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Cognitive aging, especially cognitive control, and processing speed aging have been
well-documented in the literature. Most of the evidence was reported based on cross-
sectional data, in which inter-individual age effects were shown. However, there have
been some studies pointing out the possibility of overlooking intra-individual changes
in cognitive aging. To systematically examine whether age-related differences and age-
related changes might yield distinctive patterns, this study directly compared cognitive
control function and processing speed between different cohorts versus follow-up
changes across the adult lifespan. Moreover, considering that cognitive aging has been
attributed to brain disconnection in white matter (WM) integrity, this study focused on
WM integrity via acquiring diffusion-weighted imaging data with an MRI instrument
that are further fitted to a diffusion tensor model (i.e., DTI) to detect water diffusion
directionality (i.e., fractional anisotropy, FA; mean diffusivity, MD; radial diffusivity, RD;
axial diffusivity, AxD). Following data preprocessing, 114 participants remained for further
analyses in which they completed the two follow-up sessions (with a range of 1–
2 years) containing a series of neuropsychology instruments and computerized cognitive
control tasks. The results show that many significant correlations between age and
cognitive control functions originally shown on cross-sectional data no longer exist
on the longitudinal data. The current longitudinal data show that MD, RD, and AxD
(especially in the association fibers of anterior thalamic radiation) are more strongly
correlated to follow-up aging processes, suggesting that axonal/myelin damage is a
more robust phenomenon for observing intra-individual aging processes. Moreover,
processing speed appears to be the most prominent cognitive function to reflect DTI-
related age (cross-sectional) and aging (longitudinal) effects. Finally, converging the
results from regression analyses and mediation models, MD, RD, and AxD appear to
be the representative DTI measures to reveal age-related changes in processing speed.
To conclude, the current results provide new insights to which indicator of WM integrity
and which type of cognitive changes are most representative (i.e., potentially to be
neuroimaging biomarkers) to reflect intra-individual cognitive aging processes.
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INTRODUCTION

Cognitive aging has been extensively investigated over the past
two decades. One of the critical reasons for this research trend
is due to the crisis of population aging which encourages
researchers paying attention to evaluate the trajectories of
cognitive function decline across chronical age to help people
age gracefully. One pronounced diagram showing behavioral
performance on measures of processing speed, working memory,
long-term memory, and world knowledge was first reported by
Park et al. (2002), in which while many cognitive functions, such
as speed, spatial orientation, problem solving, numerical ability,
verbal memory were significantly declined with age, whereas
verbal ability (e.g., vocabulary) did not show decline with age.
However, these trajectories of functional decline with age was
based on the cross-sectional aging data (Light, 1991; Park, 2002;
Park et al., 2002; Salthouse, 2004), it is still unclear whether
similar results could also be seen in longitudinal (or follow-
up) data. Literature has highlighted an important distinction
between age effects and aging effects (see Rugg, 2017). An
age effect refers to a scenario in which a dependent variable
differs between groups of individuals with different mean ages
(such as contrasting a younger group with an older group)—
this is known as a cross-sectional design. Whereas an aging
effect refers to a scenario in which we observe an individual’s
performance changes over time—this is known as a longitudinal
or follow-up design. Rugg (2017) has indicated several inferring
limitations regarding age-related cognitive aging using a cross-
sectional design. Some studies have also provided evidence
in showing discrepant results coming from cross-sectional
versus longitudinal data, hence highlighting the importance of
longitudinal evidence to reveal actual aging effect in cognition
(Hedden and Gabrieli, 2004; Hsieh and Yang, 2021).

Brain Structural Connectivity and
Cognitive Control in Age/Aging
Cognitive aging has been attributed to brain disconnection in
white matter integrity, in which a disruption of communication
between cortical regions can result in cognitive dysfunction
(O’Sullivan et al., 2001; Bartzokis, 2004; Andrews-Hanna
et al., 2007; Fjell et al., 2016; Madden et al., 2017). For
human studies, white matter (WM) integrity can be measured
via acquiring diffusion-weighted imaging (DWI) data with a
magnetic resonance imaging (MRI) instrument that are further
fitted to a diffusion tensor model (i.e., diffusion tensor imaging;
DTI) to detect water diffusion directionality, which in turn shows
the microstructural architecture of tissue. Through DTI fitting
model (Behrens et al., 2003), one can derive some indicators
reflecting the degree of tissue integrity, such as fractional
anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD),
and axial diffusivity (AxD). DTI can detect microstructural
WM abnormalities preceding the lesions (de Groot et al., 2013;
Maillard et al., 2014), and further reveal the neurobiological
mechanism(s) of axonal fiber damage (Le Bihan et al., 2001;
Vernooij et al., 2009). Specifically, it has been shown that
lower FA and higher MD indicate the overall reduction in

WM fiber integrity (Le Bihan et al., 2001), and elevated RD
and AxD may, at least in part, reflect axonal demyelination
and/or degeneration (Song et al., 2003; Klawiter et al., 2011).
By means of these indicators, literature has shown a decrease
in FA and increase in MD with increasing age, suggesting a
decreased WM integrity with age (Salat et al., 2005; Yap et al.,
2013; Lebel et al., 2012; Sexton et al., 2014; de Groot et al.,
2015; de Lange et al., 2016; Marques et al., 2016). In addition,
literature has also shown a significant relationship between WM
integrity and cognitive performance in older adults (Bennett and
Madden, 2014; see Madden et al., 2012 for a review). Although
these previous studies have reported the association between
WM integrity and age, and between WM integrity and cognitive
performance, most studies used a cross-sectional design and
did not provide direct evidence showing whether WM integrity
plays a mediation role in the association between age/aging and
cognitive performance. Furthermore, some existing longitudinal
studies focused on specific WM tracts rather than a whole brain
WM integrity. Therefore, the primary aim of this study was
to fill the research gap by incorporating both cross-sectional
(age) and follow-up (aging) designs to examine the relationship
among age/aging, WM integrity measured by DTI metrics
(e.g., FA, RD, MD, and AxD), and cognitive performance. We
hypothesized that the results for age-related differences might
be different from age-related changes due to cohort and other
factors (Hedden and Gabrieli, 2004; Rugg, 2017; Hsieh and Yang,
2021).

For cognitive performance, in this study, we focused
on processing speed and cognitive control abilities. This is
because the prominent cognitive aging manifests in general
slowing (Madden and Allen, 1995) and cognitive control
dysfunction (Craik and Byrd, 1982). Furthermore, the age-
related deterioration of WM integrity has been observed to be
particularly vulnerable to frontal regions (Davis et al., 2009;
Bennett et al., 2010; Burzynska et al., 2010). Therefore, we
hypothesized that WM integrity should be related to age-related
cognitive control changes. To directly test this hypothesis, we
also employed a mediation model for longitudinal data to see if
WM integrity mediates age-related changes in processing speed
and/or cognitive control. Cognitive control function is a broad
term. In this study, we adapted the definition by Miyake et al.
(2000) which suggests components of inhibition (e.g., measured
by a stop-signal task; to note, the inhibition component was
later-on modified as a common component), updating (e.g.,
working memory measured by a n-back task), and shifting
(e.g., measured by a paper-and-pencil Trail Making Test (TMT)
and a computerized task-switching paradigm) components. As
for measuring processing speed, we used a commonly used
neuropsychological test, Grooved Pegboard Test (GPT) to collect
visuo-motor action speed. In addition, we derived some basic
processing speed indicators from TMT form A, and from
some computerized cognitive control task in which the basic
processing conditions are included (e.g., go trials’ reaction time in
a stop-signal task; repeat trials’ reaction time in a task-switching
paradigm). We used both original task’s performance indexes and
the transformed indexes suggested by Miyake et al. (2000), please
see detail in the “Materials and Methods” Section.
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Using the definitions of cognitive control based on Miyake’s
model, some specific issues could be addressed in this study.
First, regarding the association between age/aging and cognitive
control (including processing speed), we would like to know what
type of cognitive control functions are more closely related to
age/aging. Second, regarding the association between age/aging
and DTI measures, we would like to examine which WM
tracts and which WM integrity’s indicators (i.e., FA, MD, RD,
and AxD) would be more closely related to age/aging. Third,
regarding the association between cognitive control functions
(including processing speed) and DTI measures, we would like
to examine which cognitive performance is more closely related
to which WM integrity’s indicator. Fourth, whether age-related
changes in WM integrity would mediate the association between
aging and cognitive performance. Since these four issues have
not been directly explored previously, we did not set up any
specific predictions, but simply hypothesized that there should
be different patterns among different types of cognitive control
functions and among different DTI metrics with age/aging effects.

MATERIALS AND METHODS

Participants
We used advertisements on the Internet and bulletin boards
to recruit hundreds of right-handed participants from southern
Taiwan. Participants’ medical information including neurological
history and mental health status were collected via a self-
report. The participants included in this study all reported no
history of any psychiatric or neurological disorders and they also
past the screening criteria of the two neuropsychological tests,
including the Montreal Cognitive Assessment (MoCA) to screen
for cognitive impairment if the scores were ≤25 (Nasreddine
et al., 2005; Chinese Version: Tsai et al., 2012), and the Beck
Depression Inventory-II (BDI-II; Beck et al., 1996; Chinese
version published by Chinese Behavioral Science Corporation)
to screen for depression if the scores were ≥14. A total of 121
qualified participants completed the two follow-up sessions (with
a range of 1–2 years). In each session, participants completed
the questionnaire of demographic information, computerized
cognitive tasks, neuropsychological tests for measuring cognitive
control and processing speed, and magnetic resonance imaging
(MRI) acquisitions. Four participants were excluded because
of technical problems with MRI or incomplete data. Three
participants were further excluded because their DTI’s measures
>5 standard deviations. Furthermore, all remaining 114
participants’ images passed quality control. We also visually
inspected all images after normalization and co-registration steps.
This ensures that there is no serious warping. The mean age
of the remaining 114 participants (females’ ratio = 60.53%) was
48.72 ± 16.54 years [timepoint 1 (TP1); 20.25–77.92 years] and
50.49± 16.64 years [timepoint 2 (TP2); range 21.92–79.83 years].
See Table 1 for the participants’ age range distribution and
demographic information.

The study was carried out in accordance with the
Declaration of Helsinki and the study protocol was approved
by Ethical Committee at the National Cheng Kung University

TABLE 1 | Participants’ demographic information and DTI measures for time point
1 (TP1) and time point 2 (TP2) and their corresponding paired t-tests.

TP1 TP2 Paired t-test
(p-values)

N 114 114 N/A

Age 48.72 (±16.54)
range:
20.25∼77.92

50.49 (±16.64)
range:
21.92∼79.83

0.000

Gender (F%) 60.53% 60.53% N/A

Education (Y) 15.02 (±2.65) 15.02 (±2.65) N/A

BDI-II 4.97 (±4.18) 5.39 (±6.06) 0.440

MoCA 27.63 (±1.86) 28.97 (±1.25) 0.000

FA 0.4387 (±0.01593) 0.4389 (±0.01606) 0.624

MD 0.760*10−3

(±0.022*10−3)
0.763*10−3

(±0.023*10−3)
0.000

RD 0.560*10−3

(±0.025*10−3)
0.563*10−3

(±0.026*10−3)
0.003

AxD 1.159*10−3

(±0.020*10−3)
1.166*10−3

(±0.021*10−3)
0.000

p-values marked in bold are those also passing the Bonferroni correction method.
BDI-II, Beck Depression Inventory; MoCA, Montreal Cognitive Assessment; FA,
fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity; AxD, axial diffusivity.

(reference number #104-004). Participants received monetary
compensation for their participation after the completion of all
assessments (NTD$1,500 per session).

Computerized Cognitive Tasks for
Measuring Cognitive Control
Performance and Processing Speed
General Instruments for Visual Presentation
The visual stimuli used in the following computerized tasks were
programmed using Presentation software, and were displayed on
a 17-inch monitor with 1024∗768 resolution.

Stop-signal task
The stop-signal task was a modified version of Logan’s paradigm
(Logan et al., 2014). Participants were asked to fixate at the
visual stimulus on the screen and use their index fingers of both
hands to press either the “z” or “/” stroke on the keyboard when
target “O” or “X” was presented. Participants were told to react
to the stimulus as quickly and accurately as possible. On some
occasions, a “beep” sound with a duration of 100 ms which
served as a “stop” signal might be delivered following a target
with a delay (i.e., stop-signal delay; SSD) initially set at 150 or
350 ms, and adjusted with a staircase tracking procedure (i.e.,
decreased by 50 ms following a failure stop and increased by
50 ms following a successful stop). Participants were informed
to ignore this sound in the first practice session, so that they
could be familiar with quickly responding to the stimuli. In the
second practice session, participants were told to immediately
stop their intended action once they heard the “beep” sound.
We reminded participants with the instruction of “Do not hold
your responses while waiting for a beep sound.” Following the
two practice sessions, there were four experimental blocks which
contained randomly intermixed 40 stop trials (i.e., trials followed
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by a stop sound) and 100 go trials without a stop signal. The whole
duration for this task was about half an hour.

The stop-signal reaction time (SSRT) indexing the stopping
efficiency was calculated by subtracting the median SSD from the
median RT of the go trials. The larger the SSRT indicates the
worse stopping efficiency.

Task-switching paradigm
Task-switching abilities were measured by a modified paradigm
from Karayanidis et al.’s (2003) study. Each trial contained a
cue (non-informative or informative) with a duration of 600 ms,
and followed by a target display with an interval of 1,000 ms
(i.e., cue-target interval, CTI). An informative cue was a colored
cross with either a warm color (red or orange) or a cold color
(green or blue) indicating which is the forthcoming task: a letter
classification or a number classification task. A non-informative
cue was colored in gray, which provided no information about
the forthcoming task type. The target display contained a pair
of two stimuli, in which there were two different pair types:
an incongruent pair and a neutral pair (50% each in a mixed
task block). An incongruent pair contained a Chinese letter
and an Arabic number, and a neutral pair only contained one
of them and paired with a symbol sign (e.g.,%, #, @, or $).
The Chinese letter was one of eight Chinese letters which were
retrieved from the Ten Celestial Stem system (i.e., Tiangan).
Participants were asked to respond to the stimulus display using
either their right or left index finger that was mapped to the
first-half/second-half or odd/even for Chinese-letter and Arabic-
number tasks, respectively.

All participants practiced six blocks before the experiment.
The experiment contained 12 blocks: (1) two single-task blocks
which contained only Arabic numbers (i.e., a neutral pair) for a
sequence of 70 trials per block; (2) two single-task blocks which
contained only Chinese letters (i.e., a neutral pair) for a sequence
of 70 trials per block; (3) four mixed informative task blocks of
70 trials per block (with a switch rate around 33.3%); and (4) four
mixed non-informative task blocks of 70 trials per block (with
a switch rate around 33.3%). The entire experiment lasted for
about 35∼40 min.

We calculated the switch cost by subtracting the average RT of
the repeat trials in the mixed-task blocks from the average RT of
the switch trials in the mixed-task blocks.

Spatial n-back task
In this study, we adapted a spatial version of 1-back and 2-
back tasks to measure working memory updating function. The
spatial n-back is a single n-back task based on spatial locations as
the stimuli stream. For example, in this study, the stimuli were
presented within a 3-by-3 grid in each trial. One of the grid
squares was randomly assigned to be filled with blue. In a 1-
back task, participants were asked to continuously memorize the
position of the blue grid square shown in the previous trial and to
match it to the current trial’s position of the blue grid square. In
a 2-back task, participants were asked to continuously memorize
the position of the blue grid square in the previous two trials and
to compare it to the current trial’s position of the blue grid square.
If the blue grid square appeared in the same location as instructed

(either matched to the previous one trial’s grid position in a 1-
back task or the previous two trial’s grid position in a 2-back task),
participants pressed the “F” button using their left index finger. If
the blue grid square appeared in a different location, participants
pressed the “J” button using their right index finger. Each grid
stimulus appeared for 500 ms followed by an interstimulus
interval (ISI) of 2,000 ms. Participants completed one practice
block with performance feedback, and three experimental blocks
which contained 21 trials per block. This entire experiment lasted
for 30 to 40 min.

We calculated performance sensitivity (d′) as a working
memory updating index, which was based on the hit rate (H)
and false-alarm (F) rate. We first transformed the raw data into
z scores. The formula is as follows: d′ = Z(H) − Z(F) (Z denotes
the z score of the normal distribution). The larger values of the d′
indicates higher working memory updating ability. Therefore, the
direction of the d′ value is the opposite to the other indexes, such
as inhibition and shifting. Therefore, to equalize the direction
of the performance for these three types of cognitive control
indexes, we transformed d′ into negative values, so that the
higher d′ value (i.e., less negative) would indicate worse updating
performance which yields a similar performance direction for
SSRT, switch costs, and d′.

Computing Common and Specific Executive Function
Components – Miyake’s Definition
The performance on each of the three tasks (switch cost in a
task-switching paradigm, SSRT in a stop-signal task, and d′ in a
n-back task) were calculated into z value. Following Miyake and
Friedman’s procedures, we averaged these three z scores to make a
composite score reflecting common EF for every participant. We
regressed SSRT and n-back d′, and used the residuals as a shifting
EF component. We regressed d′ against SSRT and switching cost,
and used the residuals as an updating EF component.

Neuropsychological Tests for Measuring
Cognitive Control Performance and
Processing Speed
Trail Making Test
In this study, we used the Chinese version of the Trail Making
Test (TMT), which consisted of two forms (A and B) of task
conditions. The reliability of the Chinese version of the TMT
has been reported by Wang et al. (2018). Form A consisted of
numbers from “1” to “25” and was displayed randomly on an
A4 sheet of paper. Form B consisted of digit numbers from “1”
to “12” and Chinese zodiac letters (“rat” to “pig”) were shown.
Participants drew a line connecting these items during a sequence
of “1”–“2”–“3”–. . .“25” in form A and an alternating sequence
of “1”–“rat”–“2”–“ox”–. . .“12”–“pig” in form B. The time to
finish the form (TMT-A, TMT-B) was recorded as a performance
index. TMT-A is considered as a metric reflecting processing
speed, while TMT-B is a metric of switching proficiency plus
processing speed.

Grooved Pegboard Test
Participants were asked to insert cylindrical metal pegs into 25
holes of a pegboard as fast as possible. Left- and right-handed
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performances were tested separately. The test began with the
self-identified dominant hand (i.e., the right hand in this study),
followed by the non-dominant hand. Participants were asked to
insert pegs in the standardized order (from left to right for all
rows when using the right hand and from right to left for all rows
when using the left hand) and to use just one hand at a time.
The whole time to finish the test was recorded as an index of
processing speed for each hand, respectively (GPT_R; GPT_L).

Cognitive Performance Indexes for
Cognitive Control and Processing Speed
The performance indexes (all transformed into z scores) collected
from the above series of cognitive tasks and neuropsychological
tests are summarized in Table 2, in which TMT-A, GPT_R/L, go
RT in a stop-signal task are considered as indexes for processing
speed, switch cost (informative and non-informative), TMT-B is
considered as indexes of shifting, SSRT is an inhibition index,
whereas mixing cost derived from task-switching paradigm, and
1-/2-back d’ are considered as indexes of working memory.
In addition, as aforementioned, we also calculated common
and specific EF components (i.e., common, shifting, updating)
derived from the three computerized cognitive control tasks
based on Miyake’s model (see Table 2).

Neuroimaging Acquisition and Analysis
Image Acquisition
All brain images in this research were acquired using a GE MR750
3T scanner (GE Healthcare, Waukesha, WI, United States)
installed in the Mind Research and Imaging Center at National
Cheng Kung University (NCKU).

High-spatial-resolution T1-weighted images were acquired
with fast spoiled gradient echo (fast-SPGR) (TR/TE:
7.6 ms/3.3 ms; flip angle: 12◦; FOV: 22.4∗22.4 cm2; thickness:
1 mm; matrices: 224∗224). A total of 166 axial slices was acquired
during a scan time of 218 s.

Diffusion tensor imaging was acquired using a spin-
echo echo-planar imaging sequence with the acquisition
parameters: TR/TE = 5500 ms/62∼64 ms, 50 directions with
b = 1000 s/mm2, 100 × 100 matrices, slice thickness = 2.5 mm,
voxel size = 2.5 × 2.5 × 2.5 mm, number of slices = 50,
FOV = 25 cm, NEX = 3. The total scan time for the DTI
acquisition was 924 seconds. A reversed-phase-encoding DTI
was also acquired for off-line top-up corrections in the DTI
preprocessing. The acquisition parameters for the reversed-
phase-encoding DTI were identical to the DTI, with the only
difference being the number of directions as six. The total scan
time for the reversed-phase-encoding DTI was 198 seconds.
The reason for choosing fewer numbers of reversed-phase-
encoded directions was to avoid motion artifacts due to
long scanning times.

Diffusion Tensor Imaging Processing
We used the FMRIB software Library (FSL v5.0.91; Smith et al.,
2004) for all diffusion-weighted imaging (DWI) data processing.

1www.fmrib.ox.ac.uk/fsl

The preprocessing steps were identical to those of
earlier work (for details, refer to Yang et al., 2019). DWI
data processing as follows: (1) estimating and correcting
susceptibility induced distortions using “topup” tool, (2)
correcting slice-to-volume movement using “eddy_correct,”
(3) fitting a diffusion tensor model to the images using
“dtifit” to obtain scalar DTI maps, in which each voxel was
assigned with three eigenvalue (principal diffusivities: λ1,
λ2, λ3) and three eigenvector (principal directions: v1, v2,
v3), describing the water diffusion within the voxel., and (4)
performing voxel-wise statistical analyses of the fractional
anisotropy (FA) data by using tract-based spatial statistics
(TBSS; Scahill et al., 2003) to register and normalize all
participants’ FA images to the MNI standard space. This
process was then repeated for MD and RD images using the
tbss_non_FA function.

Subsequently, for tract-of-interest (TOI) analyses, TBSS-
skeleton binary masks were overlaid with atlas binary masks
which were created with a threshold of 5% based on the
probabilistic Johns Hopkins University (JHU) white-matter
tractography atlas in FSL (provided by the ICBM DTI
workgroup). We chose anterior thalamic radiation (ATR)
left (L) and right (R) hemisphere, cingulum/cingulate gyrus
(CG) L/R, cingulum/hippocampus (CH) L/R, corticospinal tract
(CST) L/R, forceps major (Fmaj), forceps minor (Fmin),
inferior fronto-occipital fasciculus (IFF) L/R, inferior
longitudinal fasciculus (ILF) L/R, superior longitudinal
fasciculus (SLF) L/R, and uncinate fasciculus (UF) L/R
as TOIs. Fmin is the commissural fibers of the anterior
corpus callosum, whereas Fmaj is the commissural fibers
of the posterior corpus callosum. Then we used these
masks to mask the FA/MD/RD/AxD map which produced
from the TBSS step for each participant. The average
FA/MD/RD/AxD values were computed and used in the
following analysis.

Statistical Analyses
To evaluate the relationship between age, FA/MD/RD/AxD and
cognitive performance. In the first part, we tested cross-sectional
correlations between (1) age and cognitive performance, (2)
age and FA/MD/RD/AxD, and (3) cognitive performance and
FA/MD/RD/AxD. For all these three sets of Pearson r correlation
analyses, we used gender, education and BDI-II as covariates. In
addition, for cross-sectional data, we also tested the quadratic
effects of age (i.e., age2).

In the second part, we used longitudinal data to calculate
changes in DTI measures and changes in cognitive performance
by subtracting DTI (or cognitive performance score) at time 1
(TP1) from time 2 (TP2) and dividing by the exact number
of years between scans adjusted to 2 years. In addition, we
considered participants’ baseline scores of TP1 by adding a
denominator of TP1 measure into the formula to form percentage
change scores (e.g., Simmonds et al., 2014 on early life changes).
Furthermore, the time between scans was adjusted to 2 years as
the average time between the two acquisitions for the cohort was
1.77 years (e.g., Breukelaar et al., 2017).
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TABLE 2 | The significant Pearson correlation r values for age (cross-sectional) and aging (longitudinal) effects in percentage changes of cognitive control and
processing speed.

Cross-sectional cognitive performance (TP1)
correlation with age (TP1)

Longitudinal 1 cognitive performance
correlation with age (TP1)

Domain

TMT-A 0.544 – Speed

TMT-B 0.384 – Shift

GPT_L 0.560 0.288 Speed

GPT_R 0.494 – Speed

SSRT 0.312 – Inhibition

goRT 0.369 – Speed

infSWIcost −0.167 – Shift

non-infSWIcost – – Shift

MIXcost – – WM updating

2-back d′ 0.367 – WM updating

1-back d′ – – WM updating

Common EF 0.272 – Inhibition

Shifting EF 0.156 – Shift

Updating EF 0.257 – WM

The r value denoted in the table represents its p value passing the bootstrap criteria (i.e., upper and lower bound do not pass 0). r value marked in bold indicates its
p value also passing the Bonferroni correction criteria (p < 0.0004). ‘–’ denotes non-significance. TMT, Trail Making Test; GPT, Grooved Pegboard Test (L, left hand; R,
right hand); SSRT, stop signal reaction time; infSWIcost, inform condition’s switch cost; non-infSWIcost, non-inform condition’s switch cost; MIXcost, mixing cost; EF,
executive function; WM, working memory.

The formula is shown below:

[(MeasureTP2 −MeasureTP1)/MeasureTP1]

x
(

2
TP2−TP1

)
= 1Measure

Please note, percentage change scores (i.e., ratio scores)
will be denoted as 1Measure for brevity throughout the
manuscript. We tested longitudinal correlations between (1)
age (at TP1) and 1cognitive performance, (2) age (at TP1)
and 1FA/MD/RD/AxD, and (3) 1cognitive performance and
1FA/MD/RD/AxD. We used gender, education and BDI-II as
covariates in all Pearson r correlation analyses. All data were
transformed into z score before analyses in this study.

All analyses with multiple comparisons were corrected using
the Bootstrap method in which we ran 1,000 iterations to
calculate the bias-corrected and accelerated (BCa) bootstrap
interval (upper and lower bond). We also used a conventional
Bonferroni correction method for multiple comparisons, that
is, we used a critical value of r > 0.271, p < 0.004 for
examining significant correlations of cognitive performance
in relation to age, and a critical value of r > 0.279,
p < 0.003 for DTI in relation to age and to cognitive
performance. However, here we interpreted the results based
on the Bootstrap method because it has the advantage of
taking into account the dependence structure of p values
(Vilar-Fernández et al., 2007).

Mediation Analysis
For the mediation analysis, we used Mplus version 8 to build
a mediation path model with latent DTI variables. The latent
DTI variables (FA, MD, RD, AxD separately) were defined
by the tract which was significantly correlated with cognitive

measurement. This estimated both the direct and indirect effects
on all cognitive measurement. The model was estimated using
maximum likelihood estimation. The significance of indirect
effects was assessed with a 95% confidence interval calculated
by the Bootstrap method. To estimate confidence intervals,
we used a bias-corrected method with the percentile bootstrap
estimation approach, which ran 5,000 bootstrap iterations that
were implemented. We rejected the null hypothesis if the interval
didn’t include zero.

RESULTS

Participants’ demographic information and DTI measures for
TP1 and TP2 and their statistical tests are shown in Table 1. The
results show that age, MoCA, MD, RD, and AxD, but not BDI-II
and FA scores, are significantly different between TP1 and TP2.
Please note, for each of the cognitive performance index and for
each WM tract of the DTI measures between TP1 and TP2, the
mean scores and respective paired t-tests results are shown in the
Supplementary Tables 1, 2.

To address the issues set out in this study, we report the results
as follows:

Associations Between Age/Aging and
Cognitive Control (Including Processing
Speed)
Cross-sectional result (age effect): Table 2’s left column shows
linear correlation between age and cognitive performance at
TP1. It can be found that age was significant correlated
with processing speed (include TMT-A, GPT_L, GPT_R,
and goRT), inhibition (SSRT, common EF), shifting (TMT-B,
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infSWIcost, and shifting EF component), and updating (2-back
d′, updating EF component).

Longitudinal result (aging effect): Table 2’s right column
shows correlation between age (at TP1) and follow-up percentage
changes in cognitive performance. There was only one
significance remaining on the follow-up data, i.e., between
age (at TP1) and speed changes (1 GPT_L).

Associations Between Age/Aging and
Diffusion Tensor Imaging
Cross-sectional result (age effect): Table 3’s left columns show
Pearson correlation r values between age and DTI (FA, MD,
RD, and AxD) at TP1. The results show that FA, MD,
and RD were all correlated with the age effect, except a
few WM tracts such as CG_R, CH_L/R, CST_R in FA, and
CG_R, CH_L in MD/RD. Whereas AxD showed fewer WM
tracts significantly correlated with the age effect, that is, only
ATR_L/R, CH_R, and Fmin were significantly correlated with
age at TP1.

As mentioned, we also ran a set of non-linear analyses
for the age effect on DTI (see Figure 1). Most of the WM
tracts in the quadratic age effects retained the same patterns as
those for the linear age effect. r2 values in CG_L, Fmin, IFF,
ILF, SLF and UF remained to be between 0.07 and 0.26. We
found that MD and RD had the highest quadratic age effect
in ATR L/R (r2 > 0.4), whereas FA had the highest quadratic
age effect in Fmin (r2 > 0.4). As similar as the linear age
effect, the quadratic age effects of FA in CG_R, CH, and CST

were not significant (r2 < 0.03), yet although the indicator of
MD for CH_L tract didn’t have a linear effect, it does have a
quadratic effect (r2 = 0.115). Conversely, compared to the linear
correlation results, AxD now showed many more WM tracts
(except CG, ILF_R, Fmaj) that were significantly associated with
age, suggesting that AxD is better interpreted non-linearly for the
cross-sectional data.

Longitudinal result (aging effect): Table 3’s right columns
show correlations between age (at TP1) and DTI percentage
changes from TP1 to TP2 (i.e., 1FA, 1MD, 1RD, 1AxD).
We found that although at cross-sectional data showing FA,
MD, and RD were mostly correlated with the age effect, but in
the longitudinal data, FA changes (1FA) paradoxically showed
very few WM tract’s significances with age (at TP1) except
that CH_L/R and CST_L tracts were significant. Conversely,
although AxD showed fewer WM tracts significantly linearly
correlated with age cross-sectionally, its changes (1AxD) on
many WM tracts showed significantly correlated with age
(at TP1), suggesting that AxD index is closely related to
intra-individual aging changes. As for MD and RD changes
(i.e., 1MD and 1RD), they were mostly still significantly
correlated with age (at TP1) except a few tracts (e.g., 1MD:
CG_R, CH_R, CST_L/R, Fmaj, & Fmin; 1RD: CG_R, CH_L/R,
ILF_L, SLF_L, CST_L/R, Fmaj, Fmin; see Table 3 for details),
suggesting that MD and RD indexes are more representative
for both age and aging effects, whereas FA seems to be
only sensitive to the age effect (i.e., cross-sectional), but
not aging effect.

TABLE 3 | The significant Pearson correlation r values for age and DTI (cross-sectional and longitudinal ratio scores).

Cross-sectional DTI (TP1) correlation with age Longitudinal DTI correlation with age

FA MD RD AxD FA MD RD AxD

Association fiber

ATR_L −0.504 0.562 0.600 0.409 – 0.293 0.251 0.319

ATR_R −0.474 0.570 0.599 0.434 – 0.284 0.242 0.344

CG_L −0.436 0.219 0.349 – – 0.318 0.231 0.377

CG_R – – – – – – – –

CH_L – – – – 0.199 0.213 – 0.271

CH_R – 0.267 0.238 0.238 0.193 – – –

IFF_L −0.531 0.319 0.430 – – 0.295 0.224 0.344

IFF_R −0.477 0.323 0.407 – – 0.353 0.251 0.418

ILF_L −0.481 0.271 0.373 – – 0.199 0.230

ILF_R −0.480 0.251 0.360 – – 0.336 0.243 0.398

SLF_L −0.429 0.219 0.324 – – 0.207 0.251

SLF_R −0.421 0.223 0.321 – – 0.256 0.194 0.314

UF_L −0.450 0.258 0.354 – – 0.327 0.279 0.377

UF_R −0.352 0.204 0.285 – – 0.403 0.340 0.453

Projection fiber

CST_L –0.248 0.195 0.255 – 0.215 – – 0.209

CST_R – 0.212 0.238 – – – – 0.255

Commissural fiber

Fmaj −0.507 0.285 0.430 – – – – –

Fmin −0.637 0.255 0.465 −0.280 – – – –

The r value denoted in the table represents its p value passing the bootstrap criteria (i.e., upper and lower bound do not pass 0).; r value marked in bold indicates its p
value also passing the Bonferroni correction criteria (p < .0003). ‘–’ denotes non-significance.
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FIGURE 1 | (Continued)
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FIGURE 1 | Tract-of-Interest for DTI (FA, MD, RD, and AxD) and their relationships with age. The spaghetti plot that connects the repeated measurements for time
point 1 (TP1) and time point 2 (TP2). Tract-of-Interest for DTI measures (FA, MD, RD, and AxD) and their relationships with age is shown in the figure, respectively.
Black solid lines denote the better white matter integrity for TP2 than TP1. Conversely, blue dashed lines denote worse white matter integrity for TP2 than TP1. Red
lines denote best fitting linear and non-linear regression lines for cross-sectional data on TP1.
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Cognitive Control (Including Processing
Speed) and Diffusion Tensor Imaging
Processing Speed and Diffusion Tensor Imaging
Cross-sectional result (age effect): Table 4 left columns
show significant correlations between processing speed and
FA/MD/RD/AxD measures for the cross-sectional data (TP1).
We can find there were many significant correlations between
processing speed and DTI measures, with FA being as negative
correlations, and MD and RD being as positive correlations. AxD
showed relatively fewer significant positive correlations in WM
tracts (only in ATR_L/R and CH_L tracts) with processing speed.

Longitudinal result (aging effect): Table 4 right columns
show significant correlations between 1processing speed and
1FA/MD/RD/AxD measures. Contrary to the cross-sectional
result, there were relatively fewer significant correlations between
1processing speed and 1DTI for the follow-up data. These
include negative correlations between processing speed and nine
tracts in FA, and positive correlations between processing speed
and five tracts in MD, five tracts in RD, and four tracts in AxD
(see Table 4 for details).

Common/Inhibition Component and Diffusion Tensor
Imaging
Cross-sectional result (age effect): Table 5 left columns
show significant correlations between the common/inhibition
component and FA/MD/RD/AxD measures for the cross-
sectional data (TP1). We can find there were many significant
correlations between the common/inhibition component and
DTI metrics, with FA being as negative correlations, and MD
and RD being as positive correlations. Yet, AxD showed relatively
fewer significant positive correlations in WM tracts (only in Fmin
tract) with the common/inhibition component.

Longitudinal result (aging effect): Table 5 right columns
show significant correlations between the 1common/inhibition
component and percentage changes in DTI measures. Contrary
to the cross-sectional result, there were no significant correlations
between the 1common/inhibition and 1DTI measures for
the follow-up data.

Shifting Component and Diffusion Tensor Imaging
Cross-sectional result (age effect): Table 6 left columns show
significant correlations between the shifting component and
DTI measures for the cross-sectional data (TP1). We can find
there were a few significant correlations between the shifting
component and FA/MD/RD measures, with FA being as negative
correlations, and MD/RD being as positive correlations. AxD
showed relatively fewer significant positive correlations in WM
tracts (only in ATR_R and ILF_L tracts) with the shifting
component (see Table 6 for details).

Longitudinal result (aging effect): Table 6 right columns
show significant correlations between the 1shifting component
and 1FA/MD/RD/AxD. Contrary to the cross-sectional result,
there were much fewer significant correlations between 1shifting
and 1FA/MD/RD/AxD in WM tracts (FA: ATR_R, CG_L;
MD: CG_L, Fmaj, Fmin; RD: CH_L; AxD: SLF_R, Fmaj) for
the follow-up data.

Working Memory/Updating Component and Diffusion
Tensor Imaging
Cross-sectional result (age effect): Table 7 left columns show
significant correlations between the working memory/updating
component and DTI measures for the cross-sectional data (TP1).
We can find there were a few significant correlations between
the working memory/updating component and DTI measures,
with FA being as negative correlations, and MD/RD/AxD being
as positive correlations (see Table 7 for details).

Longitudinal result (aging effect): Table 7 right columns show
significant correlations between the 1working memory/updating
component and percentage changes in DTI measures. Contrary
to the cross-sectional result, there were much fewer significant
correlations between 1working memory/updating and
1FA/MD/RD/AxD in WM tracts (FA: CH_L/R, ILF_R;
RD: CST_L; AxD: CG_R, Fmaj) for the follow-up data.

Mediation Model Among Age (Timepoint
1), Diffusion Tensor Imaging Changes,
and Processing Speed Changes
To directly test the idea if changes in MD (1MD), RD (1RD),
and/or AxD (1AxD) mediated the relationship between age (at
TP1) and changes in cognitive performance, especially processing
speed, we ran a series of mediation models. The results of
model fittings showed that two models on 1MD yielded good
model fits. One model showed an indirect effect between age (at
TP1) and changes in the neuropsychological task of GPT_L (an
index of processing speed) with the latent variable of changes
in MD (1MD) in WM tracts of CG_L, CH_L, and ILF_L as
mediators (RMSEA < 0.06; chi square p = 0.188; CFI = 0.97)
(see Figure 2A). The other model showed an indirect effect
between age (at TP1) and changes in the neuropsychological
task of GPT_R (an index of processing speed) with the latent
variable of changes in MD (1MD) in WM tracts of IFF_L/R
(RMSEA < 0.001; chi square p = 0.931; CFI = 1.00) (see
Figure 2B). In addition, there was one good model fit on 1RD
showing that the latent variable of changes in WM tracts of CG_L,
IFF_L/R, and UF_L mediated the relationship between age and
the neuropsychological task of GPT_R (an index of processing
speed) (RMSEA < 0.001; chi square p = 0.977; CFI = 1.00).
A fourth good model fit is on 1AxD, showing that the changes
in AxD (1AxD) in WM tract of SLF_L mediated the relationship
between age and changes in go RT (an index of processing speed).

DISCUSSION

This study aimed to provide longitudinal data to compare with
cross-sectional data, in which we were interested in examining
if age-related differences (cross-sectional) in WM tracts and
cognitive control functions can be also observed in age-related
changes data with a follow-up interval of 2 years (longitudinal).

Regarding the first issue of the relationship between age and
cognitive control function (including processing speed) cross-
sectionally and longitudinally, we observed that while there
were several significant age-related differences in processing
speed, common (inhibition), shifting, and working memory
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TABLE 4 | The significant Pearson correlation r values for processing speed in relation to DTI measures (FA, MD, RD, and AxD) for cross-sectional and longitudinal ratio scores.

Behavior (covariate: gender, edu, BDI-II)

Cross-sectional and processing speed Longitudinal and processing speed

FA MD RD AxD FA MD RD AxD

Association fiber

ATR_L −0.400 (TMT-A)
−0.337 (GPT_L)
−0.381 (GPT_R)

0.442 (TMT-A)
0.371 (GPT_L)
0.318 (GPT_R)
0.223 (goRT)

0.464 (TMT-A)
0.394 (GPT_L)
0.361 (GPT_R)
0.225 (goRT)

0.342 (TMT-A)
0.277 (GPT_L)
0.199 (goRT)

−0.274 (GPT_R) – – –

ATR_R −0.348 (TMT-A)
−0.311 (GPT_L)
−0.364 (GPT_R)

0.418 (TMT-A)
0.375 (GPT_L)
0.345 (GPT_R)
0.241 (goRT)

0.430 (TMT-A)
0.394 (GPT_L)
0.375 (GPT_R)
0.230 (goRT)

0.346 (TMT-A)
0.292 (GPT_L)
0.243 (GPT_R)
0.228 (goRT)

– – – –

CG_L −0.341 (TMT-A)
−0.294 (GPT_L)
−0.291 (GPT_R)

0.220 (TMT-A)
0.221 (GPT_R)

0.296 (TMT-A)
0.263 (GPT_L)
0.279 (GPT_R)

– −0.230 (GPT_R) 0.213 (GPT_L) 0.235 (GPT_R) –

CG_R – – – – −0.216 (GPT_R) – – –

CH_L – 0.263 (TMT-A) 0.222 (TMT-A) 0.263 (TMT-A) – 0.304 (GPT_L) – 0.312 (GPT_L)

CH_R – 0.270 (TMT-A) 0.277 (TMT-A)
0.175 (GPT_R)

– – – – –

IFF_L −0.385 (TMT-A)
−0.346 (GPT_L)
−0.375 (GPT_R)

0.315 (TMT-A)
0.277 (GPT_L)
0.307 (GPT_R)

0.365 (TMT-A)
0.322 (GPT_L)
0.357 (GPT_R)

– −0.284 (GPT_R) 0.199 (GPT_R) 0.242 (GPT_R) 0.236 (GPT_L)

IFF_R −0.357 (TMT-A)
−0.314 (GPT_L)
−0.363 (GPT_R)

0.329 (TMT-A)
0.251 (GPT_L)
0.307 (GPT_R)

0.362 (TMT-A)
0.295 (GPT_L)
0.352 (GPT_R)

– – 0.216 (GPT_R) 0.237 (GPT_R) –

ILF_L −0.376 (TMT-A)
−0.309 (GPT_L)
−0.340 (GPT_R)

0.311 (TMT-A)
0.254 (GPT_L)
0.289 (GPT_R)

0.357 (TMT-A)
0.290 (GPT_L)
0.330 (GPT_R)

– −0.226 (GPT_R) 0.226 (GPT_L) – 0.242 (GPT_L)

ILF_R −0.370 (TMT-A)
−0.314 (GPT_L)
−0.349 (GPT_R)

0.291 (TMT-A)
0.226 (GPT_L)
0.276 (GPT_R)

0.343 (TMT-A)
0.276 (GPT_L)
0.321 (GPT_R)

– – – – –

(Continued)
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TABLE 4 | (Continued)

Behavior (covariate: gender, edu, BDI-II)

Cross-sectional and processing speed Longitudinal and processing speed

FA MD RD AxD FA MD RD AxD

SLF_L −0.308 (TMT-A)
−0.283 (GPT_L)
−0.328 (GPT_R)

0.245 (TMT-A)
0.256 (GPT_R)

0.291 (TMT-A)
0.232 (GPT_L)
0.300 (GPT_R)

– – – – −0.227 (goRT)

SLF_R −0.298 (TMT-A)
−0.270 (GPT_L)
−0.283 (GPT_R)

0.248 (TMT-A) 0.290 (TMT-A)
0.225 (GPT_L)
0.252 (GPT_R)

– – – – –

UF_L −0.342 (TMT-A)
−0.321 (GPT_L)
−0.322 (GPT_R)

0.296 (TMT-A)
0.240 (GPT_L)
0.261 (GPT_R)

0.335 (TMT-A)
0.289 (GPT_L)
0.305 (GPT_R)

– −0.344 (GPT_R) – 0.225 (GPT_R) –

UF_R −0.281 (TMT-A)
−0.258 (GPT_L)
−0.253 (GPT_R)

0.291 (TMT-A)
0.199 (GPT_L)
0.225 (GPT_R)

0.315 (TMT-A)
0.242 (GPT_L)
0.259 (GPT_R)

– −0.210 (GPT_R) – – –

Projection fiber

CST_L −0.293 (TMT-A)
−0.202 (GPT_R)

0.221 (TMT-A) 0.302 (TMT-A)
0.185 (GPT_R)

– – – – –

CST_R −0.237 (TMT-A) 0.213 (TMT-A) 0.260 (TMT-A) – – – – –

Commissural fiber

Fmaj −0.379 (TMT-A)
−0.393 (GPT_L)
−0.428 (GPT_R)

0.286 (TMT-A)
0.232 (GPT_L)
0.287 (GPT_R)

0.363 (TMT-A)
0.341 (GPT_L)
0.388 (GPT_R)

– −0.243 (GPT_R) – – –

Fmin −0.430 (TMT-A)
−0.400 (GPT_L)
−0.355 (GPT_R)
−0.243 (goRT)

0.234 (TMT-A)
0.248 (GPT_L)
0.250 (GPT_R)

0.349 (TMT-A)
0.348 (GPT_L)
0.323 (GPT_R)

– −0.311 (GPT_R) – 0.269 (GPT_R) –

The ratio score’s formula: [(MeasureTP2 − MeasureTP1)/MeasureTP1] × [2/(TP2 − TP1)]. The r value denoted in the table represents its p value passing the bootstrap criteria (i.e., upper and lower bound do not pass 0).
r value marked in bold indicates its p value also passing the Bonferroni correction criteria (p < 0.0003). ‘–’ denotes non-significance.
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TABLE 5 | The significant Pearson correlation r values for the common/inhibition component in relation to DTI measures (FA, MD, RD, and AxD) for cross-sectional and longitudinal ratio scores.

Behavior (covariate: gender, edu, BDI-II)

Cross-sectional and common/inhibition Longitudinal and common/inhibition

FA MD RD AxD FA MD RD AxD

Association fiber

ATR_L – 0.217 (commonEF) 0.222 (commonEF) – – – – –

ATR_R – – 0.223 (SSRT)
0.227 (commonEF)

– – – – –

CG_L −0.264 (SSRT) – 0.206 (SSRT) – – – – –

CG_R – – – – – – – –

CH_L – – – – – – – –

CH_R – – – – – – – –

IFF_L −0.255 (SSRT)
−0.240 (commonEF)

0.216 (commonEF) 0.212 (SSRT)
0.239 (commonEF)

– – – – –

IFF_R −0.252 (SSRT)
−0.245 (commonEF)

– 0.211 (SSRT)
0.232 (commonEF)

– – – – –

ILF_L −0.278 (SSRT)
−0.279 (commonEF)

0.216 (commonEF) 0.222 (SSRT)
0.254 (commonEF)

– – – – –

ILF_R −0.267 (SSRT)
−0.267 (commonEF)

0.187 (commonEF) 0.203 (SSRT)
0.235 (commonEF)

– – – – –

SLF_L −0.254 (SSRT)
−0.217 (commonEF)

0.199 (commonEF) 0.206 (SSRT)
0.219 (commonEF)

– – – – –

SLF_R −0.240 (SSRT) 0.200 (commonEF) 0.212 (SSRT)
0.222 (commonEF)

– – – – –

UF_L – – 0.213 (commonEF) – – – – –

UF_R −0.249 (SSRT) – 0.211 (commonEF) – – – – –

Projection fiber

CST_L – – – – – – – –

CST_R – – – – – – – –

Commissural fiber

Fmaj −0.210 (SSRT)
−0.221 (commonEF)

– 0.203 (commonEF) – – – – –

Fmin −0.319 (SSRT)
−0.278 (commonEF)

– 0.225 (SSRT)
0.220 (commonEF)

−0.172 (SSRT) – – – –

The ratio score’s formula: [(MeasureTP2 − MeasureTP1)/MeasureTP1] × [2/(TP2 − TP1)]. The r value denoted in the table represents its p value passing the bootstrap criteria (i.e., upper and lower bound do not pass 0).
r value marked in bold indicates its p value also passing the Bonferroni correction criteria (p < 0.0003). ‘–’ denotes non-significance.
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TABLE 6 | The significant Pearson correlation r values for the shifting component in relation to DTI measures (FA, MD, RD, and AxD) for cross-sectional and longitudinal ratio scores.

Behavior (covariate: gender, edu, BDI-II)

Cross-sectional and shifting Longitudinal and shifting

FA MD RD AxD FA MD RD AxD

Association fiber

ATR_L – 0.226 (TMT-B) 0.223 (TMT-B) – – – – –

ATR_R – 0.214 (TMT-B) 0.194 (TMT-B) 0.233 (TMT-B) −0.176 (non-infSWI) – – –

CG_L – – – – 0.164 (SWI) −0.122 (SWI) – –

CG_R – – – – – – – –

CH_L – – 0.200 (non-infSWI) – – – 0.214 (non-infSWI) –

CH_R – – – – – – – –

IFF_L −0.214 (non-iSWI) 0.216 (TMT-B)
–

0.230 (non-iSWI) – – – – –

IFF_R −0.223 (non-iSWI) 0.195 (TMT-B) 0.221 (non-iSWI) – – – – –

ILF_L −0.267 (non-infSWI) 0.201 (TMT-B)
0.213 (non-infSWI)

0.251 (non-infSWI) 0.208 (TMT-B) – – – –

ILF_R −0.260 (non-infSWI) 0.176 (TMT-B)
0.213 (non-infSWI)

0.255 (non-infSWI) – – – – –

SLF_L – – – – – – – –

SLF_R – – – – – – – −0.203 (TMT-B)

UF_L – – 0.207 (non-infSWI) – – – – –

UF_R – – – – – – – –

Projection fiber

CST_L – – – – – – – –

CST_R – – – – – – – –

Commissural fiber

Fmaj −0.260 (non-iSWI)
−0.190 (TMT-B)

0.216 (non-iSWI)
0.186 (TMT-B)

0.257 (non-iSWI) – – 0.166 (SWI) – 0.163 (SWI)

Fmin −0.208 (TMT-B) – – – – 0.166 (SWI) – –

The ratio score’s formula: [(MeasureTP2 − MeasureTP1)/MeasureTP1] × [2/(TP2 − TP1)]. The r value denoted in the table represents its p value passing the bootstrap criteria (i.e., upper and lower bound do not pass 0).
r value marked in bold indicates its p value also passing the Bonferroni correction criteria (p < 0.0003). ‘–’ denotes non-significance.
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TABLE 7 | The significant Pearson correlation r values for the working memory/updating component and DTI measures (FA, MD, RD, and AxD for cross-sectional and longitudinal ratio scores.

Behavior (covariate: gender, edu, BDI-II)

Cross-sectional and working memory/updating Longitudinal and working memory/updating

FA MD RD AxD FA MD RD AxD

Association fiber

ATR_L – 0.206 (2back) 0.209 (2back) – – – – –

ATR_R – 0.215 (2back) 0.224 (2back) 0.175 (2back) – – – –

CG_L – – – – – – – –

CG_R – – – 0.206 (updating) – – – 0.193 (1back)

CH_L – – – – −0.183 (MIX) −0.256 (2back) – – –

CH_R – – – – −0.372 (2back) – – –

IFF_L −0.194 (2back) 0.238 (2back)
0.198 (updating)

0.236 (2back)
0.175 (updating)

0.182 (2back)
0.198 (updating)

– – – –

IFF_R – 0.214 (2back) 0.211 (2back) – – – – –

ILF_L −0.208 (2back) 0.213 (2back) 0.223 (2back) – – – – –

ILF_R – – – −0.202 (MIX) −0.210 (2back) – – –

SLF_L – – – – – – – –

SLF_R – – – – – – – –

UF_L – – – – – – – –

UF_R – – – – – – – –

Projection fiber

CST_L – – – – – – 0.191 (1back d′) –

CST_R – – – – – – – –

Commissural fiber

Fmaj −0.188 (2back) – 0.192 (2back) – – – – 0.177 (2back)

Fmin −0.227 (2back) – 0.199 (2back) – – – – –

The ratio score’s formula: [(MeasureTP2 − MeasureTP1)/MeasureTP1] × [2/(TP2 − TP1)]. The r value denoted in the table represents its p value passing the bootstrap criteria (i.e., upper and lower bound do not pass 0).
r value marked in bold indicates its p value also passing the Bonferroni correction criteria (p < 0.0003). ‘–’ denotes non-significance.

Frontiers
in

A
ging

N
euroscience

|w
w

w
.frontiersin.org

15
A

pril2022
|Volum

e
14

|A
rticle

850655

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-850655 April 19, 2022 Time: 14:43 # 16

Hsieh and Yang Cognitive Control in Aging

FIGURE 2 | (A) A mediation model with latent variables for age (at time point 1), 1MD (changes in mean diffusivity), and 1GPT_L (changes in processing speed).
(B) A mediation model with latent variables for age (at time point 1), 1MD (changes in mean diffusivity), and GPT_R (changes in processing speed). (C) A mediation
model with age (at time point 1), 1RD, and GPT_R. (D) A mediation model with age (at time point 1), 1AxD, and goRT (changes in processing speed). In these
models, observed variables (shown in boxes) serve as independent variables and indicators of latent variables (shown in ellipses). Indirect effect between age and
mixing cost was tested by the bootstrap method. Upper and lower bound of the 95% confidence interval was marked in the center of the model. GPT_L, Grooved
Pegboard Test with the left hand; GPT_R, Grooved Pegboard Test with the right hand.

updating, there were no significant correlations for age-
related changes in cognitive control functions. Only changes in
processing speed from TP1 to TP2 reflected on GPT_L were
significantly related to age (at TP1). The results suggest that
many significant correlations between age and cognitive control
functions originally shown on cross-sectional data no longer exist
on the longitudinal data, except that the relationship with age for
processing speed was still retained even in the longitudinal data.

The current findings bring our attention in the fact that
although we could observe age-related cognitive control deficits
which are typically reported in most literature using cross-
sectional approach (e.g., less working memory capacity –
Salthouse, 1994; West, 1996; Grady and Craik, 2000; a deficit
in inhibitory processing – Hasher and Zacks, 1988; Kramer
et al., 1994; a lack of cognitive flexibility – Kramer et al., 1999;
Mayr, 2001), when we followed up these individuals across
the adult lifespan over an average of 2 years, we did not see
many differences (except processing speed reflected on the left
hand’s movement) in their changing trajectories. Literature has
also indicated a similar finding in that age did not significantly
correlate with working memory changes over a period of 2 years
(Charlton et al., 2010; Lövdén et al., 2014). Therefore, we should
not overlook the possibility that aging processing in cognitive
control functions likewise occurs for younger adults. That is, the

aging process in cognitive control functions may not be older-age
specific, but more generally occur across lifespan.

Regarding the second issue of the relationship between age and
DTI measures (FA, MD, RD, AxD), we observed that FA indexes
in many WM tracts at TP1 were sensitive to age effect (cross-
sectional data: all tracts except CG_R, CH_L, CH_R, and CST_R).
In particular, Fmin has the strongest age effect reflected on FA,
which is in line with the findings in the literature either using
a longitudinal or cross-sectional approach (e.g., longitudinal
approach: Barrick et al., 2010; cross-sectional approach: Salat
et al., 1997; Vernooij et al., 2008; Sullivan et al., 2010; Jolly
et al., 2016; Zavaliangos-Petropulu et al., 2019; Hsieh et al.,
2020). Conversely, the FA index’s changes from TP1 to TP2
were much less correlated to the aging effect (i.e., follow-up
data). The result suggests that FA might not be a robust index
when examining the aging effect. On the other hand, both MD
and RD at TP1 and their changes from TP1 to TP2 showed
relatively similar relationships with age (except CST_L/R, Fmaj,
and Fmin tracts)2 Although AxD showed a different pattern from
other DTI measures in relation to age on the cross-sectional data

2In the current study, we further found that there was a non-linear aging trajectory
for MD and RD showing a knob transition occurred around 50 years old for cross-
sectional data at TP1 (see Figure 2).
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(e.g., they were more non-linearly correlated with age compared
to other DTI metrics), its changes somehow showed similar
patterns as MD and RD changes in the follow-up results, in
which several WM tracts were significantly correlated with aging
(except Fmaj and Fmin tracts). Although previously based on
the cross-sectional data, even our lab also claimed that FA might
play a more important role than MD, RD, or AxD in reflecting
the age effect (Hsieh et al., 2020), the current results based on
both cross-sectional and longitudinal data conversely suggest
that MD, RD, and AxD indexes in WM tracts might be more
representative than FA when examining both age and aging
effects with DTI (note: AxD yielded more non-linear correlations
with age cross-sectionally). FA is a ratio value reflecting the
directional consistency of diffusion, with higher values indicating
that diffusion within a voxel is primarily restricted to one
direction (O’Donnell and Westin, 2011), conversely, MD refers to
the average amount of diffusion occurring within an image voxel,
RD is calculated as the amount of diffusion perpendicular to the
main directional axis of fibers, and AxD refers to the magnitude
of diffusivity parallel to fiber tracts. Early studies of optic nerve
fiber damage (Song et al., 2003, 2005) indicated that increases in
RD values are associated with axonal demyelination (Wheeler-
Kingshott and Cercignani, 2009), whereas lower AxD may reflect
axonal injury, reduced axonal caliber, or less coherent orientation
axons. Literature has shown a negative correlation between age
and FA, suggesting that in older individuals the diffusion tensor is
less fractionally anisotropic than in relatively younger individuals
(e.g., a cross-sectional study by Boekel and Hsieh, 2018). In
addition, literature using a cross-sectional approach also often
report a positive correlation between MD, RD, or AxD and age
(e.g., Sullivan et al., 2001; Pfefferbaum and Sullivan, 2003; Abe
et al., 2008; Westlye et al., 2009; Burzynska et al., 2010; Lebel et al.,
2012). Since the current longitudinal data showed that MD, RD,
and AxD changes are more closely related than FA changes to
the aging process, we would suggest that axonal demyelination
and/or axonal degeneration is a more robust phenomenon for
observing intra-individual aging processes.

When we further compared age-related declines in different
WM tracts, we found association fibers of CG_R and CH_L/R
were less correlated to both age and aging effects when compared
to other WM tracts. In addition, ATR_L/R, and Fmin tracts across
FA/MD/RD/AxD appeared to be most correlated to the age effect
(cross-sectional data), in which the findings are consistent with
the suggestion of frontal and callosal areas being most affected by
the age effect (e.g., cross-sectional studies: Zavaliangos-Petropulu
et al., 2019; Hsieh et al., 2020; Behler et al., 2021).

However, the current longitudinal data showed that the
commissural fiber of Fmin no longer yielded an aging effect,
despite its strong relationship with the age effect cross-
sectionally. On the other hand, although the frontal association
fibers of ATR_L/R remain to be correlated with aging, they
were only present in MD/RD/AxD, but no in FA. Therefore,
combining the cross-sectional and longitudinal results in the
current study, we suggest that ATR tracts in MD/RD/AxD are the
most representative when examining both age and aging effects.

Turning to the third issue of the association between
cognitive control functions (including processing speed) and

DTI measures, we observed that processing speed and cognitive
control functions (including common/inhibition, shifting, and
working memory/updating) were related to DTI measures cross-
sectionally, with processing speed showing the most correlations
with WM tracts in FA/MD/RD. Literature using a cross-sectional
approach has also shown that age-related WM decline may
contribute to age-related cognitive control declines. For example,
some studies have explored age-dependent relationships between
white matter integrity and composite measures of cognitive
control function (Kennedy and Raz, 2009; Vernooij et al., 2009;
Zahr et al., 2009). Furthermore, some researchers have found
that frontoparietal WM differences are linked to age-related
differences in task-switching performance (Madden et al., 2009;
Gold et al., 2010). Perry et al. (2009) using a cross-sectional
approach also observed that advancing age was associated with
declines in task-set shifting performance and with decreased FA
in corpus callosum and in association tracts that connect the
frontal cortex to more posterior brain regions. A more recent
DTI study using a cross-sectional approach led by Karayanidis
also demonstrated the role of WM microstructure in age-related
cognitive decline (Jolly et al., 2013). Bucur et al. (2008) also
using a cross-sectional approach observed that declines in FA
in the pericallosal frontal region and in the genu of the corpus
callosum, but not in other regions, mediated the relationship
between perceptual speed and episodic retrieval reaction time.
Hence, they suggested that WM integrity in prefrontal regions is
one mechanism underlying the relationship between individual
differences in perceptual speed and episodic retrieval (Bucur
et al., 2008). Nevertheless, most of these studies cited above are
cross-sectional results.

However, when we examined the longitudinal data in the
current study, we observed that changes in processing speed as
compared to changes in other cognitive control performance
were more correlated to the changes in all DTI indexes.
Therefore, processing speed appeared to be the function that
was mostly related to WM integrity both cross-sectionally
and longitudinally. Processing speed is a basic cognitive or
brain process that subserves many other higher-order cognitive
domains. One possibility is that over a short period of follow up,
changes in processing speed would be more apparent than other
cognitive control functions, thus would be easier to be observed
to be related to changes in WM integrity. Future research with a
longer period of follow up is needed to clarify the speculation.

Finally, to provide a more direct evidence in showing if
changes in DTI mediated age-related changes in processing speed,
we tested a series of mediation models, and the result showed
that four models yielded good model fits, in which 1RD, 1MD,
and 1AxD mediated age-related changes in processing speed.
Therefore, converging the regression results and mediation
models, we could conclude that MD, RD, and AxD appear to
be the most representative DTI measures to reveal age-related
changes in processing speed.

Some final remarks are worth mentioning before closing.
First, in the current study, only a period of 1–2 years follow-up
interval was performed, it is likely that the period is too short
to be sensitive enough to reveal the aging process. For example,
in the literature, Charlton et al. (2010) and Lövdén et al. (2014)
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using a follow-up approach likewise did not find an aging effect
on cognitive changes, but Vonk et al. (2020) found a linear aging
effect in working memory and cognitive speed. The discrepant
findings among these studies are likely due to their differences
in the length of the follow-up interval. The follow-up interval
between the two timepoints in Vonk et al.’s (2020) research was
4∼8 years, whereas in the other two research (i.e., Charlton et al.,
2010; Lövdén et al., 2014), the age interval was about 2 years
which is similar to the current study. Therefore, future studies
with a longer follow-up interval or more times of follow-up
are warranted. Second, while we examined the aging effect in
relation to the changes in DTI from TP1 to TP2, we observed
very few and even paradoxically positive correlations for three
WM tracts (i.e., CH_L/R, CST_L) in FA. The finding was the
opposite to the cross-sectional results reported by the prior
and current research. One possibility is that the reduction rate
for FA with aging was not as prominent as one could expect
from other DTI indicators, and because this study only followed
1.77 years on average, thus very few significant changes could
be observed for FA. However, why these three tracts (CH_L/R,
CST_L) showed FA increases rather than decreases with aging
remain puzzled. We suspected that individual differences might
contribute to the paradoxical findings. One longitudinal study
with 1-year follow up comparing healthy control and Alzheimer’s
disease also found that healthy controls did not demonstrate FA
changes in the hippocampal cingulum (i.e., CH) as were observed
in those with Alzheimer’s disease (Mayo et al., 2017). The authors
thus concluded that changes in microstructural integrity for the
hippocampal cingulum over short time intervals (i.e., 1 year) may
more specifically reflect ongoing degenerative processes due to
Alzheimer’s disease. Since the participants in the current study
were all healthy controls, some of them might be even more
reserved than middle-aged or young adults. Future research with
a longer follow-up period and considering individual differences
is needed to clarify the issue. Third, the participants’ age range
in this study covered a wide range of 20 to 80 years, it may
be worth considering sub-groups of different ages rather than
treat all participants as a single group (e.g., see Yap et al., 2013
and Lebel et al., 2019 for reviews of DTI findings related to
development). Future studies with more numbers of participants
are encouraged to split into subgroups with smaller age ranges
(e.g., every 10 years old per group). Fourth, this study did
not analyze myelin water fraction (MWF) which should not
be overlooked and should be analyzed complementary to the
conventional DTI metrics. A recent study (Kiely et al., 2022) has
indicated that although DTI metrics (e.g., RD and FA – indices
of myelin content) might be related to the age effect, they could
not serve as specific metrics to myelin, so that further studies
using more specific myelin measure, such as MWF relaxometry,
are required. Fifth, in this study, we used the TBSS processing
pipeline in the FSL, which was developed to reduce the effects of
local mis-registrations by projecting all FA voxels onto the nearest
location on a “skeleton” approximating WM tract centers (Smith
et al., 2006). Some studies however pointed out that TBSS was
designed to compensate for local registration errors, which might
in return cause many more limitations due to over compromises
(see Zalesky, 2011; Schwarz et al., 2014, for more examples).

Despite the limitations outlined, TBSS remains a popular method
for DTI analyses.

To conclude, the current results warrant the importance
of longitudinal research for aging studies to elucidate actual
aging processes on cognitive control function. More critically,
the current results provide new insights to which indicator of
WM integrity and which type of cognitive changes are most
representative (i.e., potentially to be effective neuroimaging
biomarkers) to reflect intra-individual cognitive aging processes.
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