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ABSTRACT

Currently, diuretic therapy for heart failure (HF)
pathophysiology is primarily focused on the
sodium and water balance. Over the last several
years, however, chloride (Cl) has been recog-
nized to have an important role in HF patho-
physiology, as both a prognostic marker and a
possible central factor regulating the body fluid
status. I recently proposed a unifying hypothe-
sis for HF pathophysiology, called the ‘‘chloride
theory’’, during HF worsening and recovery, as
follows. Chloride is the key electrolyte for reg-
ulating both reabsorption of tubular electrolytes
and water in the kidney through the renin–an-
giotensin–aldosterone system and distributing
body fluid in each compartment of the body. As
changes between the serum Cl concentration
and plasma volume are intimately associated

with worsening HF and its recovery after
decongestive therapy, modulation of the serum
Cl concentration by careful selection and com-
bination of various diuretics and their doses
could become an attractive therapeutic option
for HF. In this review, I will propose a new
classification and practical use of diuretics
according to their effects on the serum Cl con-
centration. Diuretic use according to this clas-
sification is expected to be a useful strategy for
the treatment of patients with HF.
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Key Summary Points

According to the ‘‘chloride theory’’ for
heart failure (HF) pathophysiology,
modulation of the serum chloride (Cl)
concentration by careful selection and
combination of various diuretics and their
doses could become an attractive
therapeutic option for HF

This review article initially describes
possible physiologic roles and differential
effects of Cl in comparison with sodium,
the recently developed concept of the
‘‘chloride theory’’, and a diuretic strategy
for HF pathophysiology according to this
theory

Then, new classifications and the
appropriate use of diuretics according to
their effects on the serum Cl
concentration, aiming to achieve an ideal
body fluid status and avoid diuretic
resistance, will be described

Lastly, a practical monitoring method and
adjustment of diuretics in patients with
HF, with respect to the ‘‘chloride theory’’,
will be described to provide suitable Cl-
centered diuretic strategies

Further studies are required to determine
the clinical utility of chloride-centered
diuretic strategies compared with loop
diuretic-centered diuretic strategies by
recruiting both a large number and wide
spectrum of patients with HF

INTRODUCTION

Body fluid overload is a hallmark feature of
unstable heart failure (HF) [1, 2]. In the chronic
HF population, plasma volume is reported to be
contracted in many [3–6], but not all [7, 8]
previous studies. Importantly, hypervolemia is
often unrecognized in chronic HF [9], and

might be associated with HF hospitalization or
worse clinical outcomes [5, 6, 8, 9].

Acute HF represents a broad spectrum of
disease states, with heterogeneous clinical pre-
sentations, but is commonly characterized by
either a rapid onset or a progressive worsening
of signs and symptoms, requiring immediate
treatment and leading to urgent hospitalization
[10]. The initial clinical presentation of acute
HF includes several distinct phenotypes such as
acutely decompensated HF, cardiogenic shock,
pulmonary edema, right-sided HF, hypertensive
HF, and HF in the setting of acute coronary
syndrome [11]. Worsening HF episodes some-
times occur because of body fluid redistribution
with minimal body weight gain [12–14], but the
vast majority of acute HF episodes are charac-
terized by worsening symptoms and signs of
congestion due to fluid volume overload
[10, 15].

The initiation of fluid retention in various
HF states primarily originates from cardiac
pump failure itself, and subsequent cardiorenal
interactions induce body fluid retention due to
impaired renal sodium and water excretion
secondary to neurohumoral upregulation [16].
Given the centrality of congestion to both the
symptoms and outcomes of HF, diuretics
remain the cornerstone for management of HF
pathophysiology [17, 18], including maintain-
ing stable HF or treating acutely worsening HF.
Currently, diuretic therapy for HF pathophysi-
ology is focused primarily on the handling of
sodium and water. In the last several years,
however, chloride (Cl) has been recognized to
have an important role in HF pathophysiology,
as both a prognostic marker [19, 20] and a
possible factor for the regulation of body fluid
[21].

In this paper, I initially describe possible
physiologic roles and differential effects of Cl in
comparison with sodium, the recently devel-
oped concept of the ‘‘chloride theory’’, and a
diuretic strategy for HF pathophysiology
according to this theory [21]. New classifica-
tions and the appropriate use of diuretics
according to their effects on the serum Cl con-
centration, aiming to achieve an ideal body
fluid status and avoid diuretic resistance, will
then be described. Lastly, a practical monitoring
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method and adjustment of diuretics in patients
with HF, with respect to the ‘‘chloride theory’’,
will be described to provide suitable Cl-centered
diuretic strategies. This article is based on pre-
viously conducted studies and does not contain
any studies with human participants or animals
performed by any of the authors.

CENTRAL ROLE OF CHLORIDE
AND PROPOSAL
OF THE ‘‘CHLORIDE THEORY’’
FOR HF PATHOPHYSIOLOGY

In HF pathophysiology, body fluid volume reg-
ulation is a complex process involving the
interaction of various afferent (sensory) and
neurohumoral efferent (effector) mechanisms
[2, 22, 23]. Historically, most studies have
focused on the body fluid dynamics in HF
through controlling the sodium and water bal-
ance in the body [24–26], and maintaining
arterial circulatory integrity through the neu-
rohumoral system is central to the unifying
hypothesis of body fluid regulation in HF
pathophysiology [2, 22, 23]. The pathophysio-
logic background of the biochemical determi-
nants of vascular volume in HF, however, is not
yet clarified. Recent studies demonstrated that
changes in vascular [27–29] and red blood cell
[30] volumes are independently associated with
the serum Cl concentration, but not the serum
sodium concentration, during worsening HF
and its recovery. These observations led me to
develop a unifying hypothesis for HF patho-
physiology named the ‘‘chloride theory’’ during
worsening HF (Fig. 1) and its recovery (Fig. 2)
[21, 31], as follows. Chloride is the key elec-
trolyte for regulating the reabsorption of both
tubular electrolytes and water in the kidney
through the renin–angiotensin–aldosterone
system (RAAS) and regulating the body fluid
distribution in each compartment of the body
[32, 33], i.e., the intravascular, interstitial, and
intracellular compartments.

IMPORTANCE OF BIOCHEMICAL
DIFFERENCES BETWEEN SODIUM
AND CHLORIDE FOR BODY FLUID
DISTRIBUTION

Regulation of the body fluid volume is critically
important for maintaining life. Body composi-
tion is approximately 60% water by weight,
two-thirds of which (40% water by weight)
comprises the intracellular water compartment
with the remaining one-third (20% water by
weight) comprising the extracellular water
space. The extracellular water space is further
subdivided into the intravascular compartment
(arterial, capillary, venous, and lymphatic) and
the interstitial compartment (5% and 15%
water by weight, respectively) [32, 33]. The
association between the electrolyte balance and
fluid distribution in the human body is an
important consideration, particularly the con-
tribution of Cl ions for regulating the distribu-
tion of water in the human body.

Solutes in the human body are classified as
effective or ineffective osmoles on the basis of
their ability to generate osmotic water move-
ment, and osmotic water flux requires a solute
concentration gradient [33]. ‘‘Tonicity’’ is the
effective osmolality across a barrier and hence
regulates the distribution of free water to each
body space compartment. As mentioned above,
Cl ions, not sodium ions, should be the key
electrolytes for regulating the plasma volume
under HF status in the human body [27, 29].
Thus, compared with cationic sodium ions,
anionic Cl ions in the human body create
potential ‘‘tonicity’’ in the vascular space, mak-
ing Cl ions the key electrolytes for regulating
the distribution of water that can freely move
across the vascular, interstitial, and cellular
spaces. Sodium is not distributed in the body
solely as a free cation, but it is also bound to
large interstitial glycosaminoglycan networks in
different tissues, which have an important reg-
ulatory function for the serum sodium content
[34, 35]. The interactions among cationic
sodium ions, anionic Cl ions, and water, and
their distribution under various HF states
should be investigated in detail in future
studies.
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The recent concept of the ‘‘revised Starling
equation and the glycocalyx model’’ of
transvascular fluid exchange states that the
endothelial glycocalyx layer is semipermeable
with respect to anionic macromolecules such as
albumin and other plasma proteins, and gen-
erates an effective oncotic gradient within a
very small space [36]. This theory, however,
does not take into account the anionic Cl ions
in the mechanisms of fluid movement across
the vascular and interstitial spaces under wors-
ening HF or its resolution. Additional studies
are required to determine whether or not the
endothelial glycocalyx layer regulates the
movement of anionic Cl ions and, if so, how
such a mechanism induces the movement of
cationic sodium ions and water under an as yet
unknown biochemical regulatory system for
transvascular fluid exchange.

HF-RELATED DYSCHLOREMIA
AND DIURETIC STRATEGY
ACCORDING TO THE ‘‘CHLORIDE
THEORY’’

Physiologically, fluid overload generally results
in vascular expansion and tissue edema.
Impaired oxygen and metabolic diffusion, dis-
torted tissue architecture, obstruction of capil-
lary blood flow and lymphatic drainage, and
disturbed cell–cell interactions due to tissue
edema may then contribute to progressive
organ dysfunction [37, 38]. The ideal cascade of
decongestion by diuretic therapy for patients
with HF is continuous removal of the extra-
vasated fluid at the interstitial and third spaces
[39–41] by the venous and lymphatic systems,
which is pumped out from the body via the
cardiorenal system, and eventual regain of
individualized intravascular euvolemic status
[42] to retain adequate arterial and ventricular

Fig. 1 Hypothesis of the ‘‘chloride theory’’ underlying
worsening HF. Solid line indicates enhanced supply or
excitatory effect and dotted line indicates reduced supply
or inhibitory effect. Different effect strengths are expressed

by the thickness of each line. ADH antidiuretic hormone,
Cl chloride, HF heart failure, Na sodium, RAAS
renin–angiotensin–aldosterone system
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filling in relation to compromised cardiac
function, and to relieve venous congestion [29].

Diuretic treatment for various HF states,
however, is often accompanied by troublesome
serum electrolyte disturbances. The mecha-
nisms responsible for electrolyte disturbances in
cardiovascular patients may be multifactorial
and interrelated, resulting from neurohormonal
activation, renal dysfunction, medications (in-
cluding various diuretics), and dietary intake
[43]. Diuretic strategies adhering closely to the
usage of loop and thiazide/thiazide-type
diuretics could potentially be the most impor-
tant factor contributing to the development of
an electrolyte imbalance in patients with HF
[17, 18]. Classical and newly developed diuret-
ics, e.g., acetazolamide, amiloride, and

sodium–glucose cotransporter 2 inhibitor
(SGLT2i), have been used sporadically to obtain
more diuresis clinically, particularly in diuretic-
resistant patients with HF [18], but not with the
intent of modifying electrolyte disturbances.
When focusing on correcting abnormalities in
the serum Cl concentration according to the
‘‘chloride theory’’ (Figs. 1, 2), the optimal usage
of classical and newly developed diuretics
would effectively modify the serum Cl concen-
tration, which could subsequently improve the
body fluid dysregulation and diuretic efficiency
in HF, as described below.

The serum electrolyte concentration in a
given body fluid state is determined by the rel-
ative balance between the total quantities of
electrolytes and the amount of water in the

Fig. 2 Hypothesis of the ‘‘chloride theory’’ underlying the
therapeutic resolution of worsening HF; conventional
diuretic therapy (circled A), V2-receptor antagonist (circled
B), Cl supplementation (circled C), and acetazolamide
(carbonic anhydrase inhibitor) or SGLT2i (circled D).
Blue and yellow blocks represent inhibition of the
absorption of Cl/Na and water in each. Red block
indicates the inhibitory action of carbonic anhydrase
inhibitor or SGLT2i. Therapeutic effect induced by each

treatment is shown by a solid or dotted line. Solid line
indicates enhanced supply or excitatory effect and dotted
line indicates reduced supply or inhibitory effect. Different
effect strengths are expressed by the thickness of each line.
ADH antidiuretic hormone, Cl chloride, HCO3

- bicar-
bonate, HF heart failure, Na sodium, RAAS renin–an-
giotensin–aldosterone system, SGLT2i sodium–glucose
cotransporter 2 inhibitor
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vascular space. Accordingly, dyschloremia
under HF pathophysiology can be categorized
into nine subsets based on the body fluid status
(hyper-/normo-/hypovolemia) and the serum
Cl concentration status (hyper-/normo-/hypo-
chloremia), as shown in Fig. 3. Importantly,
hypervolemic hypochloremia includes two dis-
tinct types of abnormalities, i.e., ‘‘depletion’’ vs
‘‘dilution’’, similar to the classification of
hyponatremia in acute decompensated HF [44].
Because changes in the serum Cl concentration
and plasma volume during HF worsening
(Fig. 1) [27, 28] are intimately associated with
recovery of HF worsening after decongestive
therapy (Fig. 2) [29], modulation of these sub-
sets of dyschloremia (Fig. 3) by the appropriate
selection of diuretic selection and their doses,
and combinations of various diuretics as
described below, could become an attractive
therapeutic option for cardiovascular patients.
Modulation of the serum Cl concentration is
usually accompanied by the same directional
changes in the serum sodium concentration
because the changes in their serum concentra-
tions are correlated [45]. Of course, coexistent

and marked serum sodium abnormalities
should be corrected separately by selecting the
appropriate diuretic and/or dietary modifica-
tion [43, 44].

An understanding of the ‘‘chloride theory’’ of
worsening HF pathophysiology (Fig. 1)
[21, 28, 31] can guide valuable and rational
pharmacologic decongestion therapy as pre-
sented in Fig. 2, such as reducing the serum Cl
concentration by using conventional diuretics
for HF worsening with a higher concentration
or quantity of serum Cl [45–48] (Fig. 2, circled
A); and preserving and enhancing the serum Cl
concentration with aquaresis using a vaso-
pressin receptor antagonists [48–51] (Fig. 2, cir-
cled B); and supplementing Cl (Fig. 2, circled C)
by hyperosmotic saline infusion [52, 53] or by
‘‘lysine chloride’’, which was reported in a
recent study [20] of worsening HF with a lower
serum Cl concentration. Diuretic treatment
using the carbonic anhydrase inhibitor aceta-
zolamide [31, 54–59] (Fig. 2, circled D) could
become an attractive therapy for patients with
HF and hypochloremia owing to its effects to

Fig. 3 Nine subsets of dyschloremia, including normal status (Nor.), stratified by amount of fluid volume (i.e., hyper-,
normo-, and hypovolemia) and quantity of serum chloride in the vascular space (i.e., hyper-, normo-, and hypochloremia)
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improve the accompanying electrolyte
disturbances.

The new glucose-lowering SGLT2i drugs are
reported to exert diuresis through osmotic and
natriuretic effects that contribute to plasma
contraction, decrease blood pressure, and pos-
sibly prevent occurrence of HF events in
patients with [60, 61] and without diabetes
mellitus [62]. Findings from recent experimen-
tal [63, 64] and clinical [65] studies indicate that
SGLT2i preserves or enhances the serum Cl
concentration in patients without HF but with
type 2 diabetes mellitus, potentially through
aquaresis, aldosterone activation, and serum
HCO3

- concentration-decreasing effects [65].
Such a chloride-regaining diuretic effect of an
SGLT2i would preserve plasma volume and
renal function, and drain interstitial body fluid
by the serum Cl-associated enhancement of
vascular ‘‘tonicity’’ (Fig. 2, D) [21, 29, 65]. This
concept is consistent with recent clinical
observations that SGLT2i reduces interstitial
congestion without deleterious effects of arte-
rial underfilling and predominantly decreases
extravascular fluid retention [66].

PROPOSAL FOR NEW DIURETIC
CLASSIFICATION
AND ACHIEVEMENT OF OPTIMAL
DECONGESTION ACCORDING
TO THE ‘‘CHLORIDE THEORY’’

According to the above discussion, it is reason-
able to classify diuretics on the basis of their
effects on the serum Cl concentration, as sum-
marized in Table 1. The current classification
and crude pharmacologic properties of diuretics
will need to be revised and modified according
to their effects on the serum Cl concentration to
provide a more encompassing clinical descrip-
tion based on real-world pharmacologic studies.
Achievement of an individualized optimal
plasma volume and resolution of congestion are
two main purposes of diuretic therapy for con-
trolling HF. Unrecognized hypervolemia or a
higher than ideal plasma volume, despite
diuretic treatment to control HF, is deeply
associated with a higher risk of an HF-related

adverse outcome [5, 6, 8, 9], possibly related to a
greater cardiac burden due to elevated cardiac
filling pressures, impaired renal function due to
elevated renal venous and abdominal pressures
[67–69], and other organ injuries or damage
associated with congestion [37, 38]. Thus,
modulation of the plasma volume, which could
easily be estimated by changes in the peripheral
hemoglobin or hematocrit level [70–72], might
be an attractive target for tailored patient care
[8]. In the setting of acute HF, achievement of
an appropriate hemoconcentration with
decongestion treatment is associated with a
reduced risk of mortality, even with the induc-
tion of worsening of renal function [70–72].

The hemoconcentration after decongestion
treatment for acute HF, however, might weakly
relate to the improvement of clinical conges-
tion signs, and persistent congestion after
treatment would be associated with increased
mortality regardless of the hemoconcentration
[73]. Persistent signs of congestion under
aggressive diuretic treatment for patients with
HF [74] should be managed irrespective of the
induction of the hemoconcentration [73] or
appearance of worsening renal function [75].

Because changes in the plasma volume are
strongly associated with the serum Cl concen-
tration [27–29] (Figs. 1, 2), modulation of the
serum Cl concentration and its quantity
through the proper selection, combination, and
amount of diuretic(s) according to the new
diuretic classification (Table 1) would allow for
rational decision-making to achieve the ideal
plasma volume and resolve congestive signs in
parallel with maintaining a harmonic elec-
trolyte balance. In general, the use of loop and
thiazide diuretics can efficiently reduce the
plasma volume by depleting serum Cl (left half
of Fig. 2), but induction of hypochloremia by
these diuretics may induce resistance to these
diuretics [20]. Removing the extravasated fluid
from the interstitial and third spaces [39–41] is
also important toward reducing organ damage
[37, 38], and this process could be effectively
accomplished by enhancing the serum Cl con-
centration [21] with the use of Cl-regaining
diuretics, such as acetazolamide, vasopressin
receptor antagonists, and SGLT2i (right half of
Fig. 2).
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Diuretic therapy to increase or supply Cl in
the plasma may lead to residual cardiac volume
overload in relation to individual cardiac func-
tion, possibly ensuring a persistent burden on
the heart. Indeed, my recent study [54]
demonstrated that, while both acetazolamide
(chloride retention) and loop/thiazide diuretics
(chloride depletion) achieved the same body
weight reduction by diuresis, the plasma vol-
ume and renal function were preserved under
acetazolamide treatment, but the magnitude of
the serum b-type natriuretic peptide (BNP)
reduction induced by treatment with acetazo-
lamide was small compared to that induced by
loop/thiazide diuretics. The serum BNP level is
not adequately reduced by the use of vaso-
pressin antagonists [50] and SGLT2i [76, 77] as
diuretics. The ‘‘chloride theory’’ provides a pos-
sible mechanism for the inadequate BNP
reduction by these diuretics. Namely,

administration of these Cl-regaining diuretics
efficiently removes interstitial fluid, but pre-
serves vascular volume, which results in residual
burden on a patient’s heart after therapy with a
vasopressin receptor antagonist [78, 79] or
SGLT2i [76, 77]. When the cardiac burden per-
sists even under adequate diuretic therapy for
unloading the heart, strategies to further reduce
the cardiac burden or enhance cardiac power
are required in parallel, such as by using ino-
tropes, controlling blood pressure and heart
rate, modulating cardiac re-synchronization,
and ultrafiltration [47, 80]. Appropriate use of
vasodilators or blockade of the RAAS to increase
venous capacitance may be an important ther-
apeutic option for reducing the cardiac burden
[13, 14].

Table 1 Classification of diuretic agents according to their effects on the serum chloride concentration
[45, 48–51, 54–56, 58, 59, 64, 65]

Diuretic agent Main mechanism Urinary excretion Serum
concentration

Cl Na K Other Cl Na K

A. To decrease serum Cl concentration

1. Loop

diuretics

Blocks sodium–potassium–chloride cotransporter in

thick ascending limb of the loop of Henle

: : : ; ; ;

2. Thiazide

diuretics

Blocks sodium–chloride cotransporter in the distal

convoluted tubule

: : : ; ; ;

B. To enhance serum Cl concentration

1.

Acetazolamide

Blocks carbonic anhydrase in the proximal tubule ; : : HCO3:;
Water :

: :? ;

2. Aquaretic

diuretics

Blocks vasopressin V2 receptor in the collecting duct of

the distal tubule

? ? ? Water :: : : :

3. SGLT2

inhibitor

Blocks SGLT2 in the proximal tubule ; : ? ? Glucose:;
Water :

: :? ?

C. To have a neutral effect on serum Cl concentration

1. MRA Antagonizes aldosterone receptor in the collecting duct

of the distal tubule

? : ; H:;
HCO3:

? ; :

Cl chloride, K potassium, MRA mineralocorticoid-receptor antagonists, Na sodium, SGLT2 sodium–glucose
cotransporter 2
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INAPPROPRIATE USE
OF CONVENTIONAL DIURETICS
AND INDUCTION OF DIURETIC
RESISTANCE

Severity of cardiac and/or renal dysfunction
substantially contributes to the diuretic efficacy
in worsening HF as some studies report that
lower blood pressure and high blood urea
nitrogen are associated with a poor diuretic
response [81, 82]. Though loop diuretics may
not extend survival in patients with chronic HF,
they are currently the foundation of life-saving
therapy during acutely decompensated HF and
maintaining euvolemia [46, 47, 80]. Diuretic
resistance during treatment of patients with HF
has many causes [83, 84], but a diuretic-associ-
ated cause is highly problematic because ade-
quate diuresis to achieve euvolemia is the
primary purpose of the treatment for worsening
HF. Loop diuretic-associated resistance develops
with repeated administration of loop diuretics
due to (1) activation of the RAAS; (2) activation
of the sympathetic nervous system, which
reduces renal blood flow and the quantities of
sodium and of the diuretic reaching the loop of
Henle; and (3) hypertrophy of the epithelial
cells in the distal nephron, causing increased
sodium reabsorption [17, 83]. As a consequence,
fluid overload may persist or recur despite
higher diuretic doses. Such persistent conges-
tion is associated with a poor clinical outcome
[5, 8, 74, 75], and must be managed as quickly
as possible. One approach to overcome loop
diuretic resistance is the addition of a thiazide-
type diuretic to produce diuretic synergy via
sequential nephron blockade [46, 83]. Sequen-
tial nephron blockade may be accompanied by
inappropriate fluid loss, electrolyte imbalance
(hyponatremia or hypokalemia), and worsening
renal function [46, 80, 83]. If residual conges-
tion persists or progressively worsens despite
higher doses of conventional diuretics, adher-
ence to such decongestive therapy may pro-
mote a vicious cycle of HF worsening and RAAS
activation [85–88], leading to worsening HF
with a decreased serum Cl concentration as
shown in the right half of Fig. 1; such a patient
with worsening HF might present with

progressive hypochloremia, extravasated fluid
retention, intravascular volume contraction,
hypotension, and worsening renal function.

It should be noted that, besides advanced
cardiac and renal dysfunction [89], an impor-
tant cause of diuretic resistance may be the
inappropriate use of conventional diuretics for
different HF states with various serum elec-
trolyte abnormalities. Therefore, loop diuretics
or combinations of thiazide/thiazide-like
diuretics at higher doses are not the best treat-
ment option for worsening HF with progressive
hypochloremia or hyponatremia. Indeed, the
appearance of hypochloremia is strongly related
to diuretic resistance under HF treatment [20].
In such a situation, the decongestion strategy
should be changed on the basis of a compre-
hensive mechanistic understanding of the role
of Cl in HF pathophysiology [21, 31]. The use of
‘‘chloride-regaining’’ diuretics, along with
hyperosmotic saline infusion, as shown in right
half of Fig. 2 and Table 1, may improve hypo-
chloremia-associated diuretic resistance [20],
and such a diuretic approach for modulating
the serum Cl concentration under the appro-
priate circumstances would be worth trying.

MONITORING HF STATUS
AND ADJUSTING DIURETICS
UNDER THE ‘‘CHLORIDE THEORY’’

During follow-up of patients with HF undergo-
ing decongestion therapy, adequate monitoring
of symptoms, signs, and suitable clinical tests
for evaluating HF status [18, 38, 90–98] are
required to correctly identify stability or wors-
ening of HF, and to subsequently decide whe-
ther or not to reconstruct the appropriate
diuretic treatment [99] to achieve an individu-
alized optimal plasma volume and freedom
from decongestive signs and symptoms.

Table 2 shows many clinical tests, arbitrarily
classified into specified categories, that allow for
point-of-care evaluation of each component
that comprises various HF presentations. The
selection and combination of clinical tests
shown in Table 2 must be individualized by
clinicians according to the possible utility.
Dyspnea is the most common HF-related
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symptom. Thus, monitoring of dyspnea is clin-
ically important, but patients often wait until
their symptoms lead them to present to the
emergent clinic [100, 101], particularly elderly
patients who may have poor functional capac-
ity, cognitive impairment, and comorbidity
[102, 103]. Consequently, monitoring of the HF
status relies more on objective assessments and
response to treatment than on symptoms.
Among HF-related signs, elevated jugular
venous pressure, third heart sound, and dis-
placement of the apical impulse may be more
specific, but they are more difficult to detect
and have poor reproducibility [90, 95, 104]. In
contrast, pulmonary crackles (rales) [105] and
leg edema [106] frequently appear in patients
without HF. These signs, despite being not
specific and having limited value for correctly
diagnosing HF status among the general popu-
lation with a low prevalence of patients with
HF, may be useful for detecting worsening HF
episodes during follow-up of patients with
established HF because they are highly sensitive
and leading HF signs that often appear among
patients with established HF during follow-up
[94].

The HF status of each patient can be cate-
gorized on the basis of clinician-estimated vol-
ume status (wet/dry) and perfusion status
(warm/cold) [96]. This widespread simplified
classification system for patients with HF might
be useful to characterize the HF status at a
glance, but it is not adequate to precisely eval-
uate a patient’s HF status. Accordingly, several
diagnostic steps can be applied as a practical
monitoring method for identifying HF status,
mainly incorporating simple items for

Table 2 Monitoring of symptoms, signs, and clinical tests
for evaluation of compartments of heart failure
presentation

Heart failure-associated symptoms; breathlessness

(dyspnea), fatigue

Blood pressure

Heart rate

Oxygen saturation

Physical sign; peripheral cyanosis

Pulse oximetry

Blood gas analysis

Burden to the cardiac function

Physical sign; auscultatory third heart sound

B-type natriuretic peptide

Echocardiography with Doppler study; ventricular

function, atrial size, pulmonary artery pressure

Gain and loss of body fluid

Body weight

Urine volume

Intravascular body fluid

Physical sings; neck vein distension, apical

displacement, hepatomegaly

Hemoglobin, hematocrit, estimated plasma volume

Ultrasound; distended inferior vena cava with reduced

respiratory collapse

Extravascular body fluid

Physical sings; systemic edema, pulmonary rales,

hepatomegaly, ascites

Ultrasound; pulmonary B-lines, pleural effusion

Bio-impedance analysis

Intracellular volume status

Red blood cell volume

Bio-impedance analysis

Renal function

Blood urea nitrogen, serum creatinine, estimated

glomerular filtration rate, uric acid

Table 2 continued

Serum electrolytes

Sodium, potassium, chloride, magnesium, uric acid

Others

Neurohormones; renin–angiotensin–aldosterone

system, anti-diuretic hormone

Cardiac injury; cardiac enzymes, creatinine kinase,

troponin
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estimating changes in the cardiac burden, body
fluid intake and output, body fluid distribution,
renal function, and electrolyte balance. That is,
the main modalities for evaluating HF status
include physical examination, blood tests
(serum BNP level, peripheral blood, renal func-
tion, and electrolytes), and ultrasound. At first,
the simplest and most reliable test for moni-
toring changes in the cardiac burden is the
measurement of serial serum BNP peptides
[90, 95, 97, 107, 108] though there are wide
intra-individual fluctuations in serum BNP
levels over 1–2 months, even under a stable HF
status [109, 110]. Second, short-term changes in
the body weight [81, 91, 94, 111] are also a
reliable measure for evaluating a body fluid gain
or loss because fluid is the body component
with the ability to undergo the most rapid
change, so a substantial change in body weight
over a short period would relate most directly to
the fluid status [112]. Monitoring urine volume,
of course, is important for evaluating diuresis,
but may have limited value because of the
influence on urine volume by the amount of
water intake [50]. Body weight gain and leg
edema in isolation are non-specific, but the
coexistence of these two signs efficiently sup-
ports HF worsening [94]. Third, assessment of
changes in each compartment of the body
[32, 33] is adequate. Physical examination is the
principal step for this purpose, in which
appearance of bilateral leg edema is the leading
sign of worsening HF, followed by neck vein
distention and pulmonary crackles [90, 94].
Searching for thoracic fluid congestion by
ultrasound is strongly recommended to detect
worsening HF, because a simple chest X-ray has
limited ability for identifying pulmonary con-
gestion or pleural effusion in patients with HF
[113], but ultrasound detection of pulmonary
congestion [97, 114] and pleural fluid
[92, 94, 115] is highly sensitive and specific for
diagnosing HF worsening in patients with
established HF. Ultrasound evaluation of the
inferior vena cava and estimated pulmonary
artery pressure [18, 97, 98] would be suitable to
evaluate the severity of the left- and right-sided
circulatory burden or congestive status. Exam-
ples of monitoring patients with established HF

according to these recommended items are
described elsewhere [31, 50, 58, 116].

Clinical decisions regarding the HF status
should be based on a comprehensive evaluation
of all HF-related symptoms, signs, and clinical
tests because a single clinical symptom, sign, or
test may lack sensitivity or specificity. If the
aforementioned clinical evaluation suggests a
worsening HF status, the clinician must recon-
struct a therapeutic strategy for HF treatment.
The therapeutic approach for congestion
depends on whether vascular-type fluid redis-
tribution or cardiac-type fluid accumulation is
the primary cause of the worsening HF [12–14].
Diuretics are guideline-recommended first-line
therapy in patients with ‘‘wet and warm’’ HF
[96] in whom congestion is predominantly
attributable to fluid accumulation and volume
overload. A diuretic approach to patients with
acute or chronic HF should be initiated
according to the standard guideline-based
strategy [18, 38, 95]. Loop diuretics form the
backbone of diuretic therapy in acute HF, and
are used in over 90% of patients. Thus, a step-
ped pharmacologic approach should be applied
using the mainstay of loop diuretics [17, 117] in
combination with an appropriate thiazide or
thiazide-like diuretic and/or mineralocorticoid
receptor antagonists [18, 38, 95]. Measurement
of the post-diuretic urinary sodium concentra-
tion [18] or its urinary excretion quantity [118]
early after treatment may be useful for follow-
ing loop diuretic efficacy. Diuretic treatment for
HF is often accompanied by serum electrolyte
disturbances already existing at the initial pre-
sentation and/or appearing during HF treat-
ment. In such situations, understanding the
‘‘chloride theory’’ of worsening HF pathophysi-
ology [21, 28, 31] would provide valuable and
rational pharmacologic decongestion strategies
as mentioned in the previous sections, and as
summarized in Figs. 1 and 2, and Table 1. It is
important to assess serial changes in the vascu-
lar volume and serum Cl concentration, and
their interactions, as shown in Figs. 1 and 2.
Measurement of the hemoglobin/hematocrit
levels [70–72] or estimated plasma volume
[5, 6, 8, 27] is suitable for assessing changes in
the intravascular volume in parallel with
determining diuretic efficacy by monitoring
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changes in the body weight to determine the
amount of diuresis [81], serum BNP level for
reducing the cardiac burden [107], and other
clinical tests for evaluating each component of
HF presentation (Table 2).

Diuretics are often ineffective in patients
with congestion caused by vascular-type fluid
redistribution, generally observed as increased
congestion despite a lack of weight gain and
predominantly indicated by hypertension
[12–14]. Though both mechanisms, i.e., volume
overload and volume redistribution, may con-
tribute to congestion in many patients with
worsening HF, the clinician should differentiate
between these two phenomena because the
therapeutic strategy in the latter situation
includes vasodilatory agents instead of diuretics
[18, 38, 95]. Similarly, diuretics are deeply
associated with changes in the RAAS activity
[119, 120] via possible mechanisms through
their effects on Cl dynamics and vascular vol-
ume, as predicted by the ‘‘chloride theory’’ [21].
Accordingly, RAAS blockers increase renal blood
flow and decrease proximal tubular sodium
reabsorption. Therefore, it is not surprising that
they are among the first agents demonstrated to
be effective in hypotonic dilutional hypona-
tremia, perhaps including dilutional hypo-
chloremia, in patients with HF [44, 85–88].
RAAS blockades should always be titrated up in
this case if there are no contraindications, such
as coexisting renal dysfunction, hypotension,
and HF with preserved ejection fraction
[17, 44, 121].

CONCLUSIONS

Optimal volume, traditionally termed ‘‘euv-
olemia’’, is an extremely vague definition and
could suitably be redefined to represent a ‘‘good
volume’’ that is associated with the best clinical
outcomes in HF populations [42]. The ‘‘chloride
theory’’ does not fully explain the complex HF
pathophysiology, but in clinical practice at
present, the ‘‘chloride theory’’ for HF patho-
physiology (Figs. 1, 2) could provide a primary
care and management system for diuretic
treatment of patients with HF, with attention to
the serum Cl concentration and changes central

to this system. With regard to the status of the
body fluid and serum Cl concentration under
HF treatment (Fig. 3), HF-related evaluation
(Table 2) would be adequate for proper selection
of the diuretic type, and its use and dosage
according to the new classification of diuretics
(Table 1). The most important goal of diuretic
therapy is to adequately reduce plasma volume
to mitigate the cardiac burden and ameliorate
organ congestion to improve their function
through optimal diuresis, in parallel with pre-
serving the renal function, maintaining the
serum electrolyte balance, and avoiding excess
diuresis and dehydration [122]. As differential
body fluid status and background mechanisms
may exist in obese vs non-obese patients with
HF [40, 123, 124], modification of diuretic
strategies, including other pharmacologic ther-
apies, might be required to treat patients with
HF with reduced ejection fraction vs obese
patients with HF with preserved ejection frac-
tion [125–127]. Further studies are required to
determine the clinical utility of chloride-cen-
tered diuretic strategies compared with loop
diuretic-centered diuretic strategies [18, 38, 95]
by recruiting both a large number and wide
spectrum of patients with HF.
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