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Abstract

Phosphoinositide lipids play a key role in cellular physiology, partici-

pating in a wide array of cellular processes. Consequently, mutation

of phosphoinositide-metabolizing enzymes is responsible for a growing

number of diseases in humans. Two related disorders, oculocerebrorenal

syndrome of Lowe (OCRL) and Dent-2 disease, are caused by mutation

of the inositol 5-phosphatase OCRL1. Here, we review recent advances

in our understanding of OCRL1 function. OCRL1 appears to regulate

many processes within the cell, most of which depend upon coordina-

tion of membrane dynamics with remodeling of the actin cytoskeleton.

Recently developed animal models have managed to recapitulate fea-

tures of Lowe syndrome and Dent-2 disease, and revealed new insights

into the underlying mechanisms of these disorders. The continued use of

both cell-based approaches and animal models will be key to fully unrav-

eling OCRL1 function, how its loss leads to disease and, importantly,

the development of therapeutics to treat patients.
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Overview of Phosphoinositides

Phosphoinositides are membrane phospholipids that reg-
ulate diverse cellular processes including gene expression,
cytokinesis, cell motility, actin cytoskeleton remodeling,
membrane trafficking and cell signaling (1,2). There are
seven phosphoinositide species found in nature, generated
by reversible phosphorylation of phosphatidylinositol at
the 3′-, 4′- and/or 5′-positions of the inositol ring. Con-
version between the different phosphoinositide species is
mediated by specific kinases and phosphatases, of which
there are more than 50 in vertebrates (3). Although

†These authors contributed equally to this work.

extremely important, phosphoinositides comprise less
than 1% of total cellular phospholipids, with PtdIns4P
and PtdIns(4,5)P2 being the most abundant.

Phosphoinositides regulate cellular processes through
direct interaction with effector proteins, which is mediated
by phosphoinositide-binding domains found in these
proteins (4,5). The best-described phosphoinositide-
binding domains are the PH (pleckstrin homology),
PX (phox homology), FYVE (Fab1, YOTB, Vac1 and
EEA1), ENTH (epsin amino-terminal homology) and
FERM (band 4.1, ezrin, radixin and moesin) domains.
Of these, the PH domain is the most promiscuous, binding
to PtdIns3P, PtdIns4P, PtdIns(3,4)P2, PtdIns(4,5)P2 and
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PtdIns(3,4,5)P3. Binding to effectors most typically leads
to effector recruitment to the membrane. However, as
exemplified by the PH domain, binding of an effector
protein to a particular phosphoinositide can be inherently
weak or lack specificity (6). In such cases, the fidelity of
effector recruitment is conferred by additional interactions
with the membrane, often in the shape of a protein partner,
such as a small GTPase. This type of targeting has been
coined ‘coincidence detection’ (7). In addition to recruiting
effectors to membrane surfaces, phosphoinositides can
also induce conformational changes in effector proteins
to alter their biological activity. Examples include the
PtdIns(4,5)P2-dependent activation of ion channels at
the plasma membrane (8), or the PtdIns(4,5)P2-mediated
conversion of the actin nucleation-promoting factor N-
WASP from a closed, autoinhibited state to an open,
activated state (9).

Each phosphoinositide species has its own unique
subcellular distribution and most organelles appear to
be enriched in a specific phosphoinositide; for example,
PtdIns(4,5)P2 is abundant at the plasma membrane,
whereas PtdIns3P and PtdIns4P are enriched at early
endosomes and the Golgi apparatus, respectively (1,10).
Thus, phosphoinositides contribute to compartmental
identity (11). Interestingly, the sequential conversion from
one phosphoinositide species to another can lead to a
switch in compartment identity, as seen in the maturation
of compartments within the early endocytic pathway
(12,13). Segregation of phosphoinositides to different
membranes may also promote directionality of membrane
traffic between distinct compartments (14). Although
most compartments appear to be associated with a
particular phosphoinositide, as would be expected if they
impart compartment identity, there is evidence that more
than one phosphoinositide can reside on the same com-
partment. For example, in addition to the Golgi apparatus,
PtdIns4P is abundant at the plasma membrane (15), where
it has functions distinct from that of PtdIns(4,5)P2 (16).
In addition to PtdIns3P, pools of PtdIns4P, PtdIns(4,5)P2

and PtdIns(3,4,5)P3 have also been detected on endosomes
(17–19). Moreover, PtdIns3P can also be generated at
the plasma membrane or endoplasmic reticulum during
insulin signaling or autophagy, respectively (20,21). It is
likely that distinct phosphoinositides residing on the same
compartment are tightly controlled both spatially and

temporally to ensure the coordinated recruitment of down-
stream effector proteins to specific membrane domains.

Phosphoinositide Kinases and Phosphatases

The generation and turnover of phosphoinositides is
determined primarily by the activity of specific phos-
phoinositide kinases and phosphatases, which themselves
are highly regulated (3). This regulation can occur at
the level of expression, or through localized recruitment
and/or activation of catalytic activity, which is often medi-
ated through binding to small GTPases. Additionally,
binding to scaffolding proteins can help recruit these
enzymes, and post-translational modification may also
regulate their activity. The various enzymes are classi-
fied based on substrate preference and conservation of
sequence and predicted domains. In addition to phospho-
inositide kinases and phosphatases, it is also worth bearing
in mind that levels of PtdIns(4,5)P2 can be affected by
phospholipase C (22). In response to various stimuli, this
enzyme hydrolyzes PtdIns(4,5)P2 to generate the second
messengers diacylglycerol (DAG) and Ins(1,4,5)P3 (IP3)
that are responsible for protein kinase C activation and
mobilization of intracellular calcium stores, respectively.

OCRL1, the focus of this review, is 1 of 10 inositol 5-
phosphatases present in vertebrates (23). Of these, only one
(INPP5A) acts on soluble inositol polyphosphates, whereas
the remainder prefer the lipid substrates PtdIns(4,5)P2 and
PtdIns(3,4,5)P3. These enzymes use a common mechanism
to catalyze hydrolysis of the phosphate at the 5′-position
of the inositol ring (24,25). The different 5-phosphatases
are localized to distinct cell types or distinct subcellular
compartments within the same cell, where they regulate
the abundance and turnover of distinct phosphoinositide
pools. Consequently, the 5-phosphatases are important
for various cellular and physiological processes, and
dysfunction of a number of 5-phosphatases is associated
with human disease (23,26,27). For example, mutation of
OCRL1 results in Lowe syndrome and Dent-2 disease,
discussed in further detail below. Mutations in INPP5E
lead to Joubert and MORM syndromes, ciliopathies
associated with mental impairment and various other
developmental defects, whereas mutation of synaptojanin
1 is associated with early onset Alzheimer’s disease in
Down’s syndrome. In contrast, SHIP1 and SHIP2 have
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been linked to immunity, and cancer and metabolic
syndrome, respectively.

Lowe Syndrome and Dent-2 Disease

Mutation of OCRL1 was originally shown to be the cause
of the rare X-linked disorder oculocerebrorenal syndrome
of Lowe (OCRL), or Lowe syndrome, by Nussbaum and
coworkers in 1992 (28). More recently, patients diagnosed
with a related X-linked disorder, called Dent disease,
were also found to have mutations in OCRL1 (29). This
was surprising because Dent disease is typically caused
by mutation of CLC5, an endosomal chloride/proton
antiporter (30). Hence, Dent disease attributed to OCRL1
mutation has been named Dent-2 disease, with Dent-
1 describing patients with CLC5 mutation (31). Both
Lowe syndrome and Dent-2 disease are characterized by
a selective proximal tubulopathy, caused by impairment

of proximal tubular cells in the kidney (31,32). Symptoms
include low-molecular-weight proteinuria, renal tubular
acidosis, hypercalciuria and aminoaciduria (Figure 1).
These symptoms can lead to progressive glomerular
dysfunction, eventually resulting in renal failure. In
addition to the renal symptoms, Lowe syndrome, and to a
lesser extent Dent-2 disease, also causes defects in the eyes
and nervous system (31,33). Ocular manifestations include
congenital cataracts and glaucoma, while the neurological
symptoms comprise hypotonia and mental retardation
and an increased susceptibility to seizures. Magnetic
resonance imaging has shown that some Lowe syndrome
patients have white matter abnormalities, mainly cystic
lesions in the periventricular region. The severity of
Lowe syndrome and Dent-2 phenotypes varies widely
between patients, even those carrying the same mutation in
OCRL1, suggesting that genetic background is important,
with genetic ‘modifiers’ determining the severity of the

Brain and CNS (Cerebro-)
- Mental Retardation
- Increased susceptibility to seizures
- Cystic lesions in brain
- Hypotonia
- Behavioural problemsEye (Oculo-)

- Congenital cataracts
- Glaucoma

Kidney (Renal-)
- Low molecular weight proteinuria
- Renal tubular acidosis
- Hypercalciuria
- Aminoaciduria
- Renal failure

Figure 1: Schematic diagram showing the organs affected in Lowe syndrome. Oculocerebrorenal syndrome of Lowe affects
the eyes, central nervous system and kidneys, with specific manifestations in each organ as indicated. Dent-2 affects the same
organs and displays similar manifestations, although the ocular and neurological defects are typically milder than those seen in Lowe
syndrome. Renal tubular acidosis is also less frequently observed in Dent-2 disease.
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phenotype (34,35). Disease-causing mutations in OCRL1
typically result in loss of 5-phosphatase activity, or the
absence of the protein itself due to loss of expression or
degradation as a consequence of misfolding (35). Presently,
it is not yet understood how loss of OCRL1 function leads
to the symptoms associated with Lowe syndrome and
Dent-2 disease.

This review will discuss recent progress on the cellular
functions of OCRL1 and advances made using recently
described animal models of Lowe syndrome and Dent-2
disease. Although we will briefly discuss OCRL1 domain
organization and its various interaction partners, the focus
of this review will be OCRL1 function, both at the cellular
and organismal level. For a more detailed discussion of
OCRL1 structure and physical interactions, we refer the
reader to an excellent recent review by Pirruccello and De
Camilli (25).

Domain Organization and Interactions
of OCRL1

OCRL1 is a multidomain protein with an N-terminal PH
domain, a central 5-phosphatase domain and C-terminal
ASH and RhoGAP-like domains (25). The PH domain
is not evident from the amino acid sequence, and was
discovered using 3D-NMR spectroscopy; it lacks the basic
patch required for phosphoinositide binding and does
not bind phosphoinositide-containing liposomes, but may
be involved in interactions with other proteins (36). It
also contains a loop outside of the domain fold with
a clathrin-binding motif that helps recruit OCRL1 to
endocytic clathrin-coated pits (36,37). The PH domain is
connected to the 5-phosphatase domain via a flexible linker
that contains an FEDNF motif responsible for binding the
AP2 clathrin adaptor (38).

The structure of the catalytic 5-phosphatase domain of
OCRL1 has not been determined. However, the structures
of related 5-phosphatases, including the closest homolog
of OCRL1, INPP5B, have been determined (24,25).
Consequently, we have a good appreciation of the catalytic
mechanism, which is similar to that used by Mg2+-
dependent nucleases, and the residues that contribute to
the domain fold. OCRL1 preferentially dephosphorylates
PtdIns(4,5)P2 although it also displays significant activity

in vitro toward PtdIns(3,4,5)P3 (39,40). Cell lines and
zebrafish embryos deficient in OCRL1 display elevated
PtdIns(4,5)P2 levels, indicating that this is a relevant in
vivo substrate (41–44).

Following the catalytic domain is the ASH (ASPM, SPD2
and Hydin) domain, a domain with an immunoglobulin-
like fold that is found in many proteins localized near
cilia and centrosomes (45). The ASH domain of OCRL1
binds to members of the Rab GTPase family, which is
important for the subcellular targeting of OCRL1 (46).
Interestingly, OCRL1 binds to Rabs in a manner atypical
for effector proteins, which may explain the ability of
OCRL1 to interact with many members of the Rab family
(47). The RhoGAP-like domain is localized at the C-
terminal end of the protein, directly adjacent to the ASH
domain. This domain is catalytically inactive, but is able to
bind to Rac1 and Cdc42, which may help localize OCRL1 to
sites of actin assembly (48–50). Additionally, a conserved
region within the RhoGAP-like domain binds to the F&H
motif of the endocytic adaptor proteins APPL1 (adaptor
protein containing pleckstrin-homology domain, PTB
phosphotyrosine-binding domain and leucine zipper/bin-
amphiphysin-rvs domain 1) and IPIP27A and B (inositol
polyphosphate phosphatase-interacting protein of 27 KDa,
also known as Ses1 and 2), which links OCRL1 to endocytic
signaling and trafficking (50–53). As in the PH domain,
there is a loop that extends outside the RhoGAP-like fold
containing a clathrin-binding motif (38,50,54). As a result
of alternative splicing, the region directly adjacent to the
unstructured loop is different in the two known isoforms of
OCRL1 (55). OCRL1 isoform a has a longer loop, leading
to better accessibility to clathrin and higher affinity clathrin
binding than isoform b, which has a shorter loop (37).

Cellular Functions of OCRL1

OCRL1 is localized to several cellular compartments and
has been implicated in a number of processes, which are
described below (Figure 2; see also Figure 3).

Membrane trafficking
Most available evidence supports a role for OCRL1
in membrane trafficking (36, 37, 50, 52, 54, 56–58).
OCRL1 is localized to early and recycling endosomes
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Figure 2: Cellular localization of OCRL1. A) OCRL1 (blue hexagons) has been localized to a number of cellular compartments.
It is present at the TGN and various compartments of the endocytic pathway, where it resides at late-stage clathrin-coated pits,
clathrin-coated vesicles, signaling endosomes, early or sorting endosomes and on recycling endosomes. OCRL1 has also been localized
to the basal body of primary cilia, and it may also localize to the cilium itself. In maturing epithelia, OCRL1 transiently localizes to
adherens and tight junctions. OCRL1 is recruited to phagosomes at a late stage in their formation, and is important for closure of
the phagocytic cup as well as signaling events that occur post-sealing. OCRL1 is recruited to phagosomes generated by invading
pathogenic bacteria such as Yersinia or Listeria, and has also been localized on intracellular inclusions generated by certain bacteria,
e.g. Legionella or Chlamydia. B) OCRL1 localizes to the midbody in cells undergoing cytokinesis. C) OCRL1 has been localized to the
lamellipodia of migrating fibroblasts.

(38,50,52,54), and several studies have shown defective
trafficking from endosomes to the trans-Golgi network
(TGN) in OCRL1-deficient cells, or in cells expressing
a dominant negative OCRL1 construct (54, 56–58).
Defective receptor recycling to the plasma membrane
and sorting of mitogenic receptors to lysosomes has
also been reported in OCRL1-deficient cells (57).
These receptors were instead retained in enlarged early

endosomes that had excessive amounts of PtdIns(4,5)P2

and actin on their cytoplasmic face (57). PtdIns(4,5)P2

promotes endosomal actin accumulation in two ways:
activation of the nucleation-promoting factor N-WASP
and inhibition of the actin-severing protein cofilin
(9,57,59). Phosphorylation of cofilin, which also inhibits
actin severing, has also been observed in OCRL1-
deficient cells, suggesting a second, indirect, mechanism
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ClathrinAP2
Rac1

APPL1Rab
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Figure 3: Network diagram showing the cellular func-
tions of OCRL1. OCRL1 interaction partners are shown in green,
and associated functions are indicated in blue boxes. Purple
boxes highlight the two universal processes that are influenced
by OCRL1, namely membrane trafficking and actin cytoskeleton
remodeling. Both are relevant for all the functions shown in blue,
and are linked accordingly. Note the diagram is not exhaustive,
and some of the OCRL1-binding partners are likely to participate
in several of the processes indicated. Although endocytosis and
endocytic recycling are types of membrane trafficking, they are
also shown separately as distinct processes given their reliance
on different OCRL1-binding proteins.

for cofilin inactivation (58). OCRL1 therefore appears
to regulate or limit the assembly of actin on endosomal
membranes. Endosomal actin plays an important role in
sculpting membranes during the formation of trafficking
intermediates that mediate recycling to the TGN and
plasma membrane (60). We may therefore predict that
OCRL1 regulates this process, in which case we can
think of OCRL1 as constituting part of the trafficking
machinery. However, an alternative viewpoint is that
OCRL1 functions to maintain endosomal homeostasis,
preventing ectopic accumulation of PtdIns(4,5)P2, rather
than directly contributing to trafficking per se. Further
studies will be required to make the distinction between
these two possibilities.

OCRL1 directly interacts with clathrin heavy chain and the
AP2 clathrin adaptor, and is recruited to clathrin-coated
pits (36–38, 50, 54). OCRL1 recruitment occurs at a late
stage in the vesicle formation process, and coincides with
release of actin and actin-associated proteins required
for carrier morphogenesis (50,61). These observations
implicate OCRL1 in a late stage of vesicle biogenesis,
possibly removal of the actin scaffold to allow release

and movement of a newly formed vesicle into the cell.
Although overexpression of mutant OCRL1 can perturb
endocytic uptake (37), several studies have failed to detect
any effects of OCRL1 depletion upon this process (56–58).
As two other inositol 5-phosphatases, synaptojanin and
SHIP2, are also present in clathrin-coated pits, OCRL1
may simply be redundant there. However, one should
bear in mind that studies to date have only been carried
out in tissue culture cells. It remains possible that cells
with a higher rate of endocytic flux, such as neurons,
will have a greater dependency upon OCRL1-mediated
PtdIns(4,5)P2 hydrolysis. A third possibility is simply that
OCRL1, although recruited into clathrin-coated pits, has
no function there. It may be recruited at this early stage to
allow delivery to the downstream endocytic compartments
where it functions.

OCRL1 is also abundant at the TGN, and has been
detected in clathrin-coated buds on this compartment
(54,62). Again, the extent to which OCRL1 participates in
trafficking from the TGN to the plasma membrane or endo-
somal compartments remains to be determined. One study
reported reduced secretory trafficking of the TRPV6 cal-
cium channel in OCRL1-deficient cells, but the exact steps
affected and underlying mechanisms remain obscure (63).

Phagocytosis
OCRL1 plays an important role in phagocytosis. This
was first observed in Dictyostelium discoideum, where
mutation of the OCRL1 homolog Dd5P4 leads to a failure
to close the phagocytic cup (64). A role for OCRL1 in
phagocytosis in mammalian cells has subsequently been
shown (65,66). OCRL1 is recruited to phagosomes and
catalyzes removal of phagosomal PtdIns(4,5)P2 at the
closure stage. This helps remodel actin for phagosome
closure as well as terminating synthesis of PtdIns(3,4,5)P3,
thereby attenuating downstream Akt signaling. OCRL1
can be delivered to phagosomes in TGN- or endosome-
derived vesicles, and is retained there through binding to
APPL1 at the phagosome membrane (65,66).

OCRL1 plays an important role during infection by
the pathogenic bacteria Yersinia pseudotuberculosis and
Listeria monocytogenes, responsible for Far East scarlet-
like fever and listeriosis, respectively (67,68). In both
cases, OCRL1 recruitment to the invading bacterial
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phagosome coincides with removal of PtdIns(4,5)P2

and dissociation of bound actin, which is required for
closure of the bacterial inclusion. Given its demonstrated
importance in phagocytosis in studies to date, it is
likely that other bacterial pathogens will exploit OCRL1
during their phagocytic entry into cells. Interestingly,
OCRL1 also appears to function at the post-entry stage
during infection by Chlamydia and Legionella (69,70). It
localizes to the surface of bacterial inclusions formed
by these organisms, and helps maintain the correct
phosphoinositide composition for replication within the
inclusion.

Cell adhesion and migration
OCRL1 has been localized to lamellipodia, consistent with
a possible role in cell migration (71,72). This was shown to
be the case, as OCRL1-deficient Lowe syndrome fibroblasts
or cells depleted of OCRL1 using RNA interference
migrate poorly in vitro (72). Cell adhesion was also found
to be defective in OCRL1-deficient cells (72). Loss of
OCRL1 could perturb cell adhesion and migration in
several ways, but the most likely mechanism is through
dysregulation of the actin cytoskeleton. Indeed, levels of
active Rac1 and cofilin, both important for actin dynamics
within lamellipodia, are decreased in OCRL1-deficient
cells (58). These effects could be direct, via modulation
of PtdIns(4,5)P2 within lamellipodia that in turn impacts
upon Rac1 activation and cofilin inactivation, or may
arise indirectly through defective endocytic trafficking.
Because Rac1 activation can occur on endosomes (73),
defective endocytic cycling of Rac1 or its GEF could
account for reduced Rac1 activation in OCRL1-deficient
cells. This would be consistent with the observation
that binding of OCRL1 to clathrin and AP2 is required
for its function in cell migration (72). Further studies
will be required to decipher the precise mechanisms
involved.

Cell polarity
The tissues affected in Lowe syndrome and Dent-2 disease
comprise polarized cells, prompting the investigation
of OCRL1 involvement in cell polarity. OCRL1 can
transiently localize to adherens and tight junctions during
establishment of cell polarity (74), and loss of OCRL1
leads to a failure to polarize effectively in both 2D and

3D culture (74,75). This could reflect a direct effect
upon the localized assembly of junctional components,
or a more indirect effect downstream from altered
actin dynamics or endocytic trafficking. We favor the
latter hypothesis, with defective endocytic recycling of
junctional proteins leading to a failure to establish cell
contacts and apicobasal polarity. Again, further studies
are required to distinguish between these possibilities. It
will also be important to determine the degree to which
polarity of renal, lens and neuronal cells is affected in the
disease state.

Ciliogenesis
Several recent studies have found that OCRL1 plays a role
in the biogenesis of cilia (75–77). Two studies reported
fewer and shorter primary cilia upon loss of OCRL1
(76,77), whereas a third study reported longer cilia (75).
One study reported that OCRL1 was present within the
primary cilium (77), whereas another found OCRL1 at the
base of the cilium, near the basal body, but not within
the cilium itself (76). Regardless of these differences, it
would appear that OCRL1 is important for ciliogenesis,
leading to the suggestion that Lowe syndrome is a type of
ciliopathy (75–77). However, it should be noted that even
though ciliopathies have a broad phenotypic spectrum
(78), the most common manifestations are distinct from
those seen in Lowe syndrome (discussed in greater detail
below) (79).

How might OCRL1 regulate ciliogenesis? The most
likely mechanism is by modulating trafficking of ciliary
components into the cilium. Indeed, in cells depleted of
OCRL1, trafficking of membrane marker proteins into the
cilium is impaired (76). OCRL1 binds to Rab8, which is a
key factor in polarized secretory trafficking into the cilium
(46,47). Rab binding is important for OCRL1 function in
ciliogenesis. IPIP27A, which links OCRL1 to endocytic
trafficking, also appears to function in ciliogenesis (76).
These observations suggest a role for OCRL1 in regulating
trafficking into the cilium from both the secretory and
endocytic pathways.

Cytokinesis
Cytokinesis defects have been observed in Drosophila
and mammalian cell lines lacking OCRL1 (80,81). The
phenotype is highly penetrant in Drosophila cells, with
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abortive furrow ingression leading to division failure
and accumulation of binucleated cells (80). Interestingly,
PtdIns(4,5)P2, which is typically enriched at the cleavage
furrow and midbody, accumulates on enlarged endosomes
in OCRL1-depleted cells, leading to the endosomal
mistargeting of actin and associated cytokinesis machinery.
Dysregulation of PtdIns(4,5)P2 and actin can therefore
explain the observed cytokinesis failure in Drosophila cells.
Similarly, although the cytokinesis defect is more subtle
in OCRL1-depleted mammalian cells, dysregulation of the
actin machinery also occurs (81). In this case, there is a
failure to remove PtdIns(4,5)P2 from the midbody, which
is required for actin remodeling during the final abscission
step. Hence, cells stall at abscission and fail to complete
cytokinesis. OCRL1 is recruited to the midbody by binding
to Rab35, suggesting a direct role in modulating the pools
of PtdIns(4,5)P2 and actin relevant for completion of
abscission (81).

Intracellular signaling
APPL1 is a Rab5 effector that functions as an endocytic
scaffolding and signaling adaptor (82). APPL1 is localized
to a subset of early endosomes, sometimes referred to
as signaling endosomes, and participates in numerous
signaling pathways. It interacts with many receptor
proteins and notably can bind directly to Akt and
modulate signaling from this kinase, which is important
for cell survival, growth and proliferation. The interaction
of OCRL1 with APPL1 therefore implicates OCRL1 in
endocytic signaling (50). This could occur in a number
of ways. OCRL1 could physically influence the binding of
APPL1 to Akt, but this would seem unlikely. Alternatively,
binding to APPL1 may help localize OCRL1 to sites
of signaling, where it could attenuate Akt activation
by reducing PtdIns(3,4,5)P3 levels, either through direct
hydrolysis or by removal of PtdIns(4,5)P2, the precursor of
PtdIns(3,4,5)P3 in mitogenic signaling. The latter has been
observed in signaling that occurs during phagocytosis
(65). In contrast, OCRL1-deficient zebrafish embryos
have decreased levels of active Akt (43), suggesting
that OCRL1 can influence signaling outputs in different
ways, depending on the context. It is worth noting
that dephosphorylation of PtdIns(3,4,5)P3 by OCRL1 will
generate PtdIns(3,4)P2. Endosomal PtdIns(3,4)P2 has been
shown to be important for Akt signaling and cell survival
and proliferation (83,84). Hence, loss of OCRL1 could

also impact upon Akt signaling by affecting the levels of
endosomal PtdIns(3,4)P2.

OCRL1 may also influence signaling through modulation
of intracellular calcium. Indeed, altered calcium signaling
has been seen in OCRL1-deficient cells (75,85). This could
be a direct effect, with elevated PtdIns(4,5)P2 leading to
increased IP3 production (via phospholipase C-mediated
hydrolysis) and mobilization of intracellular calcium.
Alternatively, OCRL1 could influence calcium signaling,
as well as other signaling pathways, through its effects
upon ciliogenesis (cilia are key sites for the transduction of
many signaling pathways). Further studies will be required
to determine the extent to which OCRL1 may influence
calcium signaling and the mechanisms involved.

Common themes
At first glance, OCRL1 seems to participate in a myriad
of cellular processes that are distinct from one another.
However, closer analysis suggests that there may be a
common underlying mechanism (see Figure 3). Most
of the processes affected by loss of OCRL1 are actin
dependent. The substrates of OCRL1, PtdIns(4,5)P2 and
PtdIns(3,4,5)P3, strongly promote actin assembly (86).
Hence, OCRL1 may influence the processes described
above by regulating actin dynamics. Indeed, it has been
known for several years that OCRL1-deficient cells have
reduced numbers of stress fibers and increased punctate
actin staining (87). Aberrant actin assembly has been
observed on endosomes, phagosomes and at the midbody
in OCRL1-deficient cells, which can explain the observed
defects in endocytic trafficking (57), phagocytosis (65,66)
and cytokinesis (80,81), respectively. As OCRL1 is also
localized to lamellipodia, cellular junctions and may also
be at the cilium or basal body, it could in principle
directly regulate actin turnover at these locations to
influence cell migration, adhesion, polarity and ciliogenesis
(71,72,74,76,77). However, an alternative viewpoint is
that OCRL1 indirectly affects the various processes,
with a primary defect in endocytic trafficking leading
to downstream consequences upon these other processes.
This model is attractive in that all these processes are
dependent upon endocytic trafficking. Hence, defective
trafficking will have consequences upon phagocytosis,
cytokinesis, cell adhesion and migration, cell polarization
and ciliogenesis. It is important to remember, however,
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that the two models are not mutually exclusive, and it
is possible that OCRL1 can affect various processes in
both a direct and an indirect manner, either through
localized actin remodeling and/or endocytic trafficking.
Given the widespread localization of OCRL1, it remains
possible that it will also influence other, as yet unrealized,
actin-dependent processes within the cell.

Phosphoinositide homeostasis
Cells lacking OCRL1 have elevated levels of PtdIns(4,5)P2

despite the presence of other inositol 5-phosphatases
(41–44). Hence, it has been suggested that OCRL1 acts
in a housekeeping capacity, preventing ectopic accumu-
lation of PtdIns(4,5)P2 [and possibly PtdIns(3,4,5)P3] on
intracellular membranes to help maintain phosphoinosi-
tide homeostasis within the cell (88). In support of this
model, ectopic accumulation of PtdIns(4,5)P2 on endo-
somes has been observed in OCRL1-deficient mammalian
and Drosophila cells (57,80). Thus, loss of OCRL1 could
impact upon the processes described above through dis-
ruption of phosphoinositide homeostasis, leading to loss of
compartment identity and dysregulation of downstream
processes. Importantly, this model implies a more gen-
eralized, non-specific disruption of cellular function, as
opposed to the specific regulation of spatially distinct,
physiologically relevant pools of PtdIns(4,5)P2 [and pos-
sibly PtdIns(3,4,5)P3], as mentioned in the above section.
Of course, the two possibilities are not mutually exclu-
sive, and a role for OCRL1 both in regulating distinct
functional phosphoinositide pools in addition to having
a more general function in maintaining phosphoinositide
homeostasis is possible.

It remains unclear where the ectopically accumulated
endosomal PtdIns(4,5)P2 seen upon OCRL1 deficiency
comes from. It may be delivered from the plasma
membrane by endocytic vesicles or, conversely, generated
de novo at the endosomal membrane. The latter hypothesis
is somewhat contentious, but the recent identification of
an endosomally localized PtdIns4P 5-kinase indicates that
synthesis of PtdIns(4,5)P2 can occur on endosomes (89).
It will therefore be interesting to determine the extent to
which PtdIns(4,5)P2 synthesis takes place not only at the
endosome but also at other endomembrane compartments
within the cell.

Analysis of OCRL1 in Animal Models

OCRL1 is almost ubiquitously expressed in humans, absent
only from cells of hematopoietic origin (90). It is not
entirely clear why only certain tissues are affected by loss
of function mutations in OCRL1, but a major factor is
INPP5B, a related inositol 5-phosphatase (23). INPP5B
has a similar substrate preference to OCRL1, the same
domain organization, overlapping subcellular distribution
and shared interaction partners with OCRL1, although it
does not bind clathrin or AP2 (50,91). OCRL1 and INPP5B
are the only human 5-phosphatases with a RhoGAP-like
domain. All vertebrates appear to have both OCRL1 and
INPP5B, whereas ‘lower eukaryotes’ such as D. discoideum,
Drosophila melanogaster and Caenorhabditis elegans have
only a single homolog with a RhoGAP-like domain (64,88).
INPP5B is also widely expressed in human tissues (92),
and, based on the similarities it has with OCRL1, it
is reasonable to propose that INPP5B can compensate
for loss of OCRL1, i.e. these proteins are functionally
redundant in most cells within the body. However, another
explanation that is not mutually exclusive is that the
cellular processes dependent upon OCRL1 are of most
importance to the cell types affected in Lowe syndrome
and Dent-2 disease. In order to determine the extent to
which these two possibilities can explain the nature of the
symptoms seen in Lowe syndrome and Dent-2 disease, and
to define the underlying pathophysiological mechanisms,
several animal models have been developed. These are
described below.

Mouse
A knockout mouse for OCRL1 was generated in 1998, but
surprisingly failed to recapitulate the symptoms seen in
human Lowe syndrome and Dent-2 disease (92). Knockout
of INPP5B in mice also has little effect (apart from a male
sterility defect), but when both genes are knocked out, the
result is early embryonic lethality (92). This observation
strongly supports the notion that OCRL1 and INPP5B
can functionally compensate for one another in vivo.
Why the degree of compensation is greater in mice than
humans is unclear, but appears to be due to two factors:
higher expression levels of mouse INPP5B in the tissues
affected in humans, and unusual splicing of the mouse
INPP5B gene resulting in a slightly longer version of the
protein (92,93). Although the effect of this murine-specific
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splicing, which results in an extended N-terminal linker
domain, upon INPP5B function is unclear, confirmation of
its importance in vivo has come from analysis of a ‘human-
ized’ mouse strain expressing human INPP5B in a double
murine OCRL1/INPP5B knockout background (94). This
mouse displays reduced growth and a renal tubulopathy
similar to that seen in humans, with low-molecular-weight
proteinuria and aminoaciduria. Therefore, it represents
a good model to investigate the mechanisms underlying
the renal dysfunction in Lowe syndrome and Dent-2
disease. Interestingly, the mouse does not display ocular
or neurological defects, which may be a consequence of
the way it was generated, with BAC-driven expression
of human INPP5B resulting in a 5- to 10-fold greater
expression level than that of the endogenous murine
INPP5B (94). It will be interesting to observe the phe-
notype of a mouse expressing human INPP5B at a more
physiological level.

Zebrafish (Danio rerio)
OCRL1 and INPP5B are well conserved in zebrafish in
terms of sequence, domain organization and the presence
of the known protein interaction motifs (43). The tissue-
specific splicing of OCRL1 is also conserved in zebrafish,
with isoform a, which has better clathrin-binding ability
(37), expressed in all tissues, and isoform b expressed in all
tissues apart from the brain, as seen in humans (43). Both
OCRL1 and INPP5B are expressed during embryogenesis,
with maternal and zygotic transcripts observed in the initial
stages of embryonic development (43, Oltrabella et al.,
unpublished data). This implies a role for these proteins in
early development. A mutant zebrafish in which OCRL1
expression is attenuated by insertion of a retrovirus in the
promoter region has been generated (43). This mutant
displays neurodevelopmental defects including delayed
brain and eye development, with reduced cell proliferation
and increased apoptosis observed in the neural tissue. The
OCRL1 mutant also exhibits an increased susceptibility
to febrile seizures, and has cystic lesions in the brain,
with accompanying gliosis, both of which have been
observed in Lowe syndrome patients (33). The mechanisms
responsible for these neurological manifestations remain
to be determined, but rescue experiments in the mutant
line indicate an important role for clathrin binding,
suggesting that defective clathrin-mediated trafficking is
responsible (43). This could impact upon presynaptic

function through perturbation of synaptic vesicle recycling,
or postsynaptic function through altered trafficking of
neurotransmitter or growth factor receptors or their
downstream signaling components, which are essential
for neuronal survival and function. Evidence for the latter
comes from the reduced Akt signaling seen in the OCRL1
mutant (43). An alternative and not mutually exclusive
explanation for the neurodevelopmental defects is the
defective biogenesis or maintenance of cilia in the OCRL1
mutant.

Three independent studies have indicated a role for OCRL1
in ciliogenesis during zebrafish development (75–77).
These studies used depletion of OCRL1 by injection of
antisense morpholinos (75–77), with one study also using
the OCRL1 mutant described above (76). In two cases cilia
were fewer and shorter (76,77), whereas one study reported
longer cilia (75). In all cases there were morphological
defects consistent with defective cilia, namely a curved
body axis, smaller head and eyes, craniofacial malforma-
tion, reduced pigmentation, reversed heart looping and
cystic pronephros (embryonic kidneys). Based on these
observations, and because the organs affected in Lowe syn-
drome and Dent-2 disease are similar to those affected in
ciliopathies (brain, eyes and kidneys), it has been suggested
that Lowe syndrome and Dent-2 disease are a type of cil-
iopathy (75–77). However, the ocular and renal symptoms
of Lowe syndrome and Dent-2 disease (cataracts, glau-
coma and renal tubulopathy) are not typically observed in
ciliopathies, which usually result in retinopathy and renal
cysts, as well as additional defects not seen in Lowe syn-
drome and Dent-2 patients (liver disease, polydactyly and
situs inversus) (78). Hence, it is probably oversimplistic to
classify Lowe syndrome and Dent-2 as ciliopathies. Nev-
ertheless, it is likely that loss of cilia function contributes
to some of the pathophysiological manifestations of these
disorders.

Clearly INPP5B cannot fully compensate for loss of
OCRL1 in zebrafish, because depletion of OCRL1 alone
results in a phenotype. However, there does appear to be
overlapping functionality because morpholino-induced
depletion of INPP5B also results in a ciliogenesis defect,
with a phenotype similar to that seen in OCRL1 morphants
(95). Overexpression of INPP5B can also partially restore
the ciliogenesis defect of OCRL1 morphants, supporting
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the idea that both proteins function in ciliogenesis (76).
This raises the question of why loss of either protein gives
a phenotype. One possibility is that OCRL1 and INPP5B
are required for ciliogenesis in different cells, consistent
with the apparent localization of the proteins to distinct
cell types in the eye (95).

It has been proposed that defective endocytic trafficking
can account for the renal tubulopathy seen in Lowe
syndrome and Dent-2 disease (96). The multiligand
receptor megalin (also called LRP2) is abundant at the
apical pole of the proximal tubule and mediates the

retrieval of numerous low-molecular-weight proteins from
the renal filtrate (97) (Figure 4). Mutation of megalin
in humans causes Donnai–Barrow syndrome, which is
characterized by low-molecular-weight proteinuria similar
to that seen in Lowe syndrome and Dent-2 disease (98).
In both megalin-deficient mice and zebrafish there is a
profound apical endocytic defect in the proximal tubular
cells (99–101). In Dent-1 disease, which has the same renal
pathology as Lowe syndrome and Dent-2, there is also an
endocytic defect (102–104). Dent-1 disease is caused by
mutation of the endosomal chloride/proton antiporter
CLC5, which helps maintain endosomal pH and chloride

renal tubule lumen

endocytic
vesicles

vacuolar
endosome

lysosome

recycling
tubules

brush
border

A B

*

Wild-Type LS/Dent-2

Figure 4: Model for OCRL1 function in endocytic trafficking of megalin in the renal tubule. A) The multiligand receptor
megalin (purple helices) is abundant at the apical membrane of the epithelial cells lining the proximal tubule, where it binds to
low-molecular-weight proteins in the renal filtrate (green ovals). Megalin is internalized by endocytosis and delivered via endocytic
vesicles to the large vacuolar sorting endosomes found in this cell type. The low pH in the vacuolar endosome dissociates the megalin
ligands, which in most cases are delivered to the lysosome for degradation. Megalin is sorted into recycling tubules that bud from
the vacuolar endosome and deliver the receptor back to the plasma membrane for further rounds of endocytosis and recycling. B)
Upon OCRL1 deficiency, megalin trafficking is impaired. Recycling of megalin from vacuolar early endosomes to the plasma membrane
occurs less efficiently owing to aberrant accumulation of actin at the endosomal membrane. This results in endosomal accumulation of
the receptor and missorting to the lysosome. The reduced abundance of megalin at the plasma membrane is responsible for reduced
endocytosis of low-molecular-weight proteins from the renal filtrate, explaining the low-molecular-weight proteinuria seen in Lowe
syndrome and Dent-2 disease.
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levels (30, 102–105). Knockout of CLC5 in mice causes
impaired recycling of megalin from endosomes to the
plasma membrane, explaining the failure to internalize
proteins from the renal filtrate (102,103).

Defective endocytic trafficking of megalin could therefore
explain the low-molecular-weight proteinuria in Lowe
syndrome and Dent-2 disease (Figure 4). Studies in tissue
culture cells are consistent with this hypothesis (57),
and recent work in our laboratory using OCRL1 mutant
zebrafish has shown that OCRL1 does indeed play a role in
endocytic trafficking within the renal tubule (Pietka et al.,
unpublished data). There is reduced endocytosis from the
renal filtrate in OCRL1 mutant embryos, and an accom-
panying mislocalization of megalin within the endocytic
pathway. These defects are independent of effects upon
cilia, indicating that it is the endocytic function of OCRL1
that is important for the renal tubulopathy phenotype. The
mechanisms underlying the endocytic defect within renal
tubules remain to be determined, but dysregulation of
endosomal actin resulting in impaired receptor recycling
may be responsible, as shown in vitro (57).

Dictyostelium discoideum
The slime mold D. discoideum contains a single
OCRL1/INPP5B homolog called Dd5P4 (64). Deletion of
this gene results in a defect in phagocytosis (64). Whether
other cellular processes are also affected in this organism
remains to be determined. It is interesting to note that D.
discoideum does not appear to have homologs of the two
known F&H domain proteins APPL1 and IPIP27, yet the
binding interface for the F&H motif is conserved in Dd5P4
(53). This suggests that additional F&H domain proteins
exist in this species that may also be conserved in higher
eukaryotes.

Other models
Although the established model organisms D. melanogaster
and C. elegans both contain a single OCRL1/INPP5B
homolog (64,88), they have so far not been used to
explore the in vivo functions of this protein. However,
the presence of only a single homolog is likely to
prevent the redundancy that occurs in vertebrate models,
making these attractive model organisms for such
analysis. Future studies in these organisms are therefore
likely to yield important information on the in vivo

functions of both OCRL1 and INPP5B. Studies in
other eukaryotes with a single OCRL1/INPP5B homolog
are also likely to prove informative. For example, the
Trypanosoma brucei OCRL1 homolog (TbOCRL) is the
only RhoGAP-like protein in this organism, pointing to
an important evolutionary conserved function for the
protein (106).

A Single Mechanism for Lowe Syndrome
and Dent-2 Disease?

The wide array of interaction partners for OCRL1 and the
multitude of cellular functions affected by loss of OCRL1
function make elucidating the mechanisms underlying
Lowe syndrome and Dent-2 disease a complex task. This is
further compounded by the redundancy with INPP5B and
the likelihood of other so far unknown genetic ‘modifiers’
that impact upon the severity of the phenotype. Defects
in cilia formation and function are likely to contribute to
the pathophysiological manifestations of Lowe syndrome
and Dent-2 disease, but, as described above, are unlikely
to be the sole cause. Defective endocytic trafficking is
also likely to contribute to the phenotype, certainly in
the proximal tubule. It is interesting that the cell types
affected in Lowe syndrome and Dent-2 disease (neurons,
proximal tubular cells and lens epithelial cells) have high
intrinsic rates of endocytosis, which may make them more
sensitive to loss of OCRL1 function. Conversely, these
cell types are also polarized, suggesting that defective cell
polarity is important, although evidence for this in vivo
is currently lacking. However, there are many other cell
types in the body that have high endocytic rates or that
are polarized, which remain unaffected in Lowe syndrome
and Dent-2 disease. Hence, it is likely a combination of
factors that determine the Lowe syndrome and Dent-
2 phenotype. These include redundancy with INPP5B,
which is likely to vary between cells, and the particular
requirement of cell types in the body upon the various
cellular processes that are affected by loss of OCRL1. As
loss of OCRL1 affects a number of cellular processes, it is
possible that rather than having a single underlying cellular
basis, the disease phenotype reflects a manifestation of
several cellular defects. A careful approach will be required
to properly address this issue, combining cell biology with
studies in animal models.

482 Traffic 2014; 15: 471–487



Cellular and Physiological Functions of OCRL1

Conclusions and Future Directions

Studies on OCRL1 indicate that a loss of a single
phosphoinositide-metabolizing enzyme can impact
upon a large number of cellular processes. Moreover,
studies in animal models indicate that loss of OCRL1
can affect different tissues in apparently different ways.
Thus, although Lowe syndrome and Dent-2 disease are
monogenic disorders, deciphering the disease mechanisms
is far from trivial. Nevertheless, through the combination
of careful cell-based experiments combined with the
generation of animal models significant progress has been
made. It is likely that the continued application of both
approaches will lead to new discoveries relevant not only
to OCRL1 and Lowe syndrome/Dent-2 disease but also our
understanding of cellular and organismal physiology as
a whole.

Our improved understanding of OCRL1 biology and
the development of animal models should lead to the
better design of and improved screening for potential
therapeutics to treat Lowe syndrome and Dent disease.
A recent example of a rationally designed compound is
provided by PHDM (small-molecule PH domain mimetic),
which can sequester cellular PtdIns(4,5)P2 and attenuate
PtdIns(4,5)P2-dependent processes such as endocytosis
and actin dynamics (107). The further development of
this compound and other compounds that influence
cellular PtdIns(4,5)P2 levels may prove a useful strategy to
develop new therapeutics. Moreover, the ability to screen
compound libraries both at the cellular and organismal
level should prove beneficial, providing that robust and
specific assays for high-throughput analysis of OCRL1
function can be developed (108,109). The development of
such assays should pave the way for identification of novel
potential treatments for both Lowe syndrome and Dent-2
disease.
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