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Targets of drugs are generally, and 
targets of drugs having side effects 
are specifically good spreaders of 
human interactome perturbations
Áron R. Perez-Lopez1, *, Kristóf Z. Szalay1, Dénes Türei2, +, Dezső Módos2, 3, Katalin Lenti3, 
Tamás Korcsmáros2, 4, 5 & Peter Csermely1

Network-based methods are playing an increasingly important role in drug design. Our main question 
in this paper was whether the efficiency of drug target proteins to spread perturbations in the human 
interactome is larger if the binding drugs have side effects, as compared to those which have no 
reported side effects. Our results showed that in general, drug targets were better spreaders of 
perturbations than non-target proteins, and in particular, targets of drugs with side effects were also 
better spreaders of perturbations than targets of drugs having no reported side effects in human 
protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had 
a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and 
had an average centrality in the human interactome. Moreover, the interactome-distance between 
drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results 
may help a better understanding of the network position and dynamics of drug targets and disease-
related proteins, and may contribute to develop additional, network-based tests to increase the 
potential safety of drug candidates.

Due to the “curse of attrition” drug side effects are subjects of increasing concerns1–4. In recent years a 
growing number of side effect databases helped pharmacovigilance efforts2,5–10. In addition, the prediction 
of drug side effects was a subject of several excellent network studies. These contributions constructed and 
analyzed drug—side effect networks1,8,11, side effect similarity-based drug—drug networks12–14, drug tar-
get—side effect networks (including correlated drug binding profiles and side effect profiles and protein 
domain networks)3,5,7,15,16, as well as drug—side effect—biological pathway multi-layer networks9,10,17,18.

Parallel with the sequencing of the human genome, the pharmaceutical industry increasingly 
turned towards rational drug design, where drug target candidates are selected on the basis of known 
disease-related genes. In recent years, however, it became apparent that drug action often extends beyond 
its primary target, and also affects the neighbourhood of the primary target in molecular networks4,19–23. 
The influence on network neighbourhood can be efficiently modelled as a spreading process. Indeed, 
network spreading efficiency became increasingly used to characterize the dynamics of a wide vari-
ety of networks, such as the propagation of infections and computer viruses24–26, as well as the spread 
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of information, innovations and social influence27–30. Long-range spread of conformational changes 
via protein-protein interaction networks is supported by several pieces of experimental evidence31,32. 
Moreover, recent studies extended the use of information-spread to molecular networks highlighting 
the usefulness of this approach in finding key amino acids of protein structure networks, biologically 
relevant changes of cellular functions upon stress, reprogramming biological networks, and uncovering 
the attractor changes in malignant transformation33–36. However, network spreading efficiency has been 
used to characterize drug targets neither in general, nor restricted to targets of drugs having side effects.

In this study we investigated, whether the efficiency of drug target proteins to spread perturbations in 
the human interactome is larger, if drugs targeting them have side effects, as compared to the spreading 
efficiency of targets of those drugs, which have no reported side effects. Encouraged by our findings that 
drug targets in general, and targets of drugs having side effects in particular, spread perturbation better in 
the human interactome than other proteins, we specifically examined two diseases, colorectal cancer and 
diabetes. These two, wide-spread diseases were selected, since they represent target groups of different 
drug design strategies4, and they had been the subjects of several former network-related studies37–45. 
We found that colorectal cancer-related proteins were good spreaders and had a high centrality in the 
human protein-protein interaction network. On the contrary, type 2 diabetes-related proteins showed an 
average spreading efficiency, and had an average centrality. Additionally, network shortest path (geodesic 
distance) between drug targets and disease-related proteins was higher in diabetes than in colorectal 
cancer. Our results give novel details on the network topology and dynamics of disease-related and drug 
target proteins, and may initiate the development of novel, network-based pharmacovigilance methods 
increasing the potential safety of drug candidates.

Results
Targets of drugs with side effects spread perturbations better in the human interactome 
than targets of drugs without side effects. The initial working hypothesis of our research was that 
drugs having protein targets that better propagate changes in the human interactome may have a higher 
probability of causing side effects. This hypothesis is in agreement with earlier findings showing that the 
interactome neighbourhood contributed to drug side-effect similarity20. In order to test our hypothesis, 
we compared the propagation of perturbations started from drug targets with and without known side 
effect, as well as that of non-target proteins in the human protein-protein interaction network using the 
Turbine network dynamics software package developed earlier in our group35.

To compare the spreading efficiency of drug target proteins with and without side effects we ran 
a series of perturbation simulations on the human interactome using the Turbine programme35. We 
assembled a human interactome containing 12,439 proteins and 174,666 edges using the STRING data-
base46, out of which 1,726 were target proteins of 3,626 human drugs obtained from the DrugBank data-
base47 and a total of 99,423 drug-side effect pairs from the SIDER database2 were analysed as described 
in Methods in detail. Simulations were based on the communicating vessels network dynamics model 
tested earlier35, where changes from one protein to its neighbours ‘flow’ in proportion with the energy 
differences between the ‘source’ and the ‘target’ proteins. We examined a total of 495 target proteins of 
597 drugs (Suppl. Table 1), which were reported to have side effects according to the SIDER database2. 
As control groups, we have also examined the 1,231 target proteins of the remaining 3,029 drugs having 
no reported side effects in the SIDER database2, as well as the remaining 10,713 proteins in our human 
interactome, which were not listed as drug targets in DrugBank47. For each selected protein target we 
calculated the silencing time, which is the number of time steps in the simulation needed for the initial 
perturbation to disappear completely due to dissipation. Small silencing time values were shown to be 
an efficient measure of large spreading efficiency of network nodes earlier35, since in this case the initial 
perturbation efficiently spreads in the network and it becomes dissipated fast.

Figure. 1 shows the cumulative distribution of the normalized number of proteins having an increas-
ing silencing time (thus decreasing perturbation efficiency). Targets of drugs with side effects had a 
significantly larger proportion of small silencing times (i.e. large spreading efficiency) than targets of 
drugs having no side effects (Mann-Whitney-Wilcoxon test, p = 1.677e-5). Similarly, the proportion of 
targets of drugs without side effects having a small silencing time (i.e. large spreading efficiency) was 
significantly larger than that of human interactome proteins, which have not been reported as drug tar-
gets in DrugBank47 (Mann-Whitney-Wilcoxon test, p = 2.2e-16). Thus targets of drugs with side effects 
were found to be better spreaders of perturbations than targets of drugs having no reported side effects. 
Importantly, drug targets were also better spreaders of perturbations than non-target proteins.

Simulations shown on Fig. 1 were run with a starting energy of 1,000 units and a dissipation value 
of 5 units. Being curious whether our result is robust for the variations of simulation parameters, we 
repeated these simulations using a starting energy of 10,000 and a dissipation of 1 or 5 units. Under these 
conditions we obtained very similar results (Suppl. Figs. 1 and 2) to those shown on Fig.  1. When we 
split the starting energy of 1,000 units equally among targets of multi-target drugs instead of examining 
each target protein alone as the source of perturbations, we were able to reproduce the same pattern 
(Suppl. Fig. 3) as that of Fig. 1. Furthermore, to test the robustness of the results against the choice of 
protein-protein interaction network, we randomly deleted 50% of the 12,439 proteins in our human 
interactome. Examining the spreading efficiency in the giant component of this truncated interactome 
we obtained very similar results (Suppl. Fig. 4) to those shown in Fig. 1.
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Next we were curious whether the larger spreading efficiency of drug targets with side effects, as com-
pared to drug targets without side effects or proteins having no reported drugs bound to them, is also 
shown by examining perturbation reach values. Perturbation reach values show the number of proteins, 
which received the perturbation from the initial perturbation source protein until the perturbation was 
dissipated from the system. Small perturbation reach values were shown to characterize small spreading 
efficiency in earlier studies35, since in this case the original perturbation reached only a small number 
of proteins before it became dissipated. Targets of drugs with side effects had a significantly smaller 
proportion of small perturbation reach values (i.e. small spreading efficiency) than that of targets of 
drugs having no side effects (Mann-Whitney-Wilcoxon test, p = 1.663e-5; Suppl. Fig. 5). Similarly, the 
proportion of targets of drugs without side effects having a small perturbation reach value (i.e. small 
spreading efficiency) was significantly smaller than that of human interactome proteins, which have not 
been reported as drug targets in DrugBank47 (Mann-Whitney-Wilcoxon test, p = 2.2e-16; Suppl. Fig. 5). 
Using a starting energy of 10,000 but a dissipation of 1 instead of 5 units, or splitting this starting energy 
equally among targets of multi-target drugs, we obtained very similar results (Suppl. Figs. 6 and 7). These 
studies confirmed that drug targets are better spreaders of perturbations than non-target proteins, and 
also that targets of drugs with side effects are better spreaders of perturbations than targets of drugs 
having no reported side effects.

A qualitatively similar picture emerged, when we examined the spreading efficiency of target proteins 
of drugs against two diseases, colorectal cancer and type 2 diabetes (Suppl. Tables 2-6). We chose these 
two diseases, because they represent very well the target groups of different drug design strategies4, and 
they had been the subjects of several former network-related studies37–45. Drug targets of both diseases 
were found to be better spreaders of perturbations than non-target proteins (Suppl. Fig. 8; p = 3.367e-5 
and p = 5.88e-5 for colorectal cancer and diabetes, respectively). There was a tendency showing that 
targets of drugs with side effects were better spreaders of perturbations than targets of drugs having no 
reported side effects both in colorectal cancer and in diabetes. However, due to the low number of iden-
tified drug targets having side effects (3 and 25, respectively), these latter differences were not statistically 
significant (p = 1 and p = 0.2593, respectively).

Figure 1. Cumulative silencing time distribution of drug targets and non-target proteins. The diagram 
shows the cumulative distribution of the normalized number of proteins with given silencing times, which 
are drug targets with known side effects (blue dashed line), which are drug targets without known side 
effects (red solid line) and which are not drug targets (green dotted line). The number of proteins was 
normalized by dividing the number of proteins in each silencing time range by the total number of proteins 
allowing a better comparison. The total number of drug targets with and without side effects and non-
target proteins was 495, 1,231 and 10,713, respectively. The human interactome containing 12,439 proteins 
and 174,666 edges was built from the STRING database46, 1,726 human drug targets were obtained from 
the DrugBank database47 and 99,423 drug-side effect pairs were taken from the SIDER database2. Silencing 
times were calculated separately for every protein/drug target with the Turbine program35 as described in 
the Methods section using a starting energy of 1,000 and a dissipation value of 5 units. Statistical analysis 
was performed using the Mann-Whitney (Wilcoxon rank sum) test function of the R package56. There was 
a statistically significant difference (p = 1.677e-5) between the silencing times of drug targets with known 
side effects and the silencing times of drug targets without reported side effects. The difference between the 
silencing times of drug targets and non-target proteins was also statistically significant (p = 2.2e-16).
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Colorectal cancer-related proteins are good spreaders of perturbations and have a high cen-
trality, while type-2 diabetes-related proteins show an average spreading efficiency and 
average centrality. Very importantly, a rather interesting difference emerged, when we examined 
the spreading efficiency of proteins related to colorectal cancer and diabetes. Mutated genes and their 
corresponding proteins in colorectal cancer and in type-2 diabetes were obtained from the Cancer Gene 
Census database48 (Suppl. Table 7) and from the article of Parchwani et al.49 (Suppl. Table 8), respectively. 
In case of colorectal cancer, disease-associated proteins were found to be significantly better spreaders 
than the residual proteins of the human interactome. On the contrary, diabetes-related proteins showed 
indistinguishable spreading properties to the rest of human proteins, which were not associated with the 
onset of diabetes (Fig. 2). To test the robustness of the results against the choice of protein-protein inter-
action network, we randomly deleted 50% of the 12,439 proteins in our human interactome. Here again, 
colorectal cancer-associated proteins were found to be significantly better spreaders than the residual 
proteins of the human interactome (data not shown; p = 0.00021 in Mann-Whitney test) and spreading 
efficiency of diabetes-related proteins showed no significant difference as compared to the rest of human 
proteins (data not shown; p = 0.095 in Mann-Whitney test).

These findings are in agreement with earlier results showing that cancer-associated proteins are 
enriched in proteins having a high centrality in the human interactome37,38,40,42-45. Indeed, in our human 
interactome, cancer-related proteins had a significantly higher degree, closeness and betweenness cen-
tralities than diabetes-related proteins, having a 9.6-, 1.2- and 54-fold increase, respectively (Table 1). In 
agreement with their similar silencing time values (Suppl. Fig. 8), drug targets without or with side effects 
showed no significant centrality differences in the human interactome (Suppl. Table 9).

The interactome distance between drug targets and disease-related proteins is higher in 
diabetes than in colorectal cancer. Encouraged by the results showing an increased centrality of 
cancer-related, but not of diabetes-related proteins in the human interactome, we examined the inter-
actome geodesic distance (i.e. shortest path) between drug targets and disease related proteins in both 
diseases using the neighbourhood matrices of related proteins. Our data show that the geodesic distance 

Figure 2. Cumulative silencing time distribution of colorectal cancer- and type 2 diabetes mellitus-
related proteins, as well as proteins, which are not related to these diseases. The diagram shows the 
cumulative distribution of the normalized number of proteins with given silencing times, which are 
related to the disease (red line), as well as those, which are not related to the disease (green dotted line); 
for colorectal cancer (Panel A) and type 2 diabetes (Panel B). The number of proteins was normalized by 
dividing the number of proteins in each silencing time range by the total number of proteins allowing 
a better comparison. The total number of colorectal cancer-related proteins and type 2 diabetes-related 
proteins in the human interactome was 18 and 14, respectively. The human interactome containing 12,439 
proteins and 174,666 edges was built from the STRING database46. Colorectal cancer- and type 2 diabetes-
related proteins were obtained from the Cancer Gene Census database48 and from the article of Parchwani 
et al.49, respectively. Silencing times were calculated separately for every protein with the Turbine program35 
as described in the Methods section using a starting energy of 1,000 and a dissipation value of 5 units. 
Statistical analysis was performed using the Mann-Whitney (Wilcoxon rank sum) test function of the R 
package56. There was a statistically significant difference between the silencing times of disease-related and 
non-related proteins in case of colorectal cancer (p = 2.329e-9) and but there was none in case of type 2 
diabetes (p = 0.8343).
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in the human interactome between drug targets and disease-related proteins is significantly larger in 
case of type-2 diabetes than in colorectal cancer (targets without side effects: p = 1.062e-5; targets with 
side effects: p = 5.441e-3). (Table 2; Suppl. Tables 10-13 and Suppl. Fig. 9) This finding is supported by 
the visual representation of the human sub-interactome of drug target and disease-related proteins of 
these two diseases (Suppl. Fig. 10), where drug targets and disease-related proteins of colorectal cancer 

Centrality type Disease-related proteins
Proteins, which are not related to any of the two 
diseases

Colorectal 
cancer

Type 2 
diabetes

Statistical 
difference 
between cancer- 
and diabetes-
related proteins

Centrality 
value

Statistical 
difference 
from values of 
cancer-related 
proteins

Statistical 
difference 
from values of 
diabetes-related 
proteins

Degree (number of neighbours) 159.5 9.000 7.09e−5 9.000 2.58e−9 0.830

Closeness centrality (1/edge) 0.357 0.294 3.46e−5 0.277 1.90e−10 0.122

Betweenness centrality (fraction 
of shortest paths passing through 
the node)

2.55e-3 1.16e-5 1.24e−4 1.34e-5 3.23e−9 0.922

Table 1.  Average human interactome centralities of proteins related to colorectal cancer and type 2 
diabetes. The table shows the medians of the centralities of proteins related to colorectal cancer and type 2 
diabetes (results were very similar, if instead of medians we used their arithmetic means; data not shown). 
The total number of colorectal cancer- and type 2 diabetes-related proteins was 18 and 14, respectively. 
Centrality values were calculated with the Pajek programme57. The human interactome containing 12,439 
proteins and 174,666 edges was built from the STRING database46. Colorectal cancer-related proteins were 
obtained from the Cancer Gene Census database48, type 2 diabetes-related proteins were obtained from 
the article of Parchwani et al.49. Statistical analysis was performed using the Wilcoxon rank sum (Mann-
Whitney) test function of the R package56.

Protein group

Average network distance 
from disease-related 

proteins(edges)

24 drug targets without 
known side effects used in the 
treatment of colorectal cancer

2.528

3 drug targets with known side 
effects used in the treatment of 
colorectal cancer

2.389

14 drug targets without 
known side effects used in the 
treatment of type 2 diabetes

3.250*

25 drug targets with known side 
effects used in the treatment of 
type 2 diabetes

3.234**

Table 2. Average network distance of drug targets without and with known side effects used in the 
treatment of colorectal cancer and type 2 diabetes from the disease-associated proteins. *This value is 
significantly greater than the average network distance of drug targets without known side effects in 
colorectal cancer (p = 1.062e-05). Statistical analysis was performed using the Welch (Student’s) two sample 
t-test function of the R package56. **This value is significantly greater than the average network distance of 
drug targets with known side effects in colorectal cancer (p = 0.005441). Statistical analysis was performed 
using the Welch (Student’s) two sample t-test function of the R package56. The table shows the arithmetic 
mean of the average network distance between drug targets (with and without known side effects used in the 
treatment of colorectal cancer and type 2 diabetes) and the proteins related to the respective disease (results 
were very similar, if instead of arithmetic means we used the medians; data not shown). The total number 
of colorectal cancer- and diabetes-related proteins in the human interactome were 18 and 14, respectively. 
Average network distances were calculated as shortest paths using the Pajek programme58. Proteins were 
labelled by their UniProt ID54. Human interactome containing 12,439 proteins and 174,666 edges was built 
from the STRING database46, 1,726 human drug targets were obtained from the DrugBank database47 and 
99,423 drug-side effect pairs were taken from the SIDER database2. Colorectal cancer- and type 2 diabetes-
related proteins were obtained from the Cancer Gene Census database48 and from the article of Parchwani 
et al.49, respectively. We used the mean values and the t-test because of the near-normal distribution of the 
average network distances.
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are intertwined, while these two groups of proteins remain rather separated in type-2 diabetes. This 
observation is further substantiated by the fact, that only 1 of the 18 colorectal cancer-related proteins 
(6%) is not connected to the giant component of the sub-interactome, while 10 of the 14 diabetes-related 
proteins (71%) are missing from the same giant component (Suppl. Fig. 10).

Discussion
The most important finding of our study is that 1.) drug targets are better spreaders of perturbations in 
the human interactome than non-target proteins in general; and in particular, 2.) targets of drugs with 
side effects are also better spreaders of perturbations than targets of drugs having no reported side effects 
(Fig. 1). These findings were robust, since they could be reproduced when we used different perturbation 
parameters (Suppl. Figs. 1,2 and 3), different measures of perturbation spread (Suppl. Figs. 5, 6 and 7), 
and reduced the size (coverage) of the human interactome to half of the original (Suppl. Fig. 4). These 
results are in agreement with those of a previous study showing that the interactome neighbourhood 
contributed to side-effect similarity20.

Importantly, colorectal cancer-related proteins are good spreaders of perturbations and had a high 
centrality, while type-2 diabetes-related proteins showed an average spreading efficiency and had an 
average centrality in the human interactome (Fig. 2 and Table 1). These findings are in agreement with 
earlier results showing that cancer-associated proteins are enriched in hubs, bottlenecks and bridges all 
having a high centrality in the human interactome37,38,40,42–45.

Furthermore, the interactome-distance between drug targets and disease-related proteins was higher 
in diabetes than in colorectal cancer (Table 2; Suppl. Tables 10–13 and Suppl. Fig. 9). This finding is in 
agreement with both the results of previous studies and intuitive insights on the classification of drug tar-
get strategies4. Most drug targets are 3 or 4 steps away in the human interactome from proteins involved 
in the same disease50. Moreover, cancer-related and metabolic disease-related proteins were shown to 
have an average network distance to the related drug targets of 2.3 and ~5 network edges, which are 
smaller and higher than the most abundant distance values, respectively, forming the two extremes of 
the distance-spectrum50. The former value is in the range we found in our study (Table  2). The latter 
value of a disease group containing diabetes is much larger than that related to cancer, which is again 
in agreement with our findings. As a general trend, rapidly proliferating cells, like those in cancer, are 
attacked at their central proteins, while differentiated cells, such as those involved in type-2 diabetes, are 
attacked at the neighbours of central proteins4. These assumptions are also in agreement with a smaller 
network distance of centrally positioned cancer-related proteins from centrally positioned cancer drug 
targets than the distance between the more peripheral diabetes-related proteins and drug targets.

Analysis of perturbation spread in molecular networks may be used to develop additional, 
network-based tests to increase the potential safety of drug candidates. Assessment of perturbation spread 
in weighted networks (where the edges are weighted according to the abundance of their end-node pro-
teins of relevant tissues, e.g. the endothelial cell in colorectal cancer, as well as hepatocyte and myocyte 
in diabetes, as described in our earlier study for the yeast interactome51), directed networks (such as 
signalling networks4,52), or networks considering the subcellular localization of participating proteins53, 
as well as using quantitative measures of side-effect severity and abundance may provide additional 
information and will be subjects of later studies.

In summary, our results contributed to a better understanding of the network position and dynam-
ics of disease-related and drug target proteins. The findings may help the future development of novel, 
network-based pharmacovigilance methods increasing the potential safety of drug candidates.

Methods
Construction of the human protein-protein interaction network. In this paper, we examined 
the propagation of perturbations in the human protein-protein interaction network (interactome). The 
choice of this type of network was driven by the fact that it contains the most proteins and the greatest 
number of connections (as opposed to signalling networks or regulatory networks). Human interactome 
data were downloaded from the STRING database46 on 8 February, 2013. STRING contains interaction 
data based on a vast number of data collection principles. We have only used manually collected (‘data-
base’ column) or experimental (‘experiments’ column) data having higher reliability than e.g. predicted 
data. Only human protein-protein interactions were included in the interactome. In order to facilitate 
the comparison with drug targets, the STRING Ensemble Protein ID (ENSP) protein codes were trans-
lated to UniProt ID54 using the UniProt translator. From the original 13,484 ENSP IDs we managed to 
translate 12,493 to UniProt IDs, but only 12,439 proteins were connected to other proteins. The database 
contained a total of 377,920 human protein-protein interactions, out of which 350,528 remained after 
translating the protein IDs to UniProt IDs using the UniProt translator, which were further reduced to 
174,666 after eliminating multiple links and loops (self-links). The original STRING database also con-
tained edge weights indicating the reliability of data. Since we only worked with manually collected and 
experimental data, our interactome contained no edge weights.

Measurement of the propagation of perturbations in the human interactome. The propaga-
tion of perturbations in the human interactome was measured with the network perturbation analysis 
software for simulating network dynamics called Turbine35. For the simulation experiments we chose the 
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software’s communicating vessels model35, where changes from one protein to its neighbours ‘flow’ in 
proportion with the energy differences between the ‘source’ and the ‘target’ proteins. The communicating 
vessels model35 contains a starting energy (E) and a dissipation parameter (D), where the starting energy 
is distributed equally among the proteins of the human interactome specified at the individual simula-
tions, while in each step of the simulation the program subtracts D units of energy from each protein of 
the interactome. In most simulations E and D were set to 1000 and 5 units, respectively. Having these 
starting energy and dissipation parameters it was possible to trace the propagation of perturbations in 
the network rather easily. However, all the key simulations were also examined using different E and D 
values to examine the robustness of the results. To characterise the propagation efficiency of the starting 
node(s), the measure of silencing time35 was used, which is the time elapsed from the start of the simula-
tion until the energy of all nodes reaches the minimum threshold of less than 1 unit. We also calculated 
perturbation reach values35, which show the number of proteins receiving the perturbation from the 
initial perturbation source protein until the perturbation was dissipated from the system.

Characterisation of drug side effects. Drug side effects were collected from the SIDER database2. 
This database contains information about drug side effects and their frequencies from public documen-
tation and package inserts, with the help of drug labels and terms from MedDRA (Medical Dictionary 
for Regulatory Activities). SIDER data were downloaded from the version of 17 October, 2012. This 
version of the SIDER database2 contained 996 drugs, 4,192 unique side effects and 215,850 drug-side 
effect pairs. After eliminating the duplicates, 99,423 drug-side effect pairs remained. In order to be able 
to compare data, we converted drug IDs in the SIDER database2 into IDs of the DrugBank database47 
by matching the drug names.

Characterisation of drug targets. We collected drug targets from the DrugBank database47 version 
last updated on 10 February, 2013. The XML version of the database was used, including the drug names, 
indications and target list. The proteins in the target list were identified by their UniProt IDs54 with the 
help of the external reference table available in the database. From the drug target list only those drugs 
that targeted human proteins were selected. From the original 6,718 drugs 3,926 such drugs were found, 
of which 3,626 had target proteins contained in our human interactome.

After comparison with the drug—side effect data from the SIDER database2, we found that 597 drugs 
(with a total of 495 target proteins) had known side effects, while the remaining 3,029 drugs (with 1,231 
target proteins) had no reported side effects to date.

Protein and drug target data related to the two examined diseases: colorectal cancer and 
type 2 diabetes. Genes involved in colorectal cancer were collected from the Cancer Gene Census48 
database, by selecting those proteins in the entire database that contained the word ‘colorectal’ in their 
‘Tumour Types’ column. Genes related to type 2 diabetes were obtained from the article of Parchwani 
et al.49. The 18 genes involved in colorectal cancer and the 46 genes related to type 2 diabetes were then 
mapped to proteins marked by UniProt ID54 with the help of the Protein Identifier Cross-Reference 
(PICR)55 application. See Suppl. Tables 7 and 8 for the genes and their respective proteins involved in 
the two diseases. From these proteins, all 18 colorectal cancer-related but only 14 type 2 diabetes-related 
were contained in our interactome. Drugs used in treatment of colorectal cancer and diabetes and their 
drug targets were collected based on the drug indications in the DrugBank database47. See Suppl. Table 2 
for the relevant keywords used. We found 11 drugs against colorectal cancer and 36 against type 2 diabe-
tes, which all had valid targets. Drugs against colorectal cancer and type 2 diabetes had 33 and 42 target 
proteins, respectively, out of which 27 and 39, respectively, were contained in our human interactome.

Other methods. A number of Bash shell scripts were written to automate the network simulation 
experiments with Turbine. Statistical analysis of the results was performed with the R software package56. 
The Pajek software57 was used to measure geodesic distances and centralities in the human interactome, 
the Cytoscape software58 was used to create images of the human interactome and the Inkscape soft-
ware59 was used to create some other images.

References
1. Fliri, A. F., Loging, W. T., Thadeio, P. F. & Volkmann, R. A. Analysis of drug-induced effect patterns to link structure and side 

effects of medicines. Nat. Chem. Biol. 1, 389–397 (2005).
2. Kuhn, M., Campillos, M., Letunic, I., Jensen, L. J. & Bork, P. A side effect resource to capture phenotypic effects of drugs. Mol. 

Syst. Biol. 6, 343 (2010).
3. Lounkine, E. et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 486, 361–367 (2012).
4. Csermely, P., Korcsmáros, T., Kiss, H. J. M., London, G. & Nussinov, R. Structure and dynamics of molecular networks: A novel 

paradigm of drug discovery. Pharmacol. Ther. 138, 333–408. (2013).
5. Yang, L., Luo, H., Chen, J., Xing, Q. & He, L. SePreSA: a server for the prediction of populations susceptible to serious adverse 

drug reactions implementing the methodology of a chemical-protein interactome. Nucleic Acids Res. 37, W406–W412 (2009).
6. Yang, L., Xu, L. & He, L. A CitationRank algorithm inheriting Google technology designed to highlight genes responsible for 

serious adverse drug reaction. Bioinformatics 25, 2244–2250 (2009).
7. Luo, H. et al. DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-

protein interactome. Nucleic Acids Res. 39, W492–W498 (2011).



www.nature.com/scientificreports/

8Scientific RepoRts | 5:10182 | DOi: 10.1038/srep10182

8. Oprea, T.I. et al. Associating drugs, targets and clinical outcomes into an integrated network affords a new platform for computer-
aided drug repurposing. Mol. Inform. 30, 100–111 (2011).

9. Lopes, P. et al. Gathering and exploring scientific knowledge in pharmacovigilance. PLoS ONE 8, e83016 (2013).
10. Oliveira, J. L. et al. The EU-ADR Web Platform: delivering advanced pharmacovigilance tools. Pharmacoepidemiol. Drug Saf. 

22, 459–467 (2013).
11. Garten, Y., Tatonetti, N. P. & Altman, R. B. Improving the prediction of pharmacogenes using text-derived drug-gene relationships. 

Pac. Symp. Biocomput. 305–314 (2010).
12. Campillos, M., Kuhn, M., Gavin, A. C., Jensen, L. J. & Bork, P. Drug target identification using side-effect similarity. Science 321, 

263–266 (2008).
13. Yamanishi, Y., Kotera, M., Kanehisa, M., & Goto, S. Drug-target interaction prediction from chemical, genomic and 

pharmacological data in an integrated framework. Bioinformatics 26, i246–i254 (2010).
14. Takarabe, M., Okuda, S., Itoh, M., Tokimatsu, T., Goto, S. & Kanehisa, M. Network analysis of adverse drug interactions. Genome 

Inform. 20, 252–259 (2008).
15. Mizutani, S., Pauwels, E., Stoven, V., Goto, S. & Yamanishi, Y. Relating drug-protein interaction network with drug side effects. 

Bioinformatics 28, i522–i528 (2012).
16. Iwata, H., Mizutani, S., Tabei, Y., Kotera, M., Goto, S. & Yamanishi Y. Inferring protein domains associated with drug side effects 

based on drug-target interaction network. BMC Syst. Biol. 7, S18 (2013).
17. Lee, S., Lee, K. H., Song, M. & Lee, D. Building the process-drug-side effect network to discover the relationship between 

biological processes and side effects. BMC Bioinformatics 12, S2 (2011).
18. Bauer-Mehren, A. et al. Automatic filtering and substantiation of drug safety signals. PLoS Comput. Biol. 8, e1002457 (2012).
19. Schwartz, J. M. & Nacher, J. C. Local and global modes of drug action in biochemical networks. BMC Chem. Biol. 9, 4 (2009).
20. Brouwers, L., Iskar, M., Zeller, G., van Noort, V. & Bork, P. Network neighbors of drug targets contribute to drug side-effect 

similarity. PLoS ONE 6, e22187 (2011).
21. Nussinov, R., Tsai, C.-J. & Csermely, P. Allo-network drugs: harnessing allostery in cellular networks. Trends Pharmacol. Sci, 32, 

686–693 (2011).
22. Wang, J., Li, Z.-X., Qiu, C-X., Wang, D. & Cui, Q-H. The relationship between rational drug design and drug side effects. Brief. 

Bioinform. 13, 377–382 (2012).
23. Nacher, J. C. & Schwartz, J. M. Modularity in protein complex and drug interactions reveals new polypharmacological properties. 

PLoS ONE 7, e30028 (2012).
24. Hu, H., Myers, S., Colizza, V. & Vespignani A. WiFi networks and malware epidemiology. Proc. Natl. Acad. Sci. USA 106, 

1318–1323 (2009).
25. Wang, P., González, M. C., Hidalgo, C. A. & Barabási, A. L. Understanding the spreading patterns of mobile phone viruses. 

Science 324, 1071–1076 (2009).
26. Brockmann, D. & Helbing, D. The hidden geometry of complex, network-driven contagion phenomena. Science 342, 1337–1342 

(2013).
27. Zanette, D. H. Critical behavior of propagation on small-world networks. Phys. Rev. E 64, 050901 (2001).
28. Valente, T. W. Network interventions. Science 337, 49–53 (2012).
29. Banerjee, A., Chandrasekhar, A. G., Duflo, E. & Jackson, M. O. The diffusion of microfinance. Science 341, 1236498 (2013).
30. Aral, S. & Walker, D. Identifying influential and susceptible members of social networks. Science 337, 337–341 (2012).
31. Bray, D. & Duke, T. Conformational spread: the propagation of allosteric states in large multiprotein complexes. Annu. Rev. 

Biophys. Biomol. Struct. 33, 53–73 (2004).
32. Antal, M. A., Böde, C. & Csermely, P. Perturbation waves in proteins and protein networks: applications of percolation and game 

theories in signaling and drug design. Curr. Protein Pept. Sci. 10, 161–172 (2009).
33. Stojmirović, A., Bliskovsky, A. & Yu, Y. K. CytoITMprobe: a network information flow plugin for Cytoscape. BMC Res. Notes 5, 

237 (2012).
34. Cornelius, S. P., Kath, W. L. & Motter, A. E. Realistic control of network dynamics. Nat. Commun. 4, 1942 (2013).
35. Szalay, K. Z. & Csermely, P. Perturbation centrality and Turbine: A novel centrality measure obtained using a versatile network 

dynamics tool. PLoS ONE 8, e78059 (2013).
36. Szalay, K. Z., Nussinov, R. & Csermely, P. Attractor structures of signaling networks: Consequences of different conformational 

barcode dynamics and their relations to network-based drug design. Mol. Info. 33, 463–468 (2014).
37. Jonsson, P.F. & Bates, P.A. Global topological features of cancer proteins in the human interactome. Bioinformatics 22, 2291–2297 

(2006).
38. Chuang, H.Y., Lee, E., Liu, Y.T., Lee, D. & Ideker, T. Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 

140 (2007).
39. Hase, T., Tanaka, H., Suzuki, Y., Nakagawa, S. & Kitano, H. Structure of protein interaction networks and their implications on 

drug design. PLoS Comput. Biol. 5, e1000550 (2009).
40. Taylor, I.W. et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nature Biotechn. 27, 

199–204 (2009).
41. Sharma, A., Chavali, S., Tabassum, R., Tandon, N. & Bharadwaj, D. Gene prioritization in type 2 diabetes using domain 

interactions and network analysis. BMC Genomics 11, 84 (2010).
42. Sun, J. & Zhao, Z. A comparative study of cancer proteins in the human protein-protein interaction network. BMC Genomics 11, 

S5 (2010).
43. Rosado, J. O., Henriques, J. P., & Bonatto, D. A systems pharmacology analysis of major chemotherapy combination regimens 

used in gastric cancer treatment: predicting potential new protein targets and drugs. Curr. Cancer Drug Targets 11, 849–869 
(2011).

44. Xia, J., Sun, J., Jia, P. & Zhao, Z. Do cancer proteins really interact strongly in the human protein-protein interaction network? 
Comput. Biol. Chem. 35, 121–125 (2011).

45. Serra-Musach, J. et al. Cancer develops, progresses and responds to therapies through restricted perturbation of the protein-
protein interaction network. Integr. Biol. 4, 1038–1048 (2012).

46. Franceschini, A. et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids 
Res. 41, D808–D815 (2012).

47. Knox, C. et al. DrugBank 3.0: a comprehensive resource for “omics” research on drugs. Nucleic Acids Res. 39, D1035–D1041 
(2011).

48. Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids 
Res. 39, D945–D950 (2010).

49. Parchwani, D., Murthy, S., Upadhyah, A. & Patel, D. Genetic factors in the etiology of type 2 diabetes: linkage analyses, candidate 
gene association, and genome-wide association – still a long way to go! Natl. J. Physiol. Pharm. Pharmacol. 3, 57–68 (2013).

50. Yildirim, M. A., Goh, K.-I., Cusick, M. E., Barabási, A.-L. & Vidal, M. Drug-target network. Nat. Biotechnol. 25, 1119–1126 
(2007).



www.nature.com/scientificreports/

9Scientific RepoRts | 5:10182 | DOi: 10.1038/srep10182

51. Mihalik, Á. & Csermely, P. Heat shock partially dissociates the overlapping modules of the yeast protein-protein interaction 
network: a systems level model of adaptation. PLoS Comput. Biol. 7, e1002187 (2011).

52. Fazekas, D. et al. SignaLink 2 – A signaling pathway resource with multi-layered regulatory networks. BMC Systems Biology 7, 
7 (2013).

53. Veres, D. et al. (2015) ComPPI: a cellular compartment-specific database for protein-protein interaction network analysis. Nucleic 
Acids Res. 43, D485–D493 (2015.).

54. The UniProt Consortium. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res. 40, 
D71–D75 (2012).

55. Wein, S. P. et al. Improvements in the Protein Identifier Cross-Reference service. Nucleic Acids Res. 40, W276–W280 (2012).
56. R Core Team. R: A language and environment for statistical computing. Vienna, Austria, : (R Foundation for Statistical Computing. 

, Available: http://www.R-project.org/ (2013).
57. Bagatelj, V. & Mrvar, A. Pajek - Analysis and Visualization of Large Networks. in Graph drawing software. Mathematics and 

visualization. (eds Jünger, M. & Mutzel, P.) 77–103 (Springer, Berlin, 2003).
58. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 

13, 2498–2504 (2003).
59. The Inkscape Team. Inkscape. (2014). at http://inkscape.org

Acknowledgments
We thank members of the LINK-Group (www.linkgroup.hu) for helpful discussions. This work was 
supported by the Hungarian Scientific Research Fund [OTKA K83314]. T.K. was a grantee of the 
János Bolyai Scholarship of the Hungarian Academy of Sciences, and is supported by a fellowship 
in computational biology at The Genome Analysis Centre, in partnership with the Institute of Food 
Research, and strategically supported by BBSRC.

Author Contributions
P.C. initiated the project and conceived the research. A.R.P.L. performed all simulations and data analysis. 
D.T. and D.M. contributed in the assembly of databases. All (A.R.P.L., K.Z.S., D.T., D.M., K.L., T.K. P.C.) 
authors contributed to biological interpretation of the results. A.R.P.L. prepared the tables and figures. 
A.R.P.L. and P.C. wrote the manuscript text. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Perez-Lopez, R. et al. Targets of drugs are generally, and targets of drugs 
having side effects are specifically good spreaders of human interactome perturbations. Sci. Rep.  
5, 10182; doi: 10.1038/srep10182 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.R-project.org/
http://creativecommons.org/licenses/by/4.0/

	Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interacto ...
	Results
	Targets of drugs with side effects spread perturbations better in the human interactome than targets of drugs without side  ...
	Colorectal cancer-related proteins are good spreaders of perturbations and have a high centrality, while type-2 diabetes-re ...
	The interactome distance between drug targets and disease-related proteins is higher in diabetes than in colorectal cancer. ...

	Discussion
	Methods
	Construction of the human protein-protein interaction network. 
	Measurement of the propagation of perturbations in the human interactome. 
	Characterisation of drug side effects. 
	Characterisation of drug targets. 
	Protein and drug target data related to the two examined diseases: colorectal cancer and type 2 diabetes. 
	Other methods. 

	Acknowledgments
	Author Contributions
	Figure 1.  Cumulative silencing time distribution of drug targets and non-target proteins.
	Figure 2.  Cumulative silencing time distribution of colorectal cancer- and type 2 diabetes mellitus-related proteins, as well as proteins, which are not related to these diseases.
	Table 1.   Average human interactome centralities of proteins related to colorectal cancer and type 2 diabetes.
	Table 2.  Average network distance of drug targets without and with known side effects used in the treatment of colorectal cancer and type 2 diabetes from the disease-associated proteins.



 
    
       
          application/pdf
          
             
                Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interactome perturbations
            
         
          
             
                srep ,  (2015). doi:10.1038/srep10182
            
         
          
             
                Áron R. Perez-Lopez
                Kristóf Z. Szalay
                Dénes Türei
                Dezső Módos
                Katalin Lenti
                Tamás Korcsmáros
                Peter Csermely
            
         
          doi:10.1038/srep10182
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep10182
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep10182
            
         
      
       
          
          
          
             
                doi:10.1038/srep10182
            
         
          
             
                srep ,  (2015). doi:10.1038/srep10182
            
         
          
          
      
       
       
          True
      
   




