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Intervertebral disc degeneration (IVDD) is a common cause of lower back pain. Programmed cell death (PCD) including apoptosis
and autophagy is known to play key mechanistic roles in the development of IVDD. We hypothesized that the nucleus pulposus
cells that make up the center of the IVD can be affected by aging and environmental oxygen concentration, thus affecting the
development of IVDD. Here, we evaluated the phenotype changes and PCD signaling in nucleus pulposus cells in two different
oxygen percentages (5% (hypoxia) and 20% (normoxia)) up to serial passage 20. NP cells were isolated from the lumbar discs of
rats, and the chondrogenic, autophagic, and apoptotic gene expressions were analyzed during cell culture up to serial passage 20.
Hypoxia significantly increased the number of autophagosomes, as determined by monodansylcadaverine staining and
transmission electron microscopy. Furthermore, hypoxia triggered the activation of autophagic flux (beclin-1, LC3-II/LC3-I ratio,
and SIRT1) with a concomitant decrease in the expression of apoptotic proteins (Bax and caspase-3). Despite injury and age
differences, no significant differences were observed between the ex vivo lumbar disc cultures of groups incubated in the hypoxic
chamber. Our study provides a better understanding of autophagy- and apoptosis-related senescence in NP cells. These results also

provide insight into the effects of aging on NP cells and their PCD levels during aging.

1. Introduction

Lower back pain and disabilities resulting from interverte-
bral disc (IVD) degeneration are the leading causes of inca-
pacitation in adults [1, 2]. IVD degeneration is characterized
by the dehydration of the nucleus pulposus (NP), rupture of
the annulus fibrosus (AF), and calcification of the vertebral
endplates (EPs). NP cells play an important role in IVD
development, maintenance, and degeneration, by promoting
the matrix biosynthesis of other IVD cell types [3, 4], indi-
cating that modulating their activity could be a means to
treat IVD degeneration. To investigate this, the biological
responses of NP cells have been analyzed under various
conditions, including microenvironments with altered
oxygen and glucose levels [5-8].

The NP, composed of a gel-like, aggrecan-rich extracel-
lular matrix (ECM) and cells, is derived from the noto-
chord and comprises the central avascular structure of the
IVD [3, 9, 10]. Its most common ECM component is type
IT collagen; however, types VI and XI are also present in
smaller quantities [11-14]. NP ECM composition is altered
by various etiological factors, including aging, infection,
abnormal mechanical stress, smoking, diabetes, and trauma
[3, 15]. IVD aging begins with changes in the NP, and
degenerative NPs are characterized by decreased water con-
tent, cytoplasmic loss, and the presence of proteoglycans in
the ECM [2, 16, 17].

Autophagy is an intracellular process that delivers cyto-
plasmic components to autophagosomes and lysosomes to
maintain homeostasis. It is a crucial biological mechanism
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that is involved in both physiological and pathological con-
ditions [18, 19]. In the articular system, autophagy regulates
chondrocyte maturation and promotes the survival of ter-
minally differentiated chondrocytes under stress [20, 21].
Decreased expression of autophagic regulators has been
observed in aging joints and osteoarthritis in mice and
humans and is accompanied by increased chondrocyte apo-
ptosis [20, 22, 23]. During IVD degeneration, autophagic
regulation of the NP helps improve NP cell survival and
phenotype maintenance by reducing apoptosis and antioxi-
dant feedback responses [24, 25]. Increased autophagy has
been reported in rat NP tissues with aging and degeneration
[26]. However, previous studies were conducted in normoxic
conditions (20% O,) or after artificial induction of oxidative
stress with H,0,, rather than examining NP cells in an envi-
ronment with lower oxidative stress, as in avascular tissue.

In many cell types, hypoxia induces autophagy as a pro-
tection and survival mechanism [27]. However, since the
in vivo environment of NP cells is hypoxic compared to other
tissues, it is important to observe changes in autophagic
regulation in these cells under hypoxic conditions. While
autophagy has profound effects on NP cell survival and
phenotype maintenance, the mechanism of basal autophagy
regulation in NP cells and the effects of physiological stimu-
lation on the process are not well understood. In this study,
we focused on the effects of autophagy on NP cell survival
and phenotype maintenance.

Here, we analyzed the biological responses of NP cells
during aging (by serial passaging up to passage 20 (p20))
and environmental stress (normoxia and hypoxia) both
in vitro and ex vivo. We evaluated the transcript and protein
expression levels of genes related to the NP cell phenotype,
autophagy, and apoptosis in hypoxic (5% O,) and normoxic
(20% O,) conditions. In addition, vertebrae from juvenile (5
weeks) and young adult (10 weeks) rats were isolated and
analyzed for histological and immunohistochemical changes
in the NP following injury and hypoxic culture. This work
provides an increased understanding of the autophagic path-
way during hypoxia and may facilitate the development of
novel therapeutic strategies for the treatment of degenerative
IVD disease.

2. Materials and Methods

2.1. NP Cell Isolation and Culture. Five 5-week-old male Spra-
gue-Dawley (SD) rats (average weight: 130 g) were obtained
from Orient Bio (Seongnam, Korea). All experimental proto-
cols were approved by the Institutional Animal Care and
Use Committee of Konkuk University (Seoul, Korea) under
permit numbers KU13116 and KU14075. Under sterile
conditions, gel-like NP tissues were separated from the IVDs.
NP tissues were pooled, vortexed, and washed twice with
phosphate-buffered saline (PBS; Gibco, Carlsbad, CA, USA)
and twice in a-minimum essential medium (a-MEM; Gibco)
supplemented with 20% fetal bovine serum (FBS; Gibco) and
1% penicillin-streptomycin (Gibco) [28-30]. Pooled NP cells
were divided into two groups (normoxic culture and hypoxic
culture) at p0 and cultured in a-MEM at 37°C in a controlled
environment (triplicates for each group, 6 dishes in total).
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Each cell culture dish was maintained independently
throughout the experiment. Control NP cells (C-NPs) were
cultured under normoxic conditions (20% O,, 5% CO,),
while hypoxic NP cells (H-NPs) were cultured under hypoxic
conditions (5% O,, 5% CO,) in hypoxia chambers (STEM-
CELL Technology, Vancouver, BC, Canada) [31, 32]. Cells
were grown to 70-80% confluence in 100 mm culture dishes.
To analyze responses to aging in hypoxia and normoxia, NP
cells were cultured until p20 (up to 60 days) [33, 34] and har-
vested at p5, p15, and p20. In addition, we set 3MA-treated
groups (3MA-treated C-NP and 3MA-treated H-NP) to
examine the effects of the autophagy pathway in hypoxia.
Both C-NP and H-NP cells were treated with 5mM of
3MA (an inhibitor of autophagy; Sigma-Aldrich, St. Louis,
MO, USA) throughout the experimental period [35, 36].

2.2. Cell Viability. The effects of various culture conditions on
NP cell viability were determined using the 3-(4,5-dimethyl-
thiazol-2-yl1)-2,5-diphenyl-tetrazolium bromide (MTT) viabil-
ity assay using a commercial kit (Roche, Basel, Switzerland).
Briefly, NP cells (p5) were seeded into 96-well plates (2 x 10
cells/uL) and cultured for 24, 72, and 96 h in hypoxia or nor-
moxia. MTT labeling solution was added to each well, and
cells were incubated for an additional 4 h in hypoxia or nor-
moxia. After dissolving the released formazan dye in dimethyl
sulfoxide, the absorbance was measured at 595nm using a
Sunrise™ microplate reader (TECAN, Salzburg, Austria).

2.3. Morphometric Analysis. NP cells in a specific passage
(p5, p20) were seeded on Lab-Tek chamber slides (1 x 102
cells/uL; Nunc, Rochester, NY, USA), cultured for 72 hours,
and stained with Alizarin Red S (Sigma-Aldrich) to visualize
mineralization during aging and hypoxia. The slides were
fixed in cold methanol (Merck, Darmstadt, Germany) and
then stained with 2% Alizarin Red S for 5min at room tem-
perature. Slides were then dehydrated with a graded series of
acetone (Merck) and acetone:xylene (1:1; BBC, Mount
Vernon, WA, USA) [37]. Stained monolayers were visual-
ized by phase microscopy using an inverted microscope
(Leica Microsystems, Wetzlar, Germany). Extracellular cal-
cium deposits were indicated by bright orange-red staining.

2.4. Real-Time Polymerase Chain Reaction (RT-PCR). Total
RNA was extracted from cells at p5, pl5, and p20 using
RNAiso Plus (TaKaRa, Shiga, Japan) according to the manu-
facturer’s instructions. Isolated total RNA (1 pg) was reverse
transcribed into complementary DNA (cDNA) and used in
quantitative (qQRT-PCR) assays using the SYBR® Green
PCR Kit (Qiagen, Valencia, CA, USA) in a Rotor-Gene
Real-Time PCR-Cycler® (Qiagen). The reactions (20uL)
comprised 2uL of diluted cDNA, 2uL of each primer,
10 uL of 2x SYBR® Green Master Mix, and 6 uL of RNase-
free water. The sequences of the oligonucleotide primers used
in the qPCR assays are shown in Table 1. Thermocycling
conditions were as follows: 50°C for 2 min, 95°C for 15 min,
then 40 cycles of 94°C for 15s, 55°C for 30, and 72°C for
5min. All samples were assayed in duplicate, and mRNA
levels were calculated using the 274" method.
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TABLE 1: Sequences of rat primers used for real-time PCR.

Target gene

Source

Sequence

Predicted length (bp)

GAPDH

Sox-9

Aggrecan

Type I collagen
Type II collagen
Type III collagen
Type VI collagen
ALP

Runx2

BMP-2

TGF-B

TIMP-1
TIMP-2
MMP-2
MMP-3
MMP-9
MMP-13

HIF-1

SIRT1

HMGB-1
Beclin-1

Atg7

Atg5

LC3

LC3-1I

p53

p21

NM017008.4

NMO080403.1

J03485.1

NMO053304.1

NMO012929.1

NM032085.1

XM001079629.4

NMO013059.1

NMO001278483.1

NMO017178.1

NM_021578.2

NMO053819.1

NMO021989.2

NMO031054.2

NM133523.2

NMO031055.1

NM133530.1

XM006240199.3

XM017588054.1

NMO012963.2

NM001034117.1

NMO001012097.1

NM001014250.1

NM022867.2

NMO022867.2

NMO030989.3

NMO080782.3

F: AACTCC CTC AAG ATT GTC AGC AA
R: GGC TAA GCA GTT GGT GGT GC

F: ACG GCT CCA GCA AGA ACA AG
R: TTG TGC AGA TGC GGG TAC TG
F: GAC CAG GAG CAA TGT GAG GAG
R: CTC GCG GTC GGG AAA GT
F: TGG CCA AGA AGA CAT CCC TGA AGT
R: ACA TCA GGT TTC CAC GTC TCA CCA
F: GAG TGG AAG AGC GGA GAC TAC TG
R: CTC CAT GTT GCA GAA GAC TTT CA
F: TTC CTG GGA GAA ATG GCG AC
R: GGC CAC CAG TTG GAC ATG AT
F: CAA GAA CAC GTG GAC ATG CG
R: CAC TGC AGT TTC TTG ACG GC
F: CAT GTT CCT GGG AGA TGG TA
R: GTG TTG TAC GTC TTG GAG AGA
F: GAT GAC ACT GCC ACC TCT GA
R: ATG AAA TGC TTG GGA ACT GC
F: CTA TAT GCT CGA CCT GTA CCG
R: CAC TCA TTT CTG AAA GTT CCT CG
F: CGC AAC AAC GCA ATC TAT G
R: ACC AAG GTA ACG CCA GGA
F: TCC CCA GAA ATC ATC GAG AC
R: TCA GAT TAT GCC AGG GAA CC

F: CAG GGC CAA AGC AGT GAG CGA GAA
R: TCT TGC CAT CTC CTT CCG CCT TCC

F: GAT CTG CAA GCA AGA CAT TGT CTT
R: GCC AAA TAA ACC GAT CCT TGA A
F: TCC CAG GAA AAT AGC TGA GAA CTT
R: GAA ACC CAA ATG CTT CAA AGA CA
F: GTA ACC CTG GTC ACC GGA CTT
R: ATA CGT TCC CGG CTG ATC AG
F: CTG ACC TGG GAT TTC CAA AA
R: ACA CGT GGT TCC CTG AGA AG
F: AAG TCT AGG GAT GCA GCA C
R: CAA GAT CAC CAG CAT CTA G
F: AGC TGG GGT TTC TGT TTC CTG TGG
R: TCG AAC ATG GCT TGA GGA TCT GGG A
F: CGG ATG CTT CTG TCA ACT TCT
R: AGT TTC TTC GCA ACA TCA CCA
F: TTC AAG ATC CTG GAC CGA GTG AC
R: AGA CAC CAT CCT GGC GAG TTT C
F: GAC CTG GGC TCC TCA CTT TTT G
R: CCC TGG GCG GCT CAC TG
F: AGG CTC AGT GGA GGC AAC AG
R: CCC TAT CTC CCATGG AAT CTT CT
F: CAT GCC GTC CGA GAA GAC CT
R: GAT GAG CCG GAC ATC TTC CAC T

F: CTT TGT AAG GGC GGT TCT
R: GAG GCT TGC TTT AGT TGG

F: CAG CTT TGA GGT TCG TGT TTG T
R: ATG CTCTTC TTT TTT GCG GAA A

F: CAG ACC AGC CTA ACA GAT TTC
R: TGA CCC ACA GCA GAA GAA G

51

109

72

81

81

99

77

144

118

146

204

250

230

83

74

68

96

175

111

292

142

135

72

70

141

82

105
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TaBLE 1: Continued.

Target gene Source Sequence Predicted length (bp)
B Nb0L7059. R AGT TGC CAT CAG CAA ACA TGT CA 17
B2 NBM016953. R COT CIT CAG AGA CAG GCA GGA G 1
Caspase Nba01292. R GGG GGT GCG GTA GAG TAA GC 104
Capase NB4022277. R TGA AGC AGT CTT 66 CCTTGT G 171
Caspase-9 NMO031632.1 F: GGA AGA TCG AGA GAC ATG CAG 216

R: CCG TGA CCA TTT TCT TAG CAG

2.5. Immunoblot Analysis. NP cells at p5, p15, and p20 were
homogenized in radioimmunoprecipitation buffer contain-
ing a protease and phosphatase inhibitor cocktail (Thermo-
Fisher Scientific, Waltham, MA, USA). Subsequently, the
lysates were centrifuged at 13,572 x g for 10 min at 4°C to
obtain soluble protein. Protein concentrations were deter-
mined by the Bradford method. Proteins of interest were
immunoblotted using 35 ug of protein, following standard
protocols. The extracted proteins were resolved by 8-15%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
and transferred onto polyvinylidene difluoride membranes
(Millipore, Billerica, MA, USA). After blocking with 3%
bovine serum albumin (Sigma-Aldrich), the membranes
were incubated with antibodies against S-actin (sc-130656;
1:200), full-length caspase-3 (sc-7272; 1:200), polyclonal
rabbit anti-beclin-1 (ab55878; 1:1000; Abcam, Cambridge,
UK), light chain 3 (LC3; ab58610; 1:1000), Bcl-2, apoptosis
regulator (Bcl-2; sc-492; 1:200), Bcl-2 associated X, apopto-
sis regulator (Bax; sc-526; 1:200), and sirtuin 1 (SIRT1;
sc-15404; 1:200). All antibodies were from Santa Cruz Bio-
technology (Heidelberg, Germany) except the beclin-1 anti-
body (Abcam (Cambridge, UK)). Specific binding was
detected using the Super Signal West Dura Extended Dura-
tion Substrate (ThermoFisher) and a LAS 4000 chemilumi-
nescent image analyzer (Fujifilm, Tokyo, Japan). Protein
band intensities were quantified using the ImageJ software
(https://imagej.nih.gov/ij/download.html; National Institutes
of Health, Bethesda, MD, USA).

2.6. Monodansylcadaverine (MDC) Staining. MDC staining
has been used to monitor autophagy by staining autophagic
vacuoles [38]. Specific passage numbers of NP cells (p5,
pl5, and p20) were seeded on Lab-Tek chamber slides in
the same way as the morphometric analysis. Subsequently,
autophagic vacuoles were labeled with MDC by incubating
the cells with 0.05mM MDC in a-MEM (Gibco) at 37°C for
60 min. MDC-stained autophagic vacuoles were examined
using a fluorescence microscope (BX61; Olympus, Tokyo,
Japan) [38, 39]. The MDC-positive cells were calculated
by counting cells from at least three random microscopic
fields using the Image] software (https://imagej.nih.gov/ij/
download.html; National Institutes of Health).

2.7. Transmission Electron Microscopy (TEM). NP cells cul-
tured to p5, p15, and p20 were fixed with 4% glutaraldehyde
(Sigma-Aldrich) overnight, postfixed in 2% osmium tetrox-
ide, dehydrated with a graded series of ethanol (Merck),
and embedded in resin. Images of autophagosomes were cap-
tured using a JEM 1010 transmission electron microscope
(JEOL, Peabody, MA, USA). Based on the previous studies,
a vacuole structure with a double to multimembranous struc-
ture in the cytoplasm was defined as an autophagosome [39,
40]. In each group (C-NP and H-NP) with specific passage
(p5, pl5, and p20), double membranous autophagosomes
present in the cytoplasm were quantified in at least three
different samples using the Image] software.

2.8. Ex Vivo Analysis Using a Disc Microinjection Organ
Culture Model. Male SD rats aged 5 weeks (young, Y) and
10 weeks (old, O) were purchased from Orient Bio. Rats were
housed at 22 + 2°C with a 12h light-dark cycle. Food (PMI
Nutrition International, St. Louis, MO, USA) and water were
supplied ad libitum. Rats were divided into four groups (n =3
/group): 5 weeks old without injury, 5 weeks old with injury,
10 weeks old without injury, and 10 weeks old with injury. In
the injured groups, 10 uL of PBS was injected into the verte-
bral discs with a 26-gauge needle [39, 41]. The vertebrae were
dissected and removed from the rats, and the discs between
the L1-L2 and L3-L4 lumbar vertebrae were separated from
neighboring vertebrae using a scalpel. The isolated discs were
maintained for 14 days in a-MEM containing 10% FBS at
37°C in a hypoxic condition (5% O,) and then subjected to
morphometric analysis.

2.9. Histopathology and Immunohistochemistry. Lumbar
discs were fixed in 10% neutral-buffered formalin, decalci-
fied in Solution Lite (Sigma-Aldrich), processed using a
standard method, and embedded in paraffin. Serial disc sec-
tions (4 ym thick) were stained with hematoxylin and eosin
(H&E) and Safranin O (Sigma-Aldrich). For immunohisto-
chemistry, sections were subjected to heat-mediated antigen
retrieval using 0.01M sodium citrate buffer (pH6.0). A
monoclonal mouse type II collagen antibody (cp18, 1:100,
Calbiochem, San Diego, CA, USA) was used as the primary
antibody. Antigen-antibody complexes were visualized using
the avidin-biotin-peroxidase complex solution from the
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VECTASTAIN® Avidin-Biotin Complex Staining Kit (Vector
Laboratories, Burlingame, CA, USA) along with 3,3 -diami-
nobenzidine (Vector Laboratories). Sections were counter-
stained with Mayer’s hematoxylin.

2.10. Protein Extraction from Paraffin-Embedded Tissues.
Proteins were extracted from formalin-fixed, paraffin-
embedded (FFPE) lumbar disc tissues using the Qproteome
FFPE Tissue Kit (Qiagen, Hilden, Germany). Protein samples
were combined with a polyclonal rabbit LC3 antibody
(Abcam) and incubated for 2h at 4°C. Protein A/G PLUS-
Agarose beads (20 uL; Santa Cruz Biotechnology) were
added, and the mixtures were incubated at 4°C on a rocker
platform for 2h. The pellets were washed three times, and
the buffer was carefully aspirated to avoid disturbing the pel-
lets. Thereafter, the pellets were resuspended in 40 uL of sam-
ple buffer. The immunoprecipitated samples were subjected
to immunoblot analysis as described above [42].

2.11. Statistical Analysis. Statistical analyses were performed
using GraphPad Prism 4.02 (GraphPad Software, San Diego,
CA, USA). Multiple comparisons were analyzed using the
one-way analysis of variance followed by the Bonferroni post
hoc test. All results are expressed as the mean + standard
deviation. p < 0.05 was considered statistically significant.

3. Results

3.1. Effects of Hypoxia and Serial Passaging on NP Cell
Viability and Mineral Accumulation. To assess the effects of
different environmental oxygen conditions on cell viability,
NP cells were cultured for 96 h in normoxic and hypoxic con-
ditions. Interestingly, at the earliest timepoint (24 h), the via-
bility of the hypoxic H-NP cells was significantly higher than
that of the normoxic C-NP cells (p < 0.01). However, after
72 h, both C-NP and H-NP cells displayed slight but insignif-
icant decreases in viability (Figure 1(a)). Next, we cultured
C-NP and H-NP cells up to p20 and stained them with Aliz-
arin Red S to examine changes in cell shape and mineraliza-
tion. As shown in Figure 1(b), mineralization plaques were
observed in neither H-NP nor C-NP cells until p20. How-
ever, H-NP cells were larger than C-NP cells, with increased
cytoplasm, and C-NP cells were more spindle-shaped than
H-NP cells at p20. These results indicate that hypoxia does
not affect NP cell viability but may affect their phenotype,
changing their size and morphology.

3.2. Chondrogenesis-Related Gene Expression in NP Cells
under Different Oxygen Concentrations. Given the observed
morphological changes with hypoxic culture, we next sought
to examine alterations of gene expressions related to chon-
drogenesis upon aging and hypoxia through the serial pas-
saging of NP cells (Figure 2). This endpoint was chosen
based on previous studies regarding the serial passaging of
primary isolated cells to senescence [33, 34]. At the earlier
passage (p5), compared to H-NP, C-NP showed downregula-
tion of SRY-box transcription factor-9 (Sox-9), type I colla-
gen, and tissue inhibitor of metalloproteinase-2 (TIMP-2)
and slight upregulation of matrix metallopeptidase (MMP-
3). After aging by serial passaging, C-NP cells exhibited

significantly decreased levels of ECM-related genes (e.g.,
aggrecan, type 1I collagen, and type VI collagen) as well as
ECM-regulating enzymes (e.g., MMP-3) at p15. Despite H-
NP cells displayed the same tendency as C-NP cells with
serial passaging (aging), the levels of ECM-related genes
were significantly higher in H-NP cells compared to that in
C-NP cells. The results indicate that repeated passaging
under normoxia led to the dedifferentiation of NP cells, as
they quickly lose aggrecan and type II collagen, while simul-
taneously transitioning to a fibroblastic phenotype charac-
terized by high type III collagen expression. However,
aggrecan mRNA expression at pl5 was significantly higher
in hypoxia (p <0.01). In addition, hypoxia maintained NP
cell homeostasis through increases in catabolic enzymes
such as MMP-3 and MMP-13, as well as increased expres-
sion of MMP inhibitors, such as TIMP-1 and TIMP-2. These
results suggest that hypoxia results in slower ECM protein
degradation than normoxia and maintains homeostasis
through the coordinated actions of MMPs and TIMPs.

3.3. Gene and Protein Levels of Autophagosome- and
Autophagy-Related Genes in NP Cells under Different
Oxygen Concentrations. To assess the effects of hypoxia on
autophagy in NP cells, the autophagic process was visualized
by MDC staining and TEM (Figure 3(a)). First of all, we
labeled autophagic vacuoles with MDC, a lysosomotropic
agent that is incorporated into the lipids of autophagic vacu-
oles. Our results showed that the number of MDC-labeled
autophagosomes increased with aging in both normoxic
and hypoxic conditions and peaked at p15. In particular,
under hypoxic conditions, the number of MDC-labeled
autophagosomes was significantly higher than in normoxic
conditions throughout the experimental periods. Subse-
quently, double membranous autophagosomes in experi-
mental groups were analyzed using TEM. Similar to MDC
staining results, H-NP cells contained more autophagosomes
than C-NP cells in all passages examined. Interestingly, the
difference increased with the number of passages (5.6- and
14.25-fold higher in H-NP cells vs. C-NP cells at p15 and
P20, respectively).

We then investigated whether hypoxia or aging affected
the transcript and protein levels of autophagy-related genes
in NP cells (Figures 3(b) and 3(c)). Despite repeated passag-
ing, there were no significant changes in the expression of
autophagy-related genes in C-NP cells, except for high
mobility group box 1 (HMGBI1) at p20. Compared to the
C-NP, H-NP showed significantly increased gene expression
levels of beclin-1, autophagy-related 7 (ATG7), LC3-1, and
LC3-II in the early passages (p5). At p15, the LC3-II/LC3-1
ratio was significantly increased in H-NP cells compared to
C-NP cells (p < 0.05). Consistent with this, the beclin-1 pro-
tein level (p < 0.001 at p5, p10, and p15) and the LC3-II/LC3-
I ratio (p<0.01 at p5) were significantly higher in H-NP
cells. SIRT1 is a key mediator of hypoxia, which is known
to promote autophagy and inhibit apoptosis to protect the
cells from hypoxic stress via AMPK activation [43]. In our
results, SIRT1 protein expression was significantly upregu-
lated in H-NP cells compared to that in C-NP cells at p15
and p20. Taken together, these results suggest that NP cells
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FIGURE 3: Autophagosome- and autophagy-related genes and protein level analysis in NP cells under different oxygen concentrations. (a)
Representative MDC staining and TEM images and statistical analysis of autophagosomes (arrowheads) in p5, p15, and p20 NP cells.
Scale bar for MDC staining: 100 gm, TEM: 0.5 ym. (b) RT-PCR was used to analyze mRNA expression levels in normoxic (C-NP) and
hypoxic (H-NP) cells at p5, p15, and p20 (n =3 per group). Primers targeted hypoxia- (HIF1, SIRT1) and autophagy- (HMGBI, beclin-1,
ATG7, ATG5, LC3-1, and LC3-II) related genes. (c) Representative immunoblots and statistical analysis of protein levels in the
experimental groups. Data are presented as the mean + standard deviation. *p < 0.05, **p < 0.01, and ***p < 0.001 versus p5; “p < 0.05,
#p <0.01, and **p < 0.001 versus p15; "p < 0.05, ""p < 0.01, and "p < 0.001 versus C-NP cells at the same passage number.

have increased autophagic activation response to hypoxic
condition and that this autophagic flux is related to increased
beclin-1, LC3-II/LC3-I ratio, and SIRT1 activation.

3.4. Apoptosis and Signaling Pathway in NP Cells under
Different Oxygen Concentrations. According to previous
reports [24, 25], substances developed to enhance the
autophagic flux of NP cells for the treatment of IVD degener-
ation can reduce the activation of apoptosis-related path-
ways, in addition to enhancing the autophagy-related
pathways. To determine whether this affects our experimen-
tal model, we analyzed the expression patterns of apoptosis-
related genes and proteins (Figures 4(a) and 4(b)). Consistent
with the viability results, C-NP cells did not show significant
changes in apoptosis-related gene and protein expression
levels with serial passaging. However, compared to C-NP
cells, H-NP cells displayed increased gene expression of
Bcl-2 (p<0.01) as well as decreased expression of Bax
(p<0.01), caspase-3 (p <0.05), and caspase-8 (p < 0.05) at
p15 (Figure 4(a)). In addition, the Bax/Bcl-2 ratio, a measure
of apoptotic susceptibility [44], was significantly lower in
H-NP cells compared to that in C-NP cells (at p15 and p20,
p<0.001). Similar to gene expression analysis, Bax and
caspase-3 protein expression levels were also significantly
decreased in H-NP cells (Figure 4(b)). However, these antia-

poptotic protein expressions (decreased Bax, caspase-3
expression) of NP cells under the hypoxic condition were
reversed after 3MA (autophagy inhibitor) treatment. These
results could indicate that hypoxic condition not only
induces autophagic flux but also could exhibit antiapoptotic
signaling activation in NP cells via Bax/Bcl-2 and caspase-
3/8 signaling pathways.

3.5. Histological Changes of the Rat Lumbar Disc Ex Vivo
Culture Model under the Hypoxic Condition. Finally, we
tested an ex vivo IVD culture model under the hypoxic con-
dition as same as in vitro study. To identify changes of NP
phenotype upon aging and injury, we set up a control/injury
group (with/without injury) and 5-week and 10-week groups
(juvenile and young adults). The no injury groups showed
relatively well-preserved NP structures than the injured
groups in the center of the IVD (Figure 5(a)). Nevertheless,
aggregated, serpentine-shaped ECM with clustered NP cells
still exist in the injured groups. In the 5 weeks without injury
group, the Safranin O-positive area was homogenously
distributed with the cells throughout the ECM, whereas in
the 10 weeks without injury group, the cells were clustered
in localized areas. Even though all 10-week-old and injured
groups had ECM inside the NP area, the injured group
showed condensed or degenerative features rather than
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FIGURE 4: Apoptosis-related gene and protein expression analysis under the different oxygen concentrations. (a) Expression levels of
apoptosis-related genes were analyzed using RT-PCR. (b) Representative immunoblots and statistical analysis of protein levels in the
experimental groups. Data are presented as the mean + standard deviation. *p < 0.05, **p < 0.01, and ***p < 0.001 versus p5; “p < 0.05,
#p <0.01, and **p < 0.001 versus p15; "p < 0.05, ""p < 0.01, and "p < 0.001 versus C-NP cells at the same passage number.

homogenous distribution. These features might indicate that
hypoxic conditions could help to maintain the NP cell viabil-
ity; it could not cure or improve the regenerative capacity of
NP cell itself. Similar to the in vitro results, the intensity of
type II collagen (a major component of the NP) was higher
in the juvenile groups than that in the young adult groups.
The LC3-II/LC3-I ratio was higher in the 5 weeks without
injury group compared with that in the 10 weeks without
injury group (Figure 5(b)). Despite differences in injury and
age, discs cultured in hypoxic conditions were found to
exhibit a certain level of autophagic activation. These results

are consistent with our in vitro TEM and qPCR/protein
expression results from early passage cultures (p5).

4. Discussion

IVD degeneration, a major contributor to chronic lower back
pain, is an age-related condition characterized by loss of the
ECM and the functional cells responsible for its regeneration.
The inner NP region of the vertebral disc is composed of type
II collagen and proteoglycans. These molecules are respon-
sible for water retention, which maintains the viscoelastic
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properties of the discs [31, 32, 41]. NP tissue is avascular, and
the oxygen saturation levels required for its sustenance are
relatively low compared to other tissues [35].

The microenvironment of IVD is hypoxic but not
completely anaerobic (1% O, in central NP), and during
IVD degeneration progression, neovascularization of the
disc is known to increase oxygen tension in the microenvi-
ronment of IVD [5, 6]. High oxygen tension is expected to
enhance reactive oxygen species (ROS) generation and sub-
sequently induce oxidative stress in the microenvironment
of IVD, which is closely related to the establishment and
progression of IVD degeneration [7, 45, 46]. In this study,
we evaluated autophagy changes in relation to NP cell phe-

notype and apoptotic/antiapoptotic signaling during serial
passaging in normoxic and hypoxic conditions.

Alizarin Red S staining revealed that although minerali-
zation plaques were not observed until p20 in both H-NP
and C-NP cells, the size and shape of the cells differed
depending on the culture conditions (Figure 1(b)). RT-
qPCR results demonstrated that hypoxia led to increased
aggrecan and type II collagen and decreased type III collagen
in H-NP cells. These results indicate that C-NP cells exhibit
characteristics of fibrocartilage, while H-NP cells exhibited
chondrogenic characteristics. In addition, hypoxia resulted
in elevated levels of TIMP-1 and TIMP-2 (at p15), as well as
expression of MMP-3 and MMP-13 (at p15 and p20), which
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regulate collagen and aggrecan degradation. Collectively, NP
cells maintained a partially chondrogenic phenotype without
mineralization under hypoxic conditions for 20 serial pas-
sages (approximately 60 days). The hypoxic environment
plays a crucial role in maintaining the physiological function
of the IVD, including cellular metabolism and matrix synthe-
sis [15, 47]. Thus, our results indicate that the use of hypoxic
conditions is important to accurately study the IVD microen-
vironment in vitro.

It is well known that apoptosis and autophagy are both
closely related to the onset and progression of IVD degenera-
tion [24, 48, 49]. Apoptosis is responsible for decreased NP cell
numbers during degeneration [50-52]. Conversely, autophagy
is an evolutionarily conserved process that has been implicated
in cell growth, development, and stress responses [23, 40]. It is
activated by various stresses, such as aberrant mechanical
compression, hypoxia, high glucose, and reactive oxygen
species [35, 53]. In our study, both MDC staining and TEM
results showed that autophagosomes were significantly
increased in the late-passage H-NP cells compared to those
in the C-NP cells (Figure 3). In addition, beclin-1 expression
and the LC3-II/LC3-I ratio increased, whereas Bax and
caspase-3 expression decreased in H-NP cells compared with
that in C-NP cells. H-NP cells were responsive to hypoxia
to protect and promote autophagic influx, as indicated by
increased SIRT1 expression. Autophagy is an essential protec-
tive mechanism for cell survival after injury, and SIRT1 pro-
tects cells by regulating autophagy and metabolism [54].
Furthermore, a Bcl-2/beclin-1 interaction plays a key regula-
tory role in autophagy, allowing Bcl-2 to inhibit both apopto-
sis and autophagy [55, 56]. Interestingly, both autophagic flux
and antiapoptotic regulation were blocked by the autophagy
inhibitor 3MA under the hypoxic condition. These results
suggest that homeostasis in hypoxic conditions is promoted
through both elevated autophagy and antiapoptotic effects.

There are some limitations to this study. One was the use
of NP cells isolated from rat lumbar discs. Species with chon-
drodystrophoid discs, such as humans, sheep, and dogs, can
experience profound, early-onset degenerative disc disease,
which often occurs within one year of birth [11, 15]. We used
rats in this study, as this model has been used in many previ-
ous studies, and rats are one of the few species that maintain
an NP cell population similar to that observed in adult
humans. Further studies are required to determine the rela-
tion between autophagic flux, hypoxia, and aging in humans.

In conclusion, our results provide evidence that NP cells
modulate the expression of chondrogenesis-, autophagy-,
and apoptosis-related genes under hypoxic conditions. This
study provides a better understanding of autophagy- and
apoptosis-related senescence in NP cells. These results may
also provide insight into the changes that occur in NP cells
during aging.
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