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Abstract
Background: Text-mining can assist biomedical researchers in reducing information overload by
extracting useful knowledge from large collections of text. We developed a novel text-mining
method based on analyzing the network structure created by symbol co-occurrences as a way to
extend the capabilities of knowledge extraction. The method was applied to the task of automatic
gene and protein name synonym extraction.

Results: Performance was measured on a test set consisting of about 50,000 abstracts from one
year of MEDLINE. Synonyms retrieved from curated genomics databases were used as a gold
standard. The system obtained a maximum F-score of 22.21% (23.18% precision and 21.36% recall),
with high efficiency in the use of seed pairs.

Conclusion: The method performs comparably with other studied methods, does not rely on
sophisticated named-entity recognition, and requires little initial seed knowledge.

Background
The volume of published biomedical research, and there-
fore the underlying biomedical knowledge base, contin-
ues to grow. The MEDLINE 2004 database is currently
growing at the rate of about 500,000 new citations each
year [1]. With such growth, it is challenging to keep up-to-
date with all of the new discoveries and theories even
within one's own field of research. Methods must be
established to aid biomedical researchers in making better
use of the existing published research and helping them
put new discoveries into practical use [2].

Text mining and knowledge extraction are ways to aid bio-
medical researchers in identifying important connections
within information in the biomedical knowledge base. A
subset of natural language processing (NLP), text mining

and knowledge extraction concentrate on solving a spe-
cific problem in a specific domain identified a priori. For
example, literature searching may be improved by identi-
fying all of the names and symbols used in the literature
to identify a particular gene [3], or potential new treat-
ments for migraine may be determined by looking for
pharmacological substances that regulate biological proc-
esses associated with migraine [4,5].

Similar to acronym and abbreviation extraction, which
has been studied by several groups [6-8], the problem of
gene and protein name synonymy is one that can be
addressed with the aid of text mining. Many genes and
proteins have multiple names with several orthographic
and lexical variants. Gene names are often not used con-
sistently, and new names continue to be created [9,10].
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Many attributes of a gene, such as its phenotypes and pol-
ymorphisms, may lead to it being given several names
over time. Also, genes may have names that are later
retracted when new information becomes available [11].

While databases of gene names exist, they have several
limitations. Gene name databases such as FlyBase [12]
and Genew [13] are restricted to a single species (fruit flies
and humans, respectively). LocusLink includes genes and
names for several species, but does not attempt to include
all names, symbols, and lexical variations that refer to a
gene. The Genew database was created by the Human
Genome Organisation for the purpose of establishing an
approved set of unique gene names and symbols for every
gene in the human genome [14]. However, Genew is
focused on creating the set of gene names recommended
for use in biomedical writing. It is not intended to be a
complete collection of the gene names and symbols actu-
ally used in the biomedical literature [15].

Since the gene names and symbols used in a journal arti-
cle are fixed once published, later correction of improper
names does not affect the prior published literature.
Therefore, the name space representing a gene can
become quite large between the time a gene is first sus-
pected and when it is well studied and has a universally
agreed upon name. In addition, gene and protein names
overlap. They are often used in place of one another
within the literature, with the intended gene or protein
being dependent upon context. When conducting a litera-
ture review, it is useful to search for both gene and protein
names simultaneously [9]. Therefore in this work we
make no distinction between names of genes and the
names of the proteins for which they encode.

An automatically generated list of synonyms would be a
useful aid in searching the biomedical literature. These
could then be used to improve the recall of genomics
investigators trying to find all known information on a
gene or protein, regardless of the name or names used in
a specific article, although a decrease in precision may
result in cases where some of the symbols are shared by
multiple genes. An automatically generated list of name
synonyms would also be useful in further work on extract-
ing other genomics information from textual sources [16].
To make efficient use of the available data when mining
the biomedical literature for relationships, it is important
to recognize differing names for identical concepts and
treat these as a single concept [17].

The basic idea of name synonym extraction is to automat-
ically extract synonymous names for a given concept from
natural language text. In this case, the goal is to extract the
names and symbols referring to an individual gene from
MEDLINE abstracts. There is significant prior work in this

area, done over the last five years by Yu and Agichtein. Yu
[18] first worked on gene name synonym extraction with
a system that extracted gene name synonyms based on
manually identified patterns in which gene name syno-
nyms commonly occur. Domain experts were used to
identify common patterns. Yu et al. estimated the preci-
sion of their system to be approximately 71%. Recall
measurements were not published.

Yu and Agichtein [3] then worked together to combine
several gene and protein name synonym text-mining
approaches. Their best single system, a pattern-based sys-
tem named Snowball, was based on Brin's Dual Iterative
Pattern Expansion (DIPRE) system for the Web [19],
which had previously been adapted for extracting rela-
tionships from large text collections [20]. A small set of
initially known facts is used to find the patterns in which
these facts occur within a large corpus. Then these patterns
were used to extract more facts, which in turn were used to
find more patterns.

Yu and Agichtein combined four approaches, including
Snowball, and GPE, a system based on labor-intensive
manually created patterns and heuristic rules, into a single
system, by computing the overall system confidence in
each synonym pair. The overall confidence measure for
the Combined systems was defined as one minus the prob-
ability that all of the other systems are incorrect, which is
the product of one minus the individual confidences.
They found that the Combined approach worked better
than any individual approach, producing a recall of about
80% with a precision of about 9%.

Automatic gene and protein synonym extraction systems
have not been put into general use, perhaps because the
current level of performance is inadequate for many pur-
poses. It is therefore important to investigate alternative
and complementary approaches. Additionally, since the
primary work in this area has been done by a single group
of investigators, it is essential that other researchers inves-
tigate this problem to verify the reproducibility of the
results.

Results
Running our system on the test collection for 9 iterations
took approximately 14.5 hours on a 1.7 GHz Pentium 4
with 512 M of RAM. For rapid prototyping the system was
implemented in Python, an interpreted language. It is
expected that recoding in a compiled language could sub-
stantially reduce the execution time.

The experiment produced two kinds of results: perform-
ance measures and error analysis. The performance meas-
ures summarize the quality of the extracted information.
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Error analysis provides insight into the strengths and
weaknesses of the approach.

Performance measures
System performance was measured using the precision,
recall, and F-score of the extracted set of synonym pairs, as
well the absolute and relative number of correct pairs
extracted, cumulative for each iteration. Precision is
defined as the number of correct pairs, divided by the
number of pairs extracted. Recall is defined as the number
of pairs extracted that are also present in the recall gold
standard, divided by the number of pairs in the recall gold
standard. The F-score is the harmonic mean of precision
and recall, defined as 2*precision*recall / (precision +
recall) [9].

Figure 1 shows precision versus recall of the extracted syn-
onym pairs, starting with the first iteration at the left-most
point and continuing to the 25th iteration at the right-
most point. The graph includes plots of both FOUND
pairs (synonym pairs explicitly found in the text by the
patterns), as well as FOUND plus INFERRED synonyms
(pairs inferred by the graph traversal algorithm). The first
iteration achieved a precision of about 25.0%, at a recall
of about 6.2%. Precision declines and recall increases
practically monotonically over the 24 following iterations
to a high recall of about 27.3%, and a precision low of
5.9%.

Precision versus recall over all iterationsFigure 1
Precision versus recall over all iterations.
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Figure 2 presents the F-score at each iteration, and again
the graph includes plots of both FOUND synonyms as
well as FOUND+INFERRED. The maximum F-score of
18.35% for FOUND+INFERRED occurs at iteration 9
(precision 16.18%, recall 21.33%), gradually falling off
during subsequent iterations. The use of inference does
not greatly impair the algorithm's overall accuracy (as
measured by the F-score) until approximately iteration
15.

The absolute number of correct pairs extracted is pre-
sented in Figure 3. Including pairs identified using the
inference capability of the network consistently found
more pairs than not using the inference capability. At the
maximum F-score the system using FOUND+INFERRED

synonyms extracted 539 correct synonym pairs, including
only the FOUND pairs yielded 479 synonym pairs. The
approximately 10% (12.5% at iteration 9) difference in
extracted pairs is fairly consistent across all iterations after
the initial iteration.

Figure 4 compares the results of our system with those of
Yu and Agichtein's Snowball (their best automated pattern-
based approach) and Combined (their best overall
approach) systems, interpolated from published graphs.
The maximum F-score we obtained is comparable with
that of Snowball (16.77%, precision 52%, recall 10%), but
less than that of the Combined system (30.24%, precision
62%, recall 20%). The combined system of Yu and Agich-
tein had superior performance to any single method.

F-score versus iterationsFigure 2
F-score versus iterations.
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Another useful measure of system performance is the
amount of knowledge extracted per unit of instance
knowledge input to the system. This can be interpreted as
a measure of how efficiently the algorithm uses the seed
data. Figure 5 compares the number of correct extracted
pairs to the number of seeds used by our system and those
of Yu and Agichtein. Results are shown at the point of
maximum F-score in order to provide a consistent com-
parison. Our system used 8 seed pairs, and 539 correct
synonym pairs were extracted. The Snowball and Combined
systems used 650 seed pairs and extracted 700 and 950
correct synonym pairs respectively. The number of correct
pairs divided by number of seeds used gives a ratio of
67.38 for our method, with the other systems having
much smaller ratios of 1.08 and 1.46 respectively. The
Snowball and Combined systems may not have actually

required all 650 seed pairs given as input. However, peak
performance of these systems was achieved after only two
iterations, implying that the large number of seeds had a
substantial influence on the reported results. Further
study on the Snowball and Combined systems is needed is
determine how many seed pairs are actually required.

Error analysis
Two kinds of errors were studied, precision errors and
recall errors. Precision errors occurred when the algorithm
extracted symbol pairs that were later not verified as
synonyms by the precision gold standard data set. These
are false positives. Recall errors occurred when the algo-
rithm failed to extract symbol pairs present in the recall
gold standard data set. These are false negatives. Errors
were studied at the point of maximum F-score, iteration 9.

Number verified pairs versus iterationsFigure 3
Number verified pairs versus iterations.
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Recall error analysis
Recall errors were categorized into two pre-defined and
mutually exclusive categories, No matching pattern, and
Pattern not accepted. The No matching pattern error category
included all recall errors for which the pattern generation
routines failed to identity a pattern that matched the given
pair in the abstract text. Pattern not accepted errors included
those recall errors for which a matching pattern was
found, but the matching pattern or patterns were not
accepted during the pattern selection optimization step.
Using a random sample of 100 false negatives, the major-
ity, 65%, were attributed to the system failing to generate
a pattern that matched the recall synonym pair. The
remaining 35% of recall errors were due to matching pat-
terns not being accepted by the pattern optimization step.

Some of the recall errors identified as No matching pattern
may be fixable using a more flexible matching algorithm.
In the current system, exact word matching is required of
surrounding and intervening words. Small variations in
contextual words may have made the algorithm fail to
extract a synonym pair that could have been found with
more flexible pattern matching. For example, our system
treats the patterns "$GENE$($GENE) gene" and
"$GENE$/$GENE gene" as completely separate patterns.
A more flexible "fuzzy" matching system could allow a
pair of gene names followed by the word "gene" to be
treated as variants of a single pattern. This approach
requires additional tuning to determine how close is
"close enough" for a fuzzy match.

Verified F-score comparison with work of Yu and AgichteinFigure 4
Verified F-score comparison with work of Yu and Agichtein.
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Other recall errors identified as No matching pattern may
be unavoidable in an approach such as ours if the error
arises from a synonym pair that only occurs within text
pattern not used by any other synonym pair, that is, the
text surrounding the synonym pair is unique. This can
happen when the synonyms are close together in the text,
or when many words separate the synonyms in the text.
Because they are long, these patterns will most often be
unique. For example, the pair (AHC, NR0B1) is only
found in two places in the test collection, in both cases
separated by many unique words:

DAX1 encoded by NR0B1, when mutated, is responsible
for X-linked adrenal hypoplasia congenita (AHC). [21]

Mutations in DAX1 [dosage-sensitive sex reversal-adrenal
hypoplasia congenita (AHC) critical region on the X chro-
mosome gene 1; NR0B1] cause X-linked AHC, a disease
characterized by primary adrenal failure in infancy or
childhood and reproductive abnormalities later in life.
[22]

Precision error analysis
Precision errors were categorized by first reviewing a small
random sample of 20 errors. From this pilot set of errors,
a set of mutually exclusive precision error categories was
determined by inspection. The resulting set of six error cat-
egories was then applied to an additional random sample
of 100 precision errors. The six categories of precision
error and the proportions found were:

Number seeds, verified pairs extracted, and extraction efficiencyFigure 5
Number seeds, verified pairs extracted, and extraction efficiency.
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(1) Not a gene name (28%). One or both symbols were not
the name of a gene, allele, mutation, or gene family. For
example, in the pair (GLN, HBD-2) GLN is an abbrevia-
tion for the amino acid glycine.

(2) Partial gene name (9%). One or both symbols were
part of an incompletely extracted gene name pair. For
example in the pair (MAPK, P38), MAPRK1, and MAPK2
are synonyms of P38.

(3) Biochemically related (48%). Two different genes that
have been reported to interact within the context of a bio-
chemical mechanism, or, names for two distinct genes
from the same functionally related family. For example in
the pair (IGFI, IGFII) the genes are both members of the
family of insulin-like growth factors, and in the pair (BCR,
ABL1) the fusion of the BCR and ABL1 genes has been
found to be a "recurrent aberration in B cell precursor
leukemia cells" [23].

(4) Unrelated genes (3%). Two complete gene names but
we were unable to establish family or biochemical rela-
tionship by reviewing the test data set or MEDLINE. For
example in the pair (ARC, CH3) the names are both
genes, and were not found to co-occur in the literature.
This error is most likely caused by the inference of syno-
nyms from other synonym pairs.

(5) Mutation variants (5%). Two mutation names for the
same gene but nonspecific for that gene. These are allele
or mutation names that are generic and/or only used
within a single abstract. For example, the allele A1, or the
pair (CYS106ALA, CYS7ALA).

(6) Correct (7%). A correct gene synonym pair not
included in the gold standard dataset, found later during
error analysis by abstract review.

By far, the most commonly occurring error was a pair of
gene symbols being chemically or biologically related but
distinct, non-synonymous entities. These errors
accounted for 48% of the total. The next most common
error, occurring 28% of the time, resulted when one or
both of the extracted pair of symbols were not a gene or
protein name or symbol. The remaining errors were much
less common.

Incorporation of error analysis into performance results
About 7% of precision errors were later determined to be
false negatives, that is, the synonym pair was determined
by manual inspection of the literature to be correct but
was not part of the gold standard data set. Incorporating
this proportion of additional correct synonym pairs back
into the performance measures previously shown results
in an estimated precision of 23.18% and an estimated

peak F-score of 22.21%. A comparison of this perform-
ance estimate with prior work is shown in Figure 6.

Discussion
Our results demonstrate that this method compares well
to other automated methods of synonym extraction and is
a useful general approach to knowledge extraction. The
method is highly efficient in its use of seed pairs. This may
be an advantage in situations where large numbers of seed
pairs are difficult or expensive to collect.

During training, it was determined that using eight initial
seed pairs was adequate. It was observed that the perform-
ance was largely stable for different initial numbers of
seed pairs between 8 and 32. This suggests that an initial
"critical mass" of seed pairs was necessary to get the proc-
ess started. Beyond the critical number, the algorithm
automatically found additional common seeds. Including
additional common synonym pairs as seeds simply gave
as input high confidence pairs that the algorithm could
find on its own.

Optimizing the network structure based on the quality
metric of the overall network MCC/MNCC (see Methods
section) ratio was an effective way to pick the best text pat-
terns for gene synonym pair extraction. Using the sym-
bolic network to support inference of synonym pairs
improved both the recall as well as the absolute number
of synonym pairs discovered, consistently finding approx-
imately 10% more verified pairs. While there was some
loss in precision for these additional pairs, the cost was
modest until well past the peak F-score iteration. The
inference capability added to its utility as a tool in knowl-
edge discovery, and helped extract additional synonym
pairs beyond those found strictly in the text.

One way to improve system performance would be to
reduce the very common Biochemically related errors by fil-
tering the results to remove known associated gene pairs.
There are several on-line databases of gene relationship
networks [24,25], and the information in these databases
could be used as evidence of the genes being distinct and
non-synonymous. While it is unlikely that this filtering
could remove all of the false positives from this large
source of error, the improvement is likely to be significant.

The relative frequencies of the two types of recall errors
present evidence suggesting a general observation about
pattern-based text relationship mining systems. Two-
thirds of the recall errors were due to the system not hav-
ing discovered a pattern that matched the non-recalled
pair, and only one-third of errors were due to the system
having found a matching pattern, rejecting it based on the
network metric criteria. The current system used a large
number of very specific patterns based on the text
Page 8 of 15
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surrounding high confidence gene symbol pairs. The
Snowball system used more flexible patterns, allowing
"fuzzy" matching based on the relative importance of
word in a pattern. The two different systems performed
similarly, which may be due to some inherent limitation
of the pattern-based approach to uncovering gene syno-
nym relationships. The textual context of interesting bio-
logical relationships may not be specific enough to
significantly improve performance. Certainly, more work
is needed in this area before drawing strong conclusions.

Since there is no standard test collection for gene symbol
synonym extraction research and no absolute gold stand-
ard for recall, the recall standard used was an approxima-
tion. The method of constructing a recall standard used in
this work facilitated comparison with prior work in the

field. However, it was by nature a biased sampling
method, and does not completely characterize the recall
capabilities of current knowledge extraction systems as
compared to manual expert review.

The full text test collection previously used by Yu and
Agichtein was not publicly available. Major limitations of
our study include the lack of a widely available full text
test collection of adequate size and the inability to use the
same test collection as previous investigators. MEDLINE
abstracts were used because they are plentiful and readily
available. While prior investigators have stated that full
text articles are better sources data for the extraction of
gene name synonyms [18], it was encouraging to find that
applying our method only to the article abstracts pro-
duced comparable results.

Estimated F-score comparison with work of Yu and AgichteinFigure 6
Estimated F-score comparison with work of Yu and Agichtein.
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The performance of the current system is limited some-
what by the simple orthographic approach used for
named-entity recognition (NER). Gene names and sym-
bols were required to be a single string delimited by spaces
and other punctuation characters. Not all gene names fit
this description, although the gene name pairs extracted
for the recall gold standard from SWISSPROT met this
requirement. Precision error analysis showed that approx-
imately 28% of precision errors were due to a non-gene or
protein symbol being treated as a gene or protein. Another
9% of precision errors were due to an incomplete portion
of a gene symbol being identified as a gene symbol. These
two categories together represent failure of named entity
recognition (NER) and account for 37% of precision
errors. Current state-of-the-art F-score performance of bio-
logical named-entity recognition is approximately 80%
[26]. Using this number as the measure of performance, it
can be estimated that the maximum improvement that
could be obtained by incorporating a state-of-the-art gene
and protein named-entity recognizer into the system
would decrease these errors 20%, and increase the preci-
sion at the peak F-score to 27%. The actual improvement
is likely to be less than the maximum if the NER system
makes use of the same contextual information used by the
synonym extraction system.

There are many other potential applications of our general
approach to mining the biomedical literature. Many inter-
entity relationships, such as enhance/inhibit relations
between drugs, biological substances, and diseases, and
the promoter/suppressor relationships between genes
could be modeled as graph structures and appropriate
metrics created to measure the relevant network proper-
ties. Multiple separate networks can be created simultane-
ously and then used together during the logical inference
step to extend the approach to multiple types of entities
and multiple types of relationships between those enti-
ties. Further work is necessary to determine whether
extracting enhance/inhibit and other functional relations
from biomedical text is amenable to our approach. Auto-
matic extraction of complex functional relationships is
likely to be more complex than the extraction of
synonyms.

Perhaps the most exciting application for the network-
based approach is in mining the biomedical literature for
hypothesis generation, such as that done manually by
Swanson [27], and automatically by others [28,29]. While
the Swanson approach is limited to relations between
three entities, the network approach can support practi-
cally limitless intermediate inferences, limited largely by
the confidence in the individual relationships. Future
refinements will have to go beyond the simple method
used in the current work to determine which relationships
are strong enough to support inference. The chain of infer-

ence can be modeled as a confidence path with each link
reducing the confidence in the entire path by a fraction
based on the uncertainty of the relationship.

Having the ability to infer useful hypotheses across several
intermediate relationships has the exciting potential to
accelerate the rate of medical progress and focus efforts on
the most promising prospects. With the biomedical
knowledge and the corresponding bibliome growing at an
exponential rate, the raw material exists for computer
assisted hypothesis generation. Further work on text min-
ing and knowledge extraction will be necessary in order to
better understand the problems to which it can be most
usefully applied, as well as the means to evaluate these
systems in order for text mining and knowledge extraction
to realize its full potential.

Conclusion
These results support the conclusion that our method is
useful in extracting gene and protein name synonym rela-
tionships from biomedical literature abstracts. The current
system could be improved by incorporating state-of-the-
art NER, and by including additional domain knowledge
from richer data sources such as full text articles, and gene
network databases which could provide data for negative
examples. Use of negative examples could be
incorporated into our approach by adding a penalty for
extracting negative examples to the genetic optimizer eval-
uation function.

While performance is not as good as the best combined
approach of other investigators, it is as good as the best of
the individual methods. With more accurate NER, as well
as post-filtering using knowledge contained in online
databases, the system may perform even better. Data sets
and gold-standard files used in this work are available for
download at [30].

Methods
In this section we present our gene and protein synonym
extraction algorithm, and our evaluation methods.

Algorithm
We approached the problem of gene and protein name
synonym extraction as a problem in mathematical net-
work analysis. In the network, nodes are gene and protein
names and symbols, and edges are labeled with the
number of times the connected names have occurred in a
text source together (i.e., the co-occurrence count). An ini-
tial set of synonym pair "seeds" is used to search through
the text corpus for text patterns in which those synonym
pairs occur. Occurrences of gene and protein names are
replaced with a regular expression that matches a wide
variety of possible gene and protein names. This regular
expression is designed to have high recall for single word
Page 10 of 15
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gene and protein names and symbols, at the expense of
low precision. Then these patterns are matched against the
corpus, extracting text patterns that include co-occur-
rences between pairs of names that are potential syno-
nyms. The name co-occurrences extracted by the patterns
are used to construct a gene name synonym network, and
this network is mathematically analyzed to determine the
combination of patterns that produces the strongest set of
synonyms. The new synonyms with the highest confi-
dence are then used as seeds in the next iteration of the
algorithm. This process can be repeated for a set number
of iterations, or until no new high confidence synonym
pairs are found.

The regular expression used to identify gene and protein
names is very non-specific: ([^\s,/
%<>;+&()=\[\]\?\$\'\"]{3,14}). The pattern excludes
some punctuation and other special characters, but allows
letters, numbers, as well as the period and colon charac-
ters. Gene and protein names are required to be between
3 and 14 characters long. The system then applies a set of
heuristic rules to further screen out non-gene names. The
name must not be in a stop list of words and patterns
found during system development to be confused with
gene and protein names (e.g., "RNA", "DNA", ".com").
The name may not begin with a digit, dash, colon, period,
or asterisk, and may not end with a dash, period, or colon.
Furthermore, the name may not contain only lowercase
characters. All uppercase, a mix of upper and lowercase
characters, or a combination of letters and numbers is
required. These rules favor recall over precision.

The synonym text patterns are extracted from the text sur-
rounding a pair identified synonyms. The system requires
the synonym pairs to be within 4 words of each other, and
includes zero or one words to either side of the synonym
pair. For example, if (CIP1, WAF1) is an initial seed pair,
and the text corpus includes the sentence:

Two percent or greater nuclear staining with WAF1/CIP1
monoclonal antibody was determined by hazard ratio
analysis to constitute positive p21 expression. [31]

Then the system will extract the following patterns, where
$GENE$ stands for the gene and protein name matching
regular expression:

• $GENE$/$GENE$

• with $GENE$/$GENE$

• $GENE$/$GENE$ monoclonal

• with $GENE$/$GENE$ monoclonal

These patterns can then be applied to the text corpus to
find name co-occurrences. For example, using the pattern
with $GENE$/$GENE$, the system will extract the co-
occurrence pairs (CARD15, NOD2) and (MMAC, PTEN)
from the following sentence fragments found in the cor-
pus respectively:

Of the children with NOD2/CARD15 variants...[32]

Human glioma xenografts treated with PTEN/MMAC
gene transfer exhibited...[33]

Given a set of patterns and the set of co-occurrences found
by each pattern, the algorithm selects the best combina-
tion of patterns by evaluating the structure of the network
created by the co-occurrences. The metric used to compare
network structures is based on clustering coefficient
measures [34]. A pattern is required to occur in the text a
minimum of four times. The assumption is made that
good synonym co-occurrence networks will have many
separate, internally tightly linked clusters, since synonyms
of synonyms should also have co-occurrences in the net-
work. Figure 7 pictorially shows high versus low clustering
co-occurrence networks.

The quality of a co-occurrence network is taken to be the
ratio of the mean clustering coefficient (MCC) over the
mean non-clustering coefficient (MNCC), and is com-
puted as:

quality = MCC / MNCC  (3)

Representation of high and low clustering co-occurrence networksFigure 7
Representation of high and low clustering co-occurrence 
networks.

A

High Clustering

B

Low Clustering

A

High Clustering

A

High Clustering

B

Low Clustering

B

Low Clustering

MCC
C cmb n c

w a b
c n c a b n c a b

= × ( )
∀ > ∀ ∈ ≠

∑ ∑1 1
2

1
1 ( ( ) , )

( , )
| ( ) , ( )

MNCC
C n c C n c

w a b
c C a n c b n c

=
× −( ) × ( )

∀ ∈ ∀ ∈ ∀ ∉
∑ ∑1 1

2
( ) ( )

( , )
( ), ( )
Page 11 of 15
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:103 http://www.biomedcentral.com/1471-2105/6/103
where C is the number of nodes in the network, n(c) is the
list of neighbors for node c, w(a,b) is the number of co-
occurrences seen between a and b, and cmb(m, n) is the
standard combination function giving the number of
combinations of m items taken n at a time. The minimum
quality score is zero, the maximum is open ended and
depends upon the number of nodes in the network and
how interconnected they are. It is possible that a simpler
measure could also work, however using MCC alone was
considered but rejected because it favors larger lightly con-
nected networks over smaller highly connected networks.
The MNCC takes into account the size of the network and
the number of nodes not connected to a given node. Note
that MCC is only defined for nodes with two or more
neighbors. A simpler measure of summing the weights for
all the shared neighbors was considered, but not imple-
mented. Analytically, it appears to give too much weight
to a single very common synonym pair that is falsely con-
nected to the node being measured. Computing the MCC/
MNCC of the node pair averages the inter-connectivity
across all the nodes connected to a pair of nodes, and
therefore should be more accurate for groups of pairs syn-
onymous to each other.

Finding the set of patterns which produce the network
with the highest quality measure is a combinatorial opti-
mization problem; the co-occurrences found by each pat-
tern can either be included in the network or not. One of
the best methods of solving this type of problem uses a
genetic algorithm to optimize the combination of pat-
terns chosen. We have chosen a variation of the canonical
genetic algorithm that uses rank-order-based selection
pressure [35,36]. It is used simply as a combinatorial opti-
mizer. This variation was chosen because it works well
and is easy to implement. Other genetic algorithm vari-
ants likely would perform just as well.

Once the set of patterns and their associated co-occur-
rences are chosen, the algorithm extracts synonym pairs
from the co-occurrence network. This is done using a
graph traversal algorithm much like Dijkstra's shortest
path algorithm [37], and extracts synonym pairs explicitly
found in the text as well as those that can be inferred by
following the synonym relationships represented by the
edges in the network. For example, if A is a synonym of B,
and B is a synonym of C, then A is likely a synonym of C.
During system training it was found to be best to restrict
inference to network edges that had co-occurrence counts
of 2 or greater.

In order to proceed with another iteration of the algo-
rithm, the best synonym pairs must be chosen to use as
seeds in the next iteration. Confidence in individual syn-
onym pairs is determined using two network-based met-
rics. First, the overall confidence in a synonym pair with a

given co-occurrence count n is estimated by computing
the probability of seeing less than that occurrence count in
a random graph with the same number of nodes and
edges. This is computed as:

where M is the total number of co-occurrences, N is the
number of nodes in the network, and µ = N/M. During
training it was found that a confidence threshold of 0.999
gave the best results.

Synonym pairs with confidence greater then the threshold
are then ordered by another network-based metric that
measures the local clustering for the pair of nodes repre-
senting the synonym pair. The individual node clustering
(CC) non-clustering (NCC) coefficients are computed,
resulting in a local clustering metric (LCM) for each syno-
nym pair:

Patterns are then extracted from the text using the high
confidence synonym pairs as seeds, choosing the highest
local clusterings first. The number of patterns to evaluate
at each iteration was limited to 150, which was found to
balance the quality of the results with the need to make
the combinatorial optimization step solvable in a reason-
able amount of time.

Figure 8 illustrates the overall algorithm. The iterative pat-
tern matching part of the algorithm is, like Snowball, based
on the DIPRE approach of Brin. The novel parts of the
algorithm presented here include the use of network-
based metrics for evaluating the quality of patterns and
synonym pairs, the use of a genetic optimization algo-
rithm to determine the optimal set of patterns to use in
extracting gene name synonyms, and the use of graph-
based inference to infer synonym pairs not found explic-
itly in the text corpus.

Experimental design
The experiment was performed in three steps. The first
step was to develop and refine the algorithm detailed in
the previous section on the training and validation data
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sets. Next, the algorithm was run on the MEDLINE records
in the test set. Lastly, the quality of the extracted synonym
list was evaluated by validating the synonymy of each
extracted pair against a gold standard and then computing
performance metrics.

Data sets
The training, validation, and test data sets used in this
experiment consist of sentences extracted from approxi-
mately 50,000 abstracts from a year's worth of MEDLINE
records containing the word "gene" for each set. Abstracts
from 2001, 2002, and 2003 served as training, validation,
and test sets, respectively. After downloading the
MEDLINE records from PubMed, the records were parsed
to extract the abstract field. The abstracts were then sepa-
rated into sentences using a simple, lexically based sen-
tence boundary detection algorithm. Finally, the
sentences were screened to remove non-contributing sen-
tences. These were sentences that did not contain at least
two words that matched the gene and protein name regu-

lar expression discussed previously. This resulted in the
three data sets used in this experiment each consisting of
about 145,000 sentences each.

The training set was used for system development, debug-
ging, and parameter tuning, as well as for choosing the
initial set of seed synonym pairs. The validation set was
used to verify the system and ensure that the chosen
parameters worked as expected on multiple data sets. The
test set was used to produce the experimental results.

Gold standards
Calculation of performance metrics for the experiment
required gold standards for both precision and recall.
Gene name synonyms available in on-line genomics data-
bases served as the basis for both gold standards.

The approach used to create the precision gold standard
consisted of downloading several genomics databases
available on-line, extracting out the name, alias, and syn-

Synonym extraction algorithmFigure 8
Synonym extraction algorithm.
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onym fields, and combining them into a single gold
standard for use in the computation of precision. The
database snapshots that we used to construct our gold
standard consisted of: SWISSPROT downloaded on 12/
10/2003, FlyBase, Genew, and LocusLink, downloaded
on 1/12/2004, and the MGI, and SGD databases down-
loaded on 1/22/2004.

The online databases do not contain all synonyms in
common use. Orthographic variations (e.g., "WAF1" and
"WAF-1") are often missing. Therefore during training
and validation extracted candidate synonym pairs that
were not found in the precision gold standard were man-
ually reviewed for pairs that were likely to be correct (e.g.
"CONNEXIN32" and "CX-32"), and these pairs were
checked by reviewing MEDLINE for supporting informa-
tion in the titles and abstracts. Manually verified pairs
were added to the precision gold standard for use in scor-
ing the results from the test data.

Creation of the recall gold standard was more challenging.
Typically an accurate gold standard requires multiple
experts to agree on definitions and then manually review
the literature for the information in question, comparing
multiple expert opinions and computing inter- and intra-
rater agreement. Considering the large amount of text
used, the expert resources were not available to use this
method. Instead a simpler method was employed, based
on the approach used by Yu and Agichtein.

To approximate a recall gold standard, all of the synonym
pairs extracted from the SWISSPROT database [38] were
compared to all of the sentences in the test collection. If
both symbols of a synonym pair given in SWISSPROT
were present together in at least one sentence in the test
collection, that synonym pair was included in the recall
gold standard. This resulted in a recall gold standard set of
483 synonym pairs for the test collection. While this may
bias the recall gold standard towards the gene and protein
names present in SWISSPROT, the bias is independent of
any feature of the algorithm. Additionally, using a recall
gold standard construction method like that of Yu and
Agichtein facilitates later comparison of results.

Note that even though a pair of gene synonymous names
from SWISSPROT may be present in a single sentence of
the test set, it may be impossible for this or any other pat-
tern-based algorithm to extract the pair. The synonyms
could be separated by too many words, or the synonym
pair may not occur in a repeated pattern. Nevertheless, a
recall gold standard constructed by this method provides
a useful benchmark.
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