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ABSTRACT
Dexmedetomidine (Dex) has been reported to exhibit neuroprotective effects through various 
regulatory mechanisms. This study aims to investigate the role and molecular mechanism of 
SNHG11 in Dex-mediated neuroprotection. The ischemic stroke (IS) model was established in vivo 
by middle cerebral artery occlusion (MCAO) and in vitro by oxygen-glucose deprivation and 
reperfusion (OGD/R)-treated SH-SY5Y. SNHG11 was highly expressed after OGD/R, and Dex 
improved OGD/R-induced neurological injury. Additionally, Dex reversed the effects of SNHG11 
on OGD/R-induced neurological injury. Furthermore, we found that SNHG11 upregulated vascular 
endothelial growth factor A (VEGFA) expression by targeting miR-324-3p. Through rescue assays, 
it was confirmed that SNHG11 regulated OGD/R-induced neurological injury through increasing 
VEGFA expression. At last, Dex was also discovered to improve neurological injury through 
regulating SNHG11 in the rat model. In conclusion, our work demonstrated that Dex improved 
OGD/R-induced neurological injury via SNHG11/miR-324-3p/VEGFA axis. These findings may offer 
a novel therapeutic strategy for IS treatment.
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Introduction

Ischemic stroke (IS) is a common cerebrovascular 
disease with a high incidence rate among the 
elderly [1,2]. IS can decrease blood flow to the 
brain and trigger a chain reaction that may lead 
to severe neuronal damage [3,4]. Despite the great 
progress in IS treatment, the patients’ prognosis is 
still far from satisfactory due to the narrow treat-
ment window [5]. Therefore, it is important to 
develop effective therapeutic strategies for IS.

Dexmedetomidine (Dex) is a type of alpha2 
adrenergic receptor agonist, which has pharmaco-
logical properties of analgesia and retarding sym-
pathetic activity [6–8]. A large number of 
researches have illustrated that Dex exhibits neu-
roprotective effects through various regulatory 
mechanisms [9,10]. For example, Dex activates 
the PI3K/Akt/mTOR pathway to promote the neu-
roprotective effect in traumatic brain injury [11]. 
MiR-128 targets WNT1 to strengthen 

neuroprotective effects of Dex in hypoxic- 
ischemic brain damage [12]. Additionally, Dex 
regulates SHNG16/miR-10b-5p/BDNF axis to 
exert neuroprotective effects in hippocampal neu-
ronal cells [13]. However, the molecular mechan-
isms of Dex in IS need further investigation.

Long non-coding RNAs (lncRNAs) are widely 
reported to participate in the pathogenesis of var-
ious diseases, including IS [14]. For instance, 
lncRNA H19 drives M1 microglial polarization to 
facilitate neuroinflammation in IS [15]. LncRNA 
MALAT1 regulates the apoptosis in IS via the 
miR-205-3p/PTEN axis [16]. LncRNA GAS5 facil-
itates the progression of IS by targeting miR-137 
[17]. Furthermore, lncRNA-N1LR suppresses p53 
phosphorylation to promote neuroprotection 
against IS [18]. Small nucleolar RNA host gene 
(SNHG) family members, such as SNHG15 [19], 
SNHG12 [20], and SNHG1 [21], have been 
reported to exhibit neuroprotective effects in 

CONTACT Qingwei Wu wuqingwei128@163.com Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, 
Shanghai Jiao Tong University School of Medicine, No. 639, ZhiZaoJu Road, Huangpu District, Shanghai 200011, China
*Contribute equally to this research and should be considered as co-first author

BIOENGINEERED
2021, VOL. 12, NO. 1, 4794–4804
https://doi.org/10.1080/21655979.2021.1957071

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which 
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-3609-784X
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21655979.2021.1957071&domain=pdf&date_stamp=2021-07-29


cerebral ischemic injury. Nevertheless, the role of 
SNHG11 keeps unknown in IS progression.

This study aimed to investigate the molecular 
mechanisms of SHNG11 in Dex-mediated neuro-
protection. We hypothesized that Dex improved 
neurological injury by regulating SNHG11/miR- 
324-3p/VEGFA axis. Our study revealed the vital 
roles of SNHG11 in neurological injury, which 
might offer a novel therapeutic strategy for IS.

Materials and methods

Animals

The Sprague-Dawley rats (8-week-old, n = 24), 
obtained from Vital River Co. Ltd. (Beijing, 
China), were divided into 4 groups (n = 6): the 
Sham group, the MCAO group, the MCAO +oe- 
SNHG11 group, and the MCAO +oe-SNHG11 
+ Dex group. Then, a 6/0 surgical nylon monofila-
ment was utilized to block the middle cerebral 
artery. 2 h after middle cerebral artery occlusion 
(MCAO), the surgical nylon monofilament was 
retracted to allow reperfusion. The Sham-operated 
rats were manipulated in the same way but without 
the insertion. In the MCAO +oe-SNHG11+ Dex 
group, Dex (100 μmol/kg) was administered intra-
venously outside the jugular at the initiation of 
reperfusion [22]. The animal experiments were 
approved by the Animal Care and Use Committee 
of Shanghai Ninth people’s Hospital

Cell culture

SH-SY5Y cells are widely used as an in vitro model 
to study neuronal function [23–25]. Hence, SH- 
SY5Y cells were bought from American Type 
Culture Collection (ATCC) and cultivated in 
DMEM supplemented with 10% FBS (Thermo 
Fisher Scientific), 100 mg/mL streptomycin, and 
100 U/mL penicillin at 37°C with 5% CO2.

OGD/R treatment

SH-SY5Y cells were maintained in glucose-free 
DMEM medium for 4 h with the hypoxic atmo-
sphere (95% N2, 5% CO2). Next, the medium was 
substituted with fresh DMEM medium with 4.5 g/ 

L glucose and 10% FBS, and incubated for 12, 24, 
and 48 h under normoxic conditions (95% air and 
5% CO2) at 37°C [26].

Transfection

Short hairpin RNA targeting SNHG11 (sh- 
SNHG11), shNC, NC mimics, miR-324-3p mimics, 
pcDNA3.1 vectors, SNHG11 overexpression plasmid 
(oe-SNHG11), and VEGFA overexpression plasmid 
(oe-SNHG11) were synthesized by GenePharma 
(Shanghai, China). The transfection was performed 
using Lipofectamine 2000 (Invitrogen).

RT-qPCR

Total RNA was extracted from SH-SY5Y cells using 
TRIzol reagent (Invitrogen), and reverse-transcribed 
to cDNA using a PrimeScript RT Reagent Kit 
(Takara). RT-qPCR was then performed using the 
SYBR Green kit (Applied Biosystems) on the ABI 
7500 Real-time PCR system (Applied Biosystems). 
GAPDH or U6 was used as the internal control. The 
2−ΔΔCt method [27] was used to calculate the relative 
gene expression.

CCK-8 assay

SH-SY5Y cells (5 × 103 cells/well) were seeded 
onto the 96-well plate. Then, CCK-8 solution 
(10 μL) was added to each well and incubated for 
another 2 h. The optical density (OD) value at the 
wave of 450 nm was assessed under a microplate 
reader (Bio-Rad) [28].

TUNEL assay

Cell apoptosis was inspected with the In Situ Cell 
Death Detection kit (Roche) [29]. Samples were 
immobilized with 4% paraformaldehyde and per-
meabilized with 0.2% Triton X-100. Next, samples 
were dyed with the TUNEL reaction mixture 
(50 μl) and counterstained with DAPI. The fluor-
escence microscope (Leica, Wetzlar, Germany) 
was utilized to observe TUNEL-positive cells.
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Detection of oxidative stress markers

Oxidative stress markers, such as catalase (CAT), 
glutathione peroxidase (GSH-PX), superoxide dis-
mutase (SOD), and malondialdehyde (MDA), 
were detected using ELISA kits (Jiancheng 
Bioengineering Institute, China) according to the 
manufacturer’s instruction [30].

RNA pull-down

Biotinylated SNHG11 sense (Bio-SNHG11 sense) 
and SNHG11 antisense (Bio-SNHG11 antisense) 
probes were acquired from Sangon (Shanghai, 
China). After mixing cell lysate, these above probes, 
and Dynabeads M-280 Streptavidin (Invitrogen), 
the eluted RNAs were measured by RT-qPCR [31].

Figure 1. Dexmedetomidine improved OGD/R-induced neurological injury. (a) The cell viability of SH-SY5Y cells was tested through 
CCK-8 assay in the Control, OGD/R-6 h, OGD/R-12 h, OGD/R-24 h, OGD/R-48 h group. (b) SNHG11 expression was examined through 
RT-qPCR in the Control, OGD/R-6 h, OGD/R-12 h, OGD/R-24 h, OGD/R-48 h group. (c) The cell viability was measured through CCK-8 
assay after treating with Dex (0, 50, 100, 200, and 400 ng/ml). (d) SNHG11 expression was assessed through RT-qPCR after in the 
Control, OGD/R-6 h, OGD/R-12 h, OGD/R-24 h, OGD/R-48 h group. (e) The cell apoptosis was measured through TUNEL assay in the 
Control, OGD/R, OGD/R+ saline, and OGD/R+ Dex groups. (f) The levels of SOD, CAT, GSH-Px, and MDA were verified through the 
appropriate commercial kits in the Control, OGD/R, OGD/R+ saline, and OGD/R+ Dex groups. *P < 0.05.
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Luciferase reporter assay

The wild-type (Wt) or mutant-type (Mut) 
sequences of SNHG11 and VEGFA were sub- 
cloned into pmirGLO vectors (Promega). Then, 
NC mimics or miR-324-3p mimics were co- 
transfected with the above vectors into SH-SY5Y 
cells. The luciferase activity was measured by 
Dual-Luciferase Reporter System (Promega) [32].

RIP assay

The EZ-Magna RIP Kit (Millipore) was employed 
to conduct RIP assay [33]. The cell lysates and 
magnetic beads coated with anti-Ago2 or anti- 
IgG were mixed. After the incubation, the 
extracted RNAs were assessed with RT-qPCR.

Statistical analysis

Data were exhibited as mean± standard deviation 
(SD) and analyzed through SPSS 17.0 (SPSS). The 
comparisons in groups were assessed using student’s 
t-test or ANOVA followed by Tukey’s post hoc test. 
P < 0.05 represented statistical significance.

Results

In our study, the IS model was established 
in vivo by MCAO and in vitro by OGD/ 
R-treated SH-SY5Y. It was found that SNHG11 
expression was up-regulated in IS. Further 
exploration uncovered that Dex improved neu-
rological injury by regulating the SNHG11/miR- 
324-3p/VEGFA axis.

Figure 2. Dexmedetomidine reversed the effects of SNHG11 on OGD/R-induced neurological injury. Groups were divided into the 
OGD/R+ oe-NC, OGD/R+ oe-SNHG11, and OGD/R+ oe-SNHG11+ Dex groups. (a) The cell viability was measured through CCK-8 
assay. (b) The cell apoptosis was detected through TUNEL assay. (c) The levels of SOD, CAT, GSH-PX, and MDA were confirmed 
through the appropriate commercial kits. *P < 0.05.
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Dexmedetomidine improved OGD/R-induced 
neurological injury

An in vitro cell model of IS was firstly established 
through treating SH-SY5Y cells with OGD/R. As 
displayed in Figure 1a, the cell viability was reduced 
after OGD/R treatment in a time-dependent man-
ner. Additionally, SNHG11 expression was up- 
regulated with the increased treatment time of 
OGD/R (Figure 1b). OGD 4 h/reperfusion 24 h had 
the most significant changes. Therefore, OGD 4 h/ 
reperfusion 24 h was used for subsequent experi-
ments. Under treating with Dex with a dose- 
dependent effect, the cell viability was increased 
(Figure 1c). Besides, SNHG11 expression was 
decreased after Dex treatment (Figure 1d). These 
findings suggested that Dex (200 ng/ml) treatment 

had the most obvious effect. Next, we discovered that 
cell apoptosis was enhanced after OGD/R induction, 
but this effect could be restored by Dex treatment 
(Figure 1e). Moreover, OGD/R treatment consider-
ably reduced the levels of SOD, CAT, and GSH-PX, 
and increased the levels of MDA. However, these 
effects were reversed by Dex treatment (figure 1f). 
Taken together, SNHG11 was highly expressed in 
OGD/R-treated SH-SY5Y cells, and Dex improved 
OGD/R-treated neurological injury.

Dexmedetomidine reversed the effects of 
SNHG11 on neurological injury

To probe the role of SNHG11 in neurological 
injury, more experiments were carried out. CCK- 

Figure 3. miR-324-3p is a target of SNHG11. (a) The potential miRNAs that could bind with SNHG11 were predicted through starBase 
website with the condition (CLIP Data: high stringency (≥3)). The binding ability of miRNAs to SNHG11 was confirmed through RNA 
pull-down assay. (b) MiR-324-3p expression was tested through RT-qPCR. (c) The overexpression efficiency of miR-324-3p was 
verified through RT-qPCR. (d) The binding ability between SNHG11 and miR-324-3p was detected through the luciferase reporter 
assay. *P < 0.05.
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8 indicated that the up-regulation of SNHG11 
weakened the cell viability, but co-treating with 
Dex could relieve this effect (Figure 2a). Dex treat-
ment reversed the enhanced cell apoptosis induced 
by SNHG11 overexpression (Figure 2b). 
Moreover, Dex treatment partially abolished the 
effect of SNHG11 up-regulation on the levels of 
OD, CAT, GSH-PX, and MDA (Figure 2c). These 
data demonstrated that Dex treatment reversed the 
effects of SNHG11 on the neurological injury.

miR-324-3p was a target of SNHG11

Subsequently, starBase website was used to predict 
the downstream miRNAs of SNHG11. RNA pull- 
down assay indicated that miR-324-3p had the 
strongest binding ability to SNHG11 (Figure 3a). 
Moreover, miR-324-3p was lowly expressed in 

OGD/R-induced SH-SY5Y cells (Figure 3b). RT- 
qPCR indicated that miR-324-3p expression was 
up-regulated in OGD/R-treated SH-SY5Y cells 
transfected with miR-324-3p mimics (Figure 3c). 
In addition, miR-324-3p overexpression decreased 
the luciferase activity of SNHG11-Wt reporters, 
but no change was observed in the luciferase activ-
ity of SNHG11-Mut reporters (Figure 3d). The 
above results demonstrated that SNHG11 could 
bind with miR-324-3p.

SNHG11 regulated VEGFA level by targeting 
miR-324-3p

Through using starBase, the downstream targets of 
miR-324-3p were screened. VEGFA expression was 
obviously decreased after overexpressing miR-324- 
3p among these target genes (Figure 4a). Besides, the 

Figure 4. SNHG11 regulated VEGFA level by targeting miR-324-3p. (a) The downstream target genes (n = 11) were selected through 
starBase website with the condition (Degradome Data: high stringency (≥3)). The levels of target genes were confirmed after miR- 
324-3p mimics through RT-qPCR. (b) VEGFA expression was measured through RT-qPCR. (c) The binding ability between miR-324-3p 
and VEGFA was verified through the luciferase reporter assay. (d) The enrichment of SNHG11, miR-324-3p, and VEGFA was evaluated 
in RISC complex through RIP assay. *P < 0.05.
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up-regulated VEGFA level was found in OGD/ 
R-mediated SH-SY5Y (Figure 4b). Furthermore, the 
luciferase activity of VEGFA-Wt reporters was 
reduced by miR-324-3p overexpression, but that of 
VEGFA-Mut reporters had no change (Figure 4c). 
At last, RIP assay was performed, and it was uncov-
ered that the enrichment of SNHG11, miR-324-3p, 
and VEGFA was discovered in the Ago2 group 
(Figure 4d). These data revealed that SNHG11 upre-
gulated VEGFA expression by targeting miR-324-3p.

SNHG11 affected OGD/R-induced neurological 
injury by regulating VEGFA

To confirm whether SNHG11 regulated OGD/ 
R-induced neurological injury via VEGFA, rescue 
assays were performed. It was found that over-
expression of VEGFA offset the increased cell via-
bility mediated by silencing SNHG11 (Figure 5a). 

The cell apoptosis was reduced by SNHG11 sup-
pression, but this effect was rescued by overexpres-
sing VEGFA (Figure 5b). Additionally, VEGFA 
up-regulation attenuated the increased SOD, 
CAT, and GSH-PX levels as well as the decreased 
MDA levels induced by SNHG11 knockdown 
(Figure 5c). These results testified that SNHG11 
regulated OGD/R-induced neurological injury 
through regulating VEGFA.

Dexmedetomidine improved neurological injury 
by regulating SNHG11 in vivo

To further explore the function of SNHG11 in 
Dex-mediated neuroprotection in IS, the IS 
model was established in vivo by MCAO. The 
cell apoptosis was enhanced in the MCAO group, 
and further strengthened in the MCAO +oe- 
SNHG11 group. Dex treatment could reverse the 

Figure 5. SNHG11 affected OGD/R-induced neurological injury by regulating VEGFA. Groups were divided into the OGD/R+ sh-NC, 
OGD/R+ sh-SNHG11, and OGD/R+ sh-SNHG11+ oe-VEGFA groups. (a) The cell viability was measured through CCK-8 assay. (b) The 
cell apoptosis was confirmed through TUNEL assay. (c) The levels of SOD, CAT, GSH-PX, and MDA were confirmed through the 
appropriate commercial kits. *P < 0.05.
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increased cell apoptosis induced by SNHG11 over-
expression (Figure 6a). Moreover, the MCAO 
group showed a distinct reduction in SOD, CAT, 
and GSH-PX levels and a significant increase in 
MDA level, which was further strengthened by 
overexpressing SNHG11; however, Dex treatment 
partly attenuated the effects of SNHG11 up- 
regulation on SOD, CAT, GSH-PX, and MDA 
levels (Figure 6b). To sum up, Dex improved neu-
rological injury through regulating SNHG11 in the 
rat model.

Discussion

Increasing evidence illustrates that Dex possesses 
neuroprotective effects in nervous system diseases 
[11–13]. Herein, we further explored the effects of 

Dex on IS-induced neuronal damage in vitro and 
in vivo. Our findings confirmed that Dex signifi-
cantly improved neuronal injury. Previous studies 
indicated SNHG11 participated in the pathogen-
esis of various diseases [34–36], but its role in IS 
progression is undefined. In our work, we found 
that SNHG11 was highly expressed in OGD/ 
R-treated SH-SY5Y cells. Furthermore, Dex 
reversed the effects of SNHG11 on OGD/ 
R-induced neurological injury.

MicroRNAs (miRNAs), a group of highly con-
served ncRNAs with 20–25 nucleotides in length 
[37,38], also play a crucial role in IS progression. 
For instance, repression of miR-497 promotes 
neuronal autophagy to improve functional out-
come after IS [39]. Suppression of miR-19a mod-
ulates neuronal apoptosis and glucose metabolism 

Figure 6. Dexmedetomidine improved neurological injury by regulating SNHG11 in vivo. Groups were divided into the Sham, MCAO, 
MCAO +oe-SNHG11 and MCAO +oe-SNHG11+ Dex group. (a) The cell apoptosis was examined through TUNEL assay in the 
hippocampus of rat model. (b) The levels of SOD, CAT, GSH-PX, and MDA were confirmed through the appropriate commercial 
kits in the hippocampus of rat model. *P < 0.05.
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to protect neurons against IS [40]. MiR-145 reg-
ulates the MAPK pathway to protect neuronal 
stem cells in cerebral IS rat [41]. MiR-324-3p has 
been disclosed to be involved in many diseases 
progression. For example, miR-324-3p targets 
TGF-β1 to modulate fibroblast proliferation in 
atrial fibrillation [42]. In addition, miR-324-3p 
targets WNT2B to retard nasopharyngeal carci-
noma progression [43]. Besides, SNHG22 contri-
butes to the malignant phenotypes of breast cancer 
by regulating miR-324-3p [44]. However, the asso-
ciation between SNHG11 and miR-324-3p in IS is 
unknown. In our study, miR-434-3p was verified 
to bind with SNHG11.

Accumulating studies have proved that lncRNAs 
act as competing endogenous RNAs (ceRNAs) by 
specifically adsorbing miRNAs, and then regulate 
the expression of target genes [45–47]. For instance, 
LncRNA LOC100912373 acts as a ceRNA to con-
tribute to fibroblast-like synoviocyte proliferation in 
rheumatoid arthritis via miR-17-5p/PDK1 axis [48]. 
LncRNA NEAT1 regulates miR-124/BACE1 axis in 
Alzheimer’s disease progression [49]. LncRNA 
GAS5 sponges miR-221 to modulate SIRT1 and 
suppresses diabetic nephropathy progression [50]. 
Herein, VEGFA was confirmed as a downstream 
target of miR-324-3p. Additionally, previous 
researches reported that VEGFA was implicated in 
the pathogenesis of various diseases, including IS 
[51–53]. In terms of ceRNA regulatory mechan-
isms, we discovered that SNHG11 up-regulated 
VEGFA expression by targeting miR-324-3p. 
Through rescue assays, it was verified that 
SNHG11 regulated OGD/R-induced neurological 
injury via VEGFA. At last, Dex was also revealed 
to improve neurological injury through regulating 
SNHG11 in the rat model.

Conclusion

This study demonstrated that Dex improved 
OGD/R-induced neurological injury by regulating 
SNHG11/miR-324-3p/VEGFA axis. However, 
there were several limitations in this study. 
Firstly, the downstream effectors or signaling 
pathways related to the SNHG11/miR-324-3p/ 
VEGFA axis must be further investigated. 
Secondly, the interaction between Dex and 
SNHG11 will be further explored in future study.
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