway:

LIGHT-DEPENDENT SHORT HYPOCOTYLS (LSH), ENHANCER OF AG-4 (HUA2) and

LHY. In addition to being under positive selection, LHY is also tandemly duplicated in Vmac

(Fig 3B), suggesting it may play an important role in the domestication of cranberry consistent

with the selection pressure on core circadian genes in other crops [39].

Discussion

Here we describe an updated genome assembly for the highly inbred reference cranberry

accession Ben Lear (Vmac BL-S5) and a draft assembly for V. oxycoccos (Voxy) that is cur-

rently being used in our cranberry improvement program. The chromosome resolved Vmac

genome confirmed the two WGD in the cranberry lineage that along with the more recent

TDs have acted to shape the domesticated cranberry genome. Moreover, comparison with

Voxy and more advanced selections of Vmac, revealed that response to the environment and

plant architecture are under selection. The Vmac reference genome and Voxy draft genome

will greatly facilitate current efforts to generate improved cranberry selections.

While we were preparing this manuscript a chromosome-resolved genome for a different

cranberry accession (Stevens; ST) and a fragmented Voxy genome assembly were published

[20]. It is exciting to see genomic resources emerge for this iconic North American crop and

surely having a high-quality genome for a second accession will refine our knowledge of cran-

berry biology. We compared our reference Vmac (BL-S5) genome assembly to the ST assembly

and found that the two two were highly collinear, but consistent with the lower contig N50

length of the ST assembly, there is substantial telomere and repeat sequence missing (S10 Fig).

This is evidenced by non-linear regions in the dotplot, higher rate of non-syntenic orthologs

and missing regions around the putative centromeres. A more thorough analysis of these two

genomes will be the focus of future work.
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We reported previously that the sugars associated with the anthocyanins are distinct

between Vmac and Voxy [18]. Vmac contains primarily galactosides and arabinosides of the

aglycones cyanidin and peonidin, while Voxy contains mostly glucosides of the same agly-

cones. This difference is important as it may affect antioxidant bioavailability. The sugar moi-

ety is attached to the anthocyanidin by specific UDP-glucose:flavonoid 3-O-

glycosyltransferases (UF3GT). Within the UF3GT is the highly conserved plant secondary

product glycosyltransferase (PSPG) box. Amino acids in the PSPG box are reported to deter-

mine sugar specificity [40]. Specifically, the last amino acid in the PSPG box is reported to be

specific for the sugar substrate with histidine conferring specificity for galactose and glutamine

conferring specificity for glucose [41]. We have identified two Anthocyanidin 3-O-glycosyl-

transferases that exist distinctly in Voxy and Vmac (Vmac_055574 and Voxy_017508). The

variant in Vmac contains histidine in the active site (Chr11-43267493), consistent with the

galactosides found in Vmac anthocyanins, while Voxy has the glutamine amino acid associated

with glucose specificity (Chr185-86547). Interestingly F1 interspecific hybrids of Vmac x Voxy

have intermediate anthocyanin glycoside profiles, while about half the backcross (to Vmac)

exhibit relatively high anthocyanin glucosides [18]. We identified other anthocyanidin 3-O-

glycosyltransferases within the genomes of both Vmac and Voxy that may confer glycosylation

of other flavonoids, e.g. flavonols conjugated to galactosides and arabinosides. However, there

is only one location in the Voxy genome that contains the active site (which encodes the gluta-

mine noted above), and only two in Vmac. Although 2 active sites are identified in Vmac, only

one (that encodes the histidine) active site is located within a gene. Interestingly, just upstream

of the annotated gene in Vmac ‘active’ gene there is an additional anthocyanidin 3-O-galacto-

syltransferase that is fragmented and lacks the complete active site, possibly explaining the dra-

matic differences in the anthocyanins between the two species.

Several genes that may play key roles in pathogen resistance have been identified being

under selection pressure in the Vmac genomes. Both #35 and MQ show significant selection

pressure for PGIP2, believed to play an important role in resistance to microbial colonization

[42]. SMT1, a methyltransferase involved in sterol biosynthesis, is influential for innate immu-

nity and the formation of FLS2 receptor kinase clustering (flagellin sensing 2) [43].HIR3 is

part of the hypersensitive response (HIR) gene family that has been shown to act in the defense

of microbial infection as well as influencing cellular response during viral infection [44]. LYK4
(Lysin motif domain receptor-like kinase 4) was shown to be an important plant defense com-

ponent against fungal infection and is a key signaling component in plant chitin response [45].

Other genes found among the lines under selection pressure includedWRKY65,WRKY29,

PALM1, andMLO. While these specific genes were found in both #35 and MQ, there are sev-

eral unique domains found in the wild relative Voxy that might offer further opportunity for

incorporation into agricultural varieties.

Interestingly we also found defense related genes under selection pressure to be differen-

tially expressed in the transcriptomes of other Vaccinium species during herbivory stress [46,

47]. These genes included pleiotropic drug resistance transporter ABCG36, which provides

pathogen resistance in Arabidopsis [48, 49] and FAH1, also identified to be an important com-

ponent of stress response in Arabidopsis [50]. Additionally, the serine/threonine-protein

kinase D6PKL2, part of the auxin response pathway, is upregulated during herbivory in chick-

pea as well as bilberry [47, 51]. In addition to pathogen resistance, several genes in the various

Vmac lines were identified under selection pressure for stress tolerance. One of the key stress-

ors includes drought stress, which is of particular importance to cultivated cranberry as a large

portion of time in dormancy is spent under drought conditions. These genes include CIPK2
[52], AVP1 [53], GAI [54], CPK20 [55], and ABI4 [56]. Wax production on the fruit surface is

an important trait for the protection against pathogens, UV damage, and for limiting moisture
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loss. We identified three genes that are related to wax production and UV protection that were

under selection pressure in the Vmac lines. These genes included PALM1 [57], KCS2 [58],

both relating to epicuticular wax production, andMSH2 which is required for mitigation of

UV-B light damage [59].

Changes in circadian components could be pressured due to the latitudes at which Voxy

and Vmac reside. Ranges at higher latitudes could necessitate a greater amount of flexibility in

the core circadian oscillator to compensate for large swings in light dark cycles throughout the

course of the year. LHY is a key component of the core circadian oscillator, and LHYmutants

have shown to have short photoperiods [60], while PRR9 is an important component in the

entrainment of the core oscillator to changes in photoperiod [61]. Taken together, changes in

these circadian components could have larger downstream effects on seasonal flowering and

fruit development [61–63].

Several other crop species have shown that circadian control and adaptation of photoperiod

is important for both domestication and augmentation of desired traits, including flowering

time, yield, and nutrient content [64–66]. The domestication of pea has been linked with varia-

tion in circadian genes for photoperiod response, including HR and ELF3 [67], which are

important interaction partners of LHY and PRR9 for the regulation of photoperiod response

[68, 69]. This response allowed peas (Pisum sativum) to be cultivated at different latitudes,

much like the differences between wild Voxy and Vmac. Additionally, flowering time expres-

sion is altered in domesticated cucumber when grown at varying latitudes [70]. Although we

did not find the gene FT, a major influencer of flowering time, to be different between Vmac

and Voxy, LHY is a key component in its regulation [62].

Material and methods

Plant growth

The cranberry cultivar Ben Lear (Vmac) was selected from the wild in Berlin, Wisconsin

(43.9680˚ N, 88.9434˚ W) in 1901 [10]. To reduce heterozygosity, a fifth-generation selfing

cycle inbred clone (F� 0.97) of ‘Ben Lear’ designated BL-S5 (accession CNJ95-125-1) was

selected for genome sequencing. The Voxy sequenced and used for hybridization with Vmac

was collected near Gakona, Alaska (62.3019˚ N, 145.3019˚ W) in 1996 and designated NJ96-20

[15]. The hybrid (Vmac X Voxy) was the result of a cross (‘Stevens’ x NJ96-20) made by N.

Vorsa in 1998, designated CNJ98-325-33. The ploidy of all cultivars and accessions used was

confirmed by flow cytometry [22]. All plants were maintained in 6 inch pots containing sandy

soil and fertilized with azalea mix for acidic plants. While maintained in a greenhouse, plants

were allowed to winter chill and developed as ambient temperature increased.

DNA extraction

Fresh leaf tissue of Vmac (CNJ95-125-1; BL-S5), Voxy (NJ96-20), and the hybrid (Vmac X

Voxy, CNJ98-325-33) was stored in the dark for 3 days to reduce the polysaccharides. Tissue

was then flash frozen in liquid nitrogen and ground into fine powder using mortar and pestle.

High molecular weight (HMW) DNA was extracted with a modified CTAB protocol, opti-

mized for cranberry [71]. HMW DNA was checked for quality on a Bioanalyzer (Agilent,

Santa Clara, CA, USA) and length on a standard agarose gel. HMW DNA was used for library

construction and sequencing on the long read Oxford Nanopore Technologies (ONT, Oxford,

UK) platform and the Illumina (San Diego, CA) short read platform.

PLOS ONE Domestication of the cranberry genome

PLOS ONE | https://doi.org/10.1371/journal.pone.0264966 March 7, 2022 12 / 22

https://doi.org/10.1371/journal.pone.0264966


Sequencing

HMW DNA was first sequenced on an ONT MinION sequencer to confirm quality for long

read Nanopore sequencing. Unsheared HMW DNA was used to make ONT ligation-based

libraries. Libraries were prepared starting with 1.5ug of DNA and following all other steps in

ONT’s SQK-LSK109 protocol. Final libraries were loaded on an ONT flowcell (v9.4.1) and run

on the GridION. Bases were called in real-time on the GridION using the flip-flop version of

Guppy (v3.1). The resulting fastq files were concatenated (fail and pass) and used for down-

stream genome assembly steps. Illumina 2x150 bp paired end reads were generated for genome

size estimates and polishing genome long read assemblies. Libraries for Illumina sequencing

were prepared from HMW DNA using NEBnext (NEB, Beverly, MA) and sequenced on the

Illumina NovaSeq (San Diego, CA). Illumina short reads for V.macrocarpon (CNJ95-125-1;

BL-S5) were accessed from NCBI (PRJNA245813).

Genome size prediction by k-mer frequency

Raw Illumina reads for Vmac (CNJ95-125-1; BL-S5; PRJNA245813), Voxy (NJ96-20) and the

hybrid (Vmac X Voxy) were analyzed for k-mer frequency (k = 31) using Jellyfish (count -C -s

8G -t 4 -m 31 and histo) [72]. Genome size was estimated and visualized using in house analy-

sis scripts as well as GenomeScope [21]. While Vmac and Voxy had single peaks consistent

with homozygous genomes, the hybrid had two peaks with the left peak bigger than the right

peak, consistent with tetraploidy or the fact that the two genomes are distinct (S1 Table and S2

Fig).

Genome assembly

Resulting ONT fastq files passing QC (fastq_pass) were assembled using our previously

described long read assembly pipeline [24]. Briefly, fastq files were filtered by length for the

longest 30x using an Illumina K-mer-based genome size estimate [73]. The 30x fastq files were

overlapped using minimap2 [74], the initial assembly was generated with miniasm [75], the

resulting graph (gfa) was visually checked with Bandage [76], the assembly fasta was extracted

from the gfa (awk ’/^S/{print ">"$2"\n"$3}’ assembly_graph.gfa | fold >assembly_graph.fasta),

the consensus was generated with three (3) iterative cycles of mapping the 30x reads back to

the assembly with minimap2 followed by racon [77], and the final assembly was polished itera-

tively three times (3) using 2x150 bp paired-end Illumina reads mapped using minimap2

(>98% mapping) followed by pilon [78]. The resulting assemblies were assessed for traditional

genome statistics including assessing genome completeness with Benchmarking Universal Sin-

gle-Copy Orthologs (BUSCO) (Table 1 and S2 Table) [79]. The genome graphs were visualized

using bandage (Fig 1) [76].

Genome scaffolding

Cranberry (Vmac) is closely related (i.e. it is in the same genus) to V. corymbosum (highbush

blueberry), which recently had an updated chromosome-scale genome release [25]. We lever-

aged the haplotype-resolved blueberry genome to assess the quality of our V.macrocarpon
assembly by aligning our version 1 contig assembly (Vmac_v1) to haplotype 1 of blueberry at

both the DNA level and the protein level. Vmac_v1 was aligned to Vcor_hap1 using minimap2

[74], and visualized the dotplot. Vmac_v1 was also aligned to V. corymbosum at the protein

level using both CoGe [80], as well as MCscan (https://github.com/tanghaibao/jcvi/wiki/

MCscan-(Python-version)) (S3 Fig). Since the contig contiguity (N50 length) was 15 Mb for

the Vmac_v1 assembly, which represents chromosome arms, we leveraged the synteny with
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the chromosome resolved Vcor_hap1 genome to orient Vmac_v1 contigs into super-scaffolds

(chromosomes). The final Vmac_v2 assembly revealed several rearrangements between cran-

berry and blueberry, which were part of the original contig structure of Vmac_v1 (S3 Fig). The

Vmac_v2 chromosome assembly was versified using a high-density genetic map [26]. Linkage

group (LG) specific anchors (>100 bp sequence) were created from the previous genome

assembly [19] and used to validate order and orientation of Vmac_2 scaffolded contigs.

Gene prediction and annotation

Genomes were first masked for repeat sequence before predicting protein coding genes.

Repeat sequence was identified using the Extensive de-novo TE Annotator (EDTA) pipeline

[31] (S3 Table). ONT derived cDNA reads were aligned to the reference using minimap2 and

then assembled into transcript models using Stringtie. We additionally leveraged two Illumina

paired end cDNA libraries from SRA (SRR9047913, SRR1282422) as part of gene predictions.

The soft masked genome was then used to predict protein coding genes using the Funnanno-

tate pipeline (https://funannotate.readthedocs.io/) leveraging the long read based transcript

models and the illumina short read cDNA as empirical training data (Table 1). The resulting

gene predictions were annotated using the eggNOG mapper [81].

Disease resistance

The complete CDS regions of Voxy and Vmac were analyzed through PRGdb’s DRAGO 2

API [35] to identify disease resistance motifs and further predict disease resistance gene

annotations.

Pollen staining

Pollen stainability, with 1% lactophenol cotton blue stain, was employed to assess gamete fertil-

ity in Vmac and Voxy and the hybrid F1 interspecific progeny. Pollen was dusted on a micro-

scope slide in a drop of stain and cover slipped. Pollen tetrads were observed at 400x

magnification as described [82]. Pollen was determined to be viable if stained. Tetrads (pollen

in Vaccinium spp. is shed with the 4 products of a pollen mother cell, as a tetrahedron). Tetrads

were scored for 5 possible tetrad classes; four, three, two, one, or zero stained (viable) pollen

grains.

Gene family analysis

Gene family analysis was performed across several closely related species as well as several

more distantly related species using OrthoFinder with default settings [83]. Arabidopsis thali-
ana (Araport11), Amborella trichopoda (v1) and Vitis vinifera (grape; v2.1) were accessed on

Phytozome (https://phytozome-next.jgi.doe.gov/). The highbush blueberry (Vaccinium corym-
bosum) genome was accessed from CoGe (id34364) [25]; the rhododendron (Rhododendron
williamsianum) genome was accessed from CoGe (id51210) [27], the persimmon (Diospyros
oleifera) genome was accessed from http://persimmon.kazusa.or.jp [28], the tea (Camellia
sinensis) genome was accessed from http://tpia.teaplant.org) [29] and the kiwi (Actinidia chi-
nensis) genome was accessed from ftp://bioinfo.bti.cornell.edu/pub/kiwifruit [30]. Colored

blocks in the figure generated (Fig 2B) symbolize chromosomes or scaffolds while the lines

(grey) symbolize syntenic regions between genomes. The Upset plot was generated from the

orthogroup overlap file. The phylogenetic tree was constructed from the species_tree output

from Orthofinder [83].
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Whole genome duplication (WGD) analysis

The genomes described in the gene family analysis were used for WGD analysis. Genomes for

A. thaliana, A. trichopoda, grape, blueberry, rhododendron, persimmon, tea, and kiwi were

aligned at the protein level using lastal in the MCscan python framework to calculate Ks and

identify percentage of syntenic blocks across the genome pairs (https://github.com/

tanghaibao/jcvi/wiki/MCscan-(Python-version)). Similar calculations were performed with

genomes in CoGe [80] and FracBias was leveraged to confirm or identify syntenic block num-

bers underlying WGD events [84]. Karyotype figures were generated using MCscan python.

Syntenic analysis

Syntenic analysis was performed between Vmac and Voxy using SyMAP v5 [85]. Data from

the genome assembly as well as annotations of both genomes were imputed into SyMAP,

though contigs of size less than 100 kb were not analyzed, while the otherwise default parame-

ters were used to calculate synteny (-min_dots = 7 -minScore = 30 -minIdentity = 70 -tile-

Size = 10 -qMask = lower -maxIntron = 10000). The subsequent analysis of overlapping

syntenic blocks was performed with python scripting, where concurrent genome blocks of

Voxy that overlapped the same location of Vmac were identified and gene annotation infor-

mation of Voxy was pulled for further review.

KaKs pressure

KaKs differences between Vmac and Voxy were calculated using gKaKs [86]. Genes under

selection pressure (dN/dS>1) were cataloged for further analysis. GO terms were associated

with genes by cross referencing the annotated gene name and the available data in the Uniprot

database. Those GO terms associated with genes under selection pressure were collected for

comparison. In addition, we compared two cultivars that are considered early domesticated

varieties; Stevens (ST), #35, and a 3rd, later-domesticated variety Mullica Queen (MQ), with

the wild reference, Ben Lear (BL). We identified differential GO terms between wild and

domesticated lines, as well as several genes under selection pressure.

Resequencing data analysis

Multiple generations of the BL inbreeding line, as well as parents from several other lines

important to the cranberry breeding program, were sequenced on the Illumina NGS platform.

These included ‘Stevens’, ‘#35’, ‘Mullica Queen’, ‘Ben Lear’, a 5th generation self of ‘Ben Lear’

(BL-S5), and a wild accession of Voxy. Pedigree information of the resequenced parental lines

can be found in [26]. Paired-end Illumina reads were aligned to the newly constructed Vmac

reference genome (Vmac-v2) using BWA-MEM [87]. Reads were sorted and duplicate reads

were removed from alignment files using samtools sort and rmdup respectively. SNPs were

identified using samtools mpileup and bcftools call [88].

Further analysis was performed to identify comparative regions of high and low SNP den-

sity between lines. A script was generated in Python where heterozygous SNPs of each line,

that were unique in both SNP position and nucleotide change for a single individual, were

placed into 250,000 bp bins along the genome. The variant data from the genomes of Voxy as

well as the genomes of the Ben Lear inbred lines (BL-S1 to BL-S7) were not used to determine

uniqueness of SNPs compared to the rest of the Vmac lines since Voxy as well as the inbred

lines would show disproportionate amounts of unique and non-unique SNPs respectively. Sig-

nificant variation of unique SNP density was calculated through bootstrapping using the aver-

age SNP data of four representative varieties (Stevens, #35, Mullica Queen, and Ben Lear).
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1,000 iterations were performed, where the aforementioned pooled SNPs were randomly

assigned a bin, with the 95th percentile of bin maximums constituting the bounds of high SNP

density and conversely, the 5th percentile of bin minimums constituting the bounds for low

SNP density.

Supporting information

S1 Fig. V. macrocarpon and V. oxycoccos distribution and flower size comparison. Diploid

V.macrocarpon is found in the Northeastern parts of the United States (US), while the diploid

V. oxycoccos is found in the Northwestern US and Canada.

(TIF)

S2 Fig. V. macrocarpon and V. oxycoccos genomes size estimated by K-mer. Genome sizes

were estimated by K-mer (k = 19) frequency using Illumina paired short reads (2x150 bp) for

A) V.macrocarpon (Vmac), B) V. oxycoccos (Voxy), and C) the F1 hybrid. K-mers were

counted with Jellyfish and histogram was plotted to find the peak.

(TIF)

S3 Fig. The V. macrocarpon (Vmac) genome is highly syntenic with chromosome-resolved

blueberry (V. corymbosum) genome. A) Blueberry haplotype A (BlueberryA) was aligned to

the Vmac assembly and are presented in the order of their assigned chromosome numbers. B)

Dot plot based on protein alignments between the haplotype-resolved tetraploid blueberry

(blueberry4x) and Vmac. C) Dot plot based on protein alignments between the blueberry hap-

lotype A (blueberryA) and Vmac.

(TIF)

S4 Fig. V. oxycoccos (Voxy) contig assembly and graph. A) Summary of the Voxy contig

assembly statistics. The Voxy assembly was 486 Mb, had a N50 length of 1.8 Mb, with the lon-

gest contig being 11.8 Mb. B) The assembly graph of Voxy reveals low heterozygosity due to

the lack of extensive branching.

(TIF)

S5 Fig. V. macrocarpon (Vmac) centromere and telomere arrays. A) Tandem repeats were

identified using Tandem Repeat Finder (TRF) and plotted by repeat unit size, which revealed a

124 bp centromere base unit with a 248 bp higher repeat (HOR) consistent with a centromere

array. B) A similar centromere array with a base unit of 124 bp and HOR of 248 bp was identi-

fied in Voxy. C) Telomere arrays with the 7 bp base unit (AAACCCT) were identified in the

Vmac assembly, which revealed an average telomere length of 12 kb.

(TIF)

S6 Fig. V. macrocarpon (Vmac) and V. oxycoccos (Voxy) are highly collinear. A) The Voxy

scaffolds were aligned (protein) to the Vmac chromosomes revealing the two genomes are

highly collinear with remnants of a recent whole genome duplication (WGD). Vertical and

horizontal grey lines represent breaks in Chromosomes (Vmac) and scaffolds (Voxy) B) Synte-

nic depths between Vmac and Voxy suggest a 1:1 pattern, although there are remnants of a

past WGD at 4–5%.

(TIF)

S7 Fig. Tight linkage between core circadian clock genes is shared between cranberry and

blueberry, but LHY tandem duplication (TD) is specific to cranberry. The haplotype-

resolved blueberry genome was mapped to the Vmac genome to identify syntenic blocks (grey

lines). Blueberry has the core circadian clock linkage of LHY (red lines)-PRR9 (blue lines) on
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three of its haplotypes, but it has been lost on haplotype B on Scaffold6. The LHY tandem

duplication is specific to the Vmac lineage since it is not found in Voxy (Fig 2) nor blueberry.

(TIF)

S8 Fig. Overrepresented gene ontology (GO) terms found in unique tandem duplications

(TDs) for V. macrocarpon (Vmac). A) V. oxycoccos (Voxy) TDs unique GOs are plotted in

semantic space. B) Vmac TDs unique GOs are plotted in semantic space. Significance is col-

ored with red being the most significant and blue the least significant. The size of the circle

represents the number of elements.

(TIF)

S9 Fig. Venn diagrams of overlaps between predicted disease resistance genes and tandem

duplications (TDs) in the V. oxycoccos (Voxy) and V. macrocarpon (Vmac) genomes. A)

Voxy TD overlaps with predicted disease resistance genes, and B) disease resistance genes spe-

cific to Voxy (no syntenic ortholog in Vmac). C) Vmac TD overlaps with predicted disease

resistance genes, and D) disease resistance genes specific to Vmac (no syntenic ortholog in

Voxy).

(TIF)

S10 Fig. Comparison of the inbred V. macrocarpon Ben Lear S5 (BL) and the recently pub-

lished Stevens (ST). A) Dotplot between BL and ST based on protein-protein comparisons

reveals differences in chromosome size between the two access but high collinearity. Green

area for ST are the contigs not included in the chromosomes. B) Syntenic ortholog patterns

between BL and ST reveals that the ST genome is more fragmented than the BL genome due to

more (20% vs 7%) genes with zero (0) syntenic blocks. C) Chromosome alignment between BL

and ST with grey lines representing syntenic blocks. The missing regions between the two

assemblies are centromere and repeat regions missing in ST.

(TIF)

S1 Table. Cranberry genome size estimates by k-mer frequency.
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S2 Table. Cranberry genome assembly BUSCO scores.
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S3 Table. Cranberry repeat prediction.
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S4 Table. Details of genes under positive selection between Vmac and Voxy.
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S5 Table. Gene ontology (GO) terms for tandem duplicated (TD) genes.
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S6 Table. Gene ontology (GO) terms for tandem duplicated (TD) genes unique to Vmac

and Voxy.

(XLSX)

S7 Table. Disease resistant genes predicted by DRAGO2 in syntenic blocks between Vmac

and Voxy.
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S8 Table. Orthogroup (OG) overrepresented gene ontology (GO).
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S9 Table. High and low SNP region gene numbers for cranberry cultivars and inbred

series.

(XLSX)

S10 Table. Stevens (ST) all high SNP regions significant GO terms.

(XLSX)

S11 Table. #35 all high SNP regions significant GO terms.

(XLSX)

S12 Table. MQ all high SNP regions significant GO terms.
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S13 Table. Genes under positive selection between important cranberry breeding cultivars

and the wild selection Ben Lear (BL).

(XLSX)
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