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Abstract

Autonomous retrotransposons lacking long terminal repeats (LTR) account for much of the variation in genome size and structure

among vertebrates. Mammalian genomes contain hundreds of thousands of non-LTR retrotransposon copies, mostly resulting from

the amplification of a single clade known as L1. The genomes of teleost fish and squamate reptiles contain a much more diverse array

of non-LTR retrotransposon families, whereas copy number is relatively low. The majority of non-LTR retrotransposon insertions in

nonmammalian vertebrates also appear to be very recent, suggesting strong purifying selection limits the accumulation of non-LTR

retrotransposon copies. It is however unclear whether this turnover model, originally proposed in Drosophila, applies to nonmam-

malian vertebrates. Here, we studied the population dynamics of L1 in the green anole lizard (Anolis carolinensis). We found that

although most L1 elements are recent in this genome, truncated insertions accumulate readily, and many are fixed at both the

population and species level. In contrast, full-length L1 insertions are found at lower population frequencies, suggesting that the

turnover model only applies to longer L1 elements in Anolis. We also found that full-length L1 inserts are more likely to be fixed in

populationsof small effectivesize, suggesting that thestrengthofpurifyingselectionagainstdeleteriousalleles ishighlydependenton

host demographic history. Similar mechanisms seem to be controlling the fate of non-LTR retrotransposons in both Anolis and

teleostean fish, which suggests thatmammals have considerablydiverged from the ancestral vertebrate in terms of how they interact

with their intragenomic parasites.
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Introduction

Autonomous non-long terminal repeat retrotransposons

(nLTR-RTs) are transposable elements (TEs) that can “copy

and paste” themselves by an RNA intermediate in a process

mediated by their own reverse transcriptase domain. nLTR-RTs

have proliferated with great success in eukaryote genomes

and they are the main drivers of genome size and structural

variation among vertebrate lineages (Lander et al. 2001;

Furano et al. 2004; Tollis and Boissinot 2011). A single type

of nLTR-RT known as LINE-1 (Long Interspersed Nuclear

Element, L1 hereafter) dominates the human genome

(Lander et al. 2001), and ancient L1 fossils and their nonau-

tonomous counterparts, including the Alu interspersed

repeats, may account for over two-thirds of the human

genome (de Koning et al. 2011). Most L1 DNA in human is

the result of past amplifications from millions of years of

placental mammalian evolution (Boissinot et al. 2000; Khan

et al. 2006), which is typical of eutherians (Waterston et al.

2002; Gibbs et al. 2004, 2007; Pontius et al. 2007; Wade et al.

2009). In contrast to mammals, compact teleost fish genomes

contain several active and highly diverse types of nLTR-RT

(sometimes including L1), many of which have produced

recent copies; however, they do not accumulate as they do

in mammals (Volff et al. 2003; Duvernell et al. 2004; Furano

et al. 2004). Meanwhile, recent analyses of squamate reptile

genomes (Novick et al. 2009; Alfoldi et al. 2011; Castoe et al.

2011) have revealed several highly divergent repetitive land-

scapes that are more fish-like than mammal-like.

Differences between the respective nLTR-RT landscapes

of the vertebrate lineages may be due to differences in the

strength of purifying selection against deleterious element-

containing loci in populations (Charlesworth B and
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Charlesworth D 1983; Charlesworth et al. 1994; Le Rouzic

and Deceliere 2005). It was suggested that purifying selection

is the mechanism causing a high turnover of elements in

Drosophila, thus preventing TE accumulation and contributing

to the low copy number in the genome (Charlesworth 1989;

Biemont et al. 1994, 1997). In the human genome, the ma-

jority of L1 copies seem to be selectively neutral and accumu-

late readily (Boissinot et al. 2000, 2001). However, as in

Drosophila (Petrov et al. 2003), human full-length (FL) nLTR-

RT insertions may behave as deleterious alleles due to their

ability to mediate ectopic recombination (Langley et al. 1988;

Boissinot et al. 2001). As parasitic DNA sequences, TEs are

dependent on the demographic history, and especially the

effective population size (Ne), of the host. Therefore, changes

in Ne can alter the strength of purifying selection against del-

eterious alleles (Charlesworth 2009), making TE fixation in a

genome more likely (Le Rouzic and Deceliere 2005). The dif-

ferential fixation of TE copies in colonized versus native pop-

ulations of Drosophila subobscura (Garcia Guerreiro et al.

2008) and Arabidopsis lyrata (Lockton et al. 2008) strongly

suggests that random processes in the host demographic his-

tory such as founder effect can also influence the fate of TEs in

the genome. The mutagenic ability of TEs to disrupt or change

genetic pathways has provided an important source of evolu-

tionary novelties for host genomes, and it is clear that TEs

interact with their hosts in numerous ways (Oliver and

Greene 2009).

The differences in TE copy number and abundance be-

tween mammals and nonmammals suggest that these line-

ages differ greatly in terms of how they deal with their

intragenomic parasites, and that the TE profiles of mammalian

genomes have significantly diverged from the first land verte-

brate. However, the divergence history of the modern amni-

ote lineages spans approximately 310 Myr (Donoghue and

Benton 2007) and studies of TE population dynamics in

nonmammalian vertebrates have so far been limited to teleost

fish (Neafsey et al. 2004; Blass et al. 2012). An evolutionarily

less distant comparison with mammals than offered by teleost

fish is sorely needed. As the sister group to mammals, reptiles

make a more ideal system for resolving ancestral states in

vertebrate genome evolution (Janes et al. 2010), yet there

have been few reptilian genomic models available until very

recently (Alfoldi et al. 2011; Castoe et al. 2011; Shaffer et al.

2013; Wang et al. 2013). The first fully sequenced reptile

genome was that of the green anole lizard (Anolis carolinen-

sis), which is a model organism that has long been studied in

the fields of neuroscience and behavior (Lovern et al. 2004;

Wade 2012). The lizard genome contains five divergent clades

of nLTR-RT including CR1, R2, L2, RTE, and L1. Within L1

alone, there are 20 distinct families (fig. 1). Copy number

within these families is relatively low, and the low divergence

within each Anolis L1 family suggests most inserts in the

genome are recent (Novick et al. 2009). The L1 profile in

the Anolis genome suggests strong purifying selection, as in

Drosophila. However, there has never been a test of the turn-

over model in reptiles, and as a result there is a large gap in our

knowledge of how nonmammalian vertebrates interact with

their intragenomic parasites.

Our goal here is to provide the first study of TE population

dynamics in a reptile, A. carolinensis. The green anole is a very

suitable model because the species is widespread and abun-

dant in the southeastern United States, making population

genetic analysis feasible, and its recent evolutionary history is

well characterized (Campbell-Staton et al. 2012; Tollis et al.

2012). In this study, we consider five distinct evolutionary lin-

eages, the geographic distributions of which are depicted in

figure 2: 1) the Everglades population, which is geographically

limited to the southern part of the Florida peninsula; 2) the

Suwannee population, which inhabits the Gulf Coast of the

Florida peninsula; 3) the Central Florida population, which

primarily is restricted to the Atlantic Coast of peninsular

Florida; 4) the North Carolina population, which exists in

that state at the northern limits of the species range along

the Atlantic Coast; and 5) the Gulf–Atlantic population, which

extends from South Carolina and Georgia, along the Gulf

Coastal Plain and across the Mississippi River into Texas. In

terms of the demographic history, the oldest and most

stable populations exist in peninsular Florida (Campbell-

Staton et al. 2012; Tollis et al. 2012). On the continental main-

land, North Carolina was estimated to have the smallest Ne

(Tollis et al. 2012) and the Gulf–Atlantic experienced a recent

and rapid westward expansion (Campbell-Staton et al. 2012;

Tollis et al. 2012). Both of these populations are likely candi-

dates for scenarios where genetic drift has been relatively

strong.

Materials and Methods

We studied 158 green anoles collected across the US states of

North Carolina, South Carolina, Georgia, Alabama, Florida,

Tennessee, Arkansas, and Louisiana between 2009 and

2012. A. Pires da Silva provided specimens from Texas.

Collecting localities for all of these specimens are shown in

figure 2 and GPS coordinates are available in the supplemen-

tary files of this article (Supplementary Material online) and of

Tollis et al. (2012). Specimens were caught by hand or noose

and tissue samples were taken in the form of tail clippings or,

if dissected, muscle or liver, which were preserved in ethanol.

Protocols were established in accordance with and ap-

proved by the Queens College Institutional Animal Care and

Use Committee (Animal Welfare Assurance Number:

A32721-01; protocol number: 135). DNA was extracted

from all tissues with the Promega Wizard Genomic DNA

Purification kit.

To minimize bias in collecting L1-containing loci, we ob-

tained L1 inserts that were missing from the February 2007

and May 2010 releases of the Anolis genome with the follow-

ing cloning strategy. The 30-ends and genomic flanking
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FIG. 1.—Neighbor-joining phylogenetic tree depicting the evolutionary relationships between the ORF2 consensus sequences of the 20 L1 families found

in the Anolis genome. Node support was assessed with 1,000 bootstrap replicates (greater than 95% is shown). Tips are labeled with the L1 family name and

within each parenthesis are the copy number and percent pair wise divergence from consensus sequence as reported in Novick et al. (2009).
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regions of Anolis L1 inserts were cloned from each of the five

green anole populations: Everglades, Suwannee, Central

Florida, Gulf–Atlantic, and North Carolina. For each popula-

tion, the genomic DNA from five individuals was pooled in

equal proportion to obtain approximately 2 mg, the concen-

tration and purity of which was verified using a NanoDrop

2000 spectrophotometer. We digested the pooled DNA sam-

ples with NEBNext dsDNA Fragmentase to obtain randomized

genomic fragments of 1–2.5 kb, which was verified by elec-

trophoresis on a 1% agarose gel. The DNA fragments contain

overhangs, which were polished by incubation at 12 �C for

30 min with T4 DNA polymerase followed by heat-inactivation

(20 min at 75 �C) of the polymerase to produce blunt ends.

The 30 hydroxyl groups were phosphorylated by incubation at

37 �C for 30 min with T4 polynucleotide kinase (with 5% poly-

ethylene glycol) followed by heat inactivation of the kinase at

75 �C for 20 min. The DNA fragments were then ligated to

10mM of double-stranded anchor (50-TAGCTACAGCTGTAGC

TGACAT-30) with T4 DNA ligase at room temperature for 3 h.

To ensure that the anchors ligated sufficiently, we performed

a PCR using the putatively ligated DNA with the double-

stranded anchor as a primer, and checked for DNA smears

of appropriate size (1–2.5 kb) on a 1% agarose gel.

We then took a series of enrichment steps to ensure the

capture of L1-containing loci from different Anolis L1 families.

The L1 families we focused on were L1AC18 and L1AC20 as

described in Novick et al. (2009); we chose these families be-

cause they represent a wide range of copy numbers found

within Anolis L1 families: L1AC18 contains 144 copies includ-

ing 24 full length (FL) and 120 truncated (TR), and L1AC20

contains 75 copies including 22 FL and 53 TR. For each L1

family, we used the consensus sequence from Novick et al.

(2009) in a BLAT search (Kent 2002) of the May 2010 release

(Broad Institute version AnoCar2.0) of the Anolis genome on

the UCSC Genome Browser (Kent et al. 2002) (www.genome.

ucsc.edu, last accessed May 21, 2013). PCR primers were de-

signed using BioEdit (Hall 1999). Primers have been provided

as supplementary files, Supplementary Material online. We

performed an asymmetrical PCR on the anchor-ligated DNA

with a 5 to 1 volumetric ratio of a 10mM family-specific L1

biotinylated primer and the 10mM single strand anchor. These

PCR products were then captured using streptavidin-coated

magnetic beads (M-280 Dynabeads) following the procedure

recommended by the manufacturer, after which a second

enrichment PCR was performed using bead-captured DNA,

the single strand anchor as a primer and a second nested L1

family-specific primer. Purified PCR products were ligated into

plasmids using a pGEM-T Easy Vector kit (Promega), and the

ligated vectors were transformed into JM109 Escherichia coli

competent cells. Bacterial colonies were grown overnight on

plates with LB agar + ampicillin + IPTG + X-gal and were blue-

white screened. Positive clones were picked and incubated

FIG. 2.—The geographic distribution of localities from which the green anole samples used in this study were collected is indicated by solid black circles.

The geographic distribution of the five major evolutionary lineages of green anoles, summarized from Tollis et al. (2012) and Campbell-Staton et al. (2012) is

indicated by colored polygons: Everglades (magenta), Suwannee (blue), Central Florida (brown), Gulf–Atlantic (green), and North Carolina (yellow).
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overnight in 300mL of LB media with ampicillin in 96-well

plates. We amplified the cloned products by PCR using pri-

mers located in the plasmids (Sp6 and T7). As the goal was to

determine whether our captured L1 insertions were unique to

populations and individuals, we needed enough flanking

region that could be mapped to the database. Therefore,

our biotinylated and nested primers were designed to be

less than 150 bases from element 30-ends, and we selected

PCR products that were at least approximately 500 bp in

length. The vector primers were used for Sanger sequencing

by the HT-Seq facility at the University of Washington, Seattle,

WA. Forward and reverse reads for each sequenced clone

were assembled into contigs using Geneious v5.5

(Drummond et al. 2010), and their consensus sequences

were extracted and used for further analysis. After removing

vector sequence, each L1-containing clone with enough flank-

ing region (~50 bp) was used in another BLAT search of the

Anolis genome. If the entire query, consisting of an L1 30-end

and flanking sequence, could be matched unambiguously to a

specific location in the genome then the insertion site was

deemed occupied. A novel insertion was recorded when the

BLAT returned a match of only the flank with no upstream L1

30-end, indicating an empty insertion site in the database.

We determined the polymorphism of any novel cloned in-

serts by using a presence/absence ascertainment with a series

of flanking and internal primers. PCRs were performed on a

panel comprised of the individuals whose genomic DNA was

originally pooled for the enrichment method. The primers

were designed in Primer3 (Rozen and Skaletsky 2000) after

a BLAT search to locate the insertion site in the Anolis genome

database and collection of 300 bp upstream and downstream

of the insertion site. Primers for presence detection were per-

formed with reverse flanking primer and one of the L1 family-

specific internal (forward) primers. The specificity of each

reaction was verified with the in silico PCR tool on the

UCSC Genome Browser. We then used touchdown PCR to

optimize reaction specificity (Korbie and Mattick 2008). PCRs

for presence/absence detection included a 1:00 hold at 94 �C

followed by 30 cycles of 0:30 denaturing at 94 �C, 0:30 an-

nealing at 55–62 �C (depending on the melting temperatures

of the primer pairs given in the supplementary files,

Supplementary Material online), and 0:30 extension at

72 �C. Upstream or downstream alternative primers were de-

signed and tested in cases where gel bands were ambiguous.

Where we could not avoid ambiguities, those loci were re-

moved from the analysis. To determine the size of these novel

elements, we conducted PCRs using genomic DNA from an

individual that successfully amplified for element presence

with the forward flanking primers and three reverse primers

located at various distances from the 50-end of the consensus

sequence for each family: 500 bp, 1 kb, and 2 kb (table 1).

These PCRs included a 1:00 hold at 94 �C followed by 30

cycles of 0:30 denaturing at 94 �C, 0:30 annealing at 55 �C,

and 1:30 extension at 72 �C. Successful amplification with

these primers allowed us to determine to what extent these

novel insertions extended toward their 50-ends.

We added to this data set a collection of L1-containing loci

from the February 2007 and May 2010 releases of the Anolis

genome, both of which are available on the UCSC Genome

Browser. We used a consensus sequence query for each

Anolis L1 family described in Novick et al. (2009) in a BLAT

search to retrieve elements from the Anolis genome. We then

aligned the collected elements to their family consensus se-

quences and calculated their divergence from family consen-

sus using the Kimura 2-Parameter corrected distance method

in MEGA5 (Tamura et al. 2011) as a proxy for their age. For

each insert in the output, we collected 2,500 bp of upstream

and downstream genomic flank. Flanking regions were sub-

mitted to Repeat Masker (Smit et al. 1996–2010), which

screened for single sequence repeats, short tandem repeats,

or TEs, which would interfere with PCR primer design. Primers

were designed in flanking regions either manually or using

Primer3. For inserts longer than 2 kb, we designed family-

specific internal primers near the element 30-ends from

sequence alignments using ClustalW (Larkin et al. 2007). All

primer pairs were tested for specificity using the in silico PCR

tool available on the UCSC Genome Browser. We measured

the population frequencies of L1 loci retrieved from the data-

base using the presence/absence PCR ascertainment method

described earlier. Individuals from each population were gen-

otyped according to amplified fragment size after electropho-

resis on a 1% agarose gel with ethidium bromide and a

Promega BenchTop 1 kb DNA ladder.

Within each population for each locus, we recorded the

total number of present and absent insertions, and population

frequencies were calculated as the number of present alleles

divided by the number of total chromosomes. We also exam-

ined the population frequencies of elements that differ by

length categories. To determine whether purifying selection

is acting against full-length insertions in green anole popula-

tions, we compared the frequency distribution of full-length

and truncated L1 elements. For this purpose, elements extend-

ing all the way from their 30- to 50-ends were counted as full-

length, while those missing more than 10% of their 50-ends

were counted as truncated. Using the Wilcoxon rank-sum test

(Mann–Whitney U test), we aimed to detect statistically sig-

nificant differences in allele frequencies between truncated

and full-length loci both within and between populations.

We used the Kolmogorov–Smirnov test to determine whether

the shape of the frequency distributions between the two

insertion types is significantly different.

Results

We collected L1-containing loci from two sources: the Anolis

genome database and through the direct cloning of inserts

from the genomic DNA of individuals. The reasoning behind

this two-pronged approach was to minimize ascertainment
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bias. As the database was constructed from the sequencing

of a single individual, it may be less likely to contain low-

frequency polymorphisms, which are integral to any study

of purifying selection. Therefore, the cloning afforded us the

opportunity to more closely approximate the amount of ge-

netic variation in natural populations. The five green anole

populations we studied here are treated as distinct entities,

and we measured the allelic frequencies of L1 loci within each

population separately. This is because it has been shown that

these five populations constitute independently evolving line-

ages with minimal gene flow between them (Campbell-

Staton et al. 2012; Tollis et al. 2012).

The genomic coordinates of the L1 inserts that we were able

to map to the database are provided in the supplementary files,

Supplementary Material online, and the results from the clon-

ing experiments are summarized in table 1. We sequenced 480

clones and identified 380 L1 insertions. Using BLAT, we were

able to unambiguously identify 265 flanking regions that could

be mapped onto the Anolis genome database. Forty-seven of

these represented insertion sites we sequenced more than

once because they were captured multiple times, and thus

we captured 218 unique L1 insertion sites. Of these, we iden-

tified 148 elements from the L1AC18 family and 70 from the

L1AC20 family, representing, respectively, 100.2% and 93%

of the copy number estimates of these families from Novick

et al. (2009). The remaining cloned L1 either did not contain

enough flanking region to allow the determination of the in-

sertion site or contained repetitive DNA in the flank and thus

their insertion sites were ambiguous. Of the 218 unique L1

insertion sites found in the database, 51 (23%) were not oc-

cupied by an L1 element. These elements were probably not

present in the individual who was sequenced for the Anole

Genome Project and are most likely polymorphic in green

anole populations. The polymorphism data and the status of

novel full-length insertions in green anole populations are also

given in table 1. We were able to successfully measure the

polymorphism for 28 of 35 (80%) novel insertion loci from

the L1AC18 family and 15 of 18 (83%) novel insertion loci

from the L1AC20 family (these primers are given in the sup-

plementary files, Supplementary Material online). We were

able to successfully ascertain the size of 18 of 28 (64%)

novel L1AC18 inserts, of which 9 were full-length and 9 trun-

cated, and 6 of 15 (40%) novel L1AC20 inserts, of which 2

were full-length and 4 were truncated.

The results from the survey of L1 polymorphism using in-

sertion loci from the database are summarized in table 2.

Three of the truncated insertion loci designed from the data-

base were also captured by our cloning method, which was

not an unexpected result since with that method we were

able to retrieve a high proportion of the total copy numbers

of the studied L1 families. These loci were L1AC18_128 and

L1AC18_223 from L1 family L1AC18, which were fixed across

all populations, and L1AC20_150 from L1 family L1AC20,

which ranged in population frequency from 88% to total fix-

ation. The high population frequency of these elements is not

surprising because they were retrieved from multiple

Table 1

Summary of L1 Inserts Collected during the Cloning Experiment for Each Green Anole Population and Information about Polymorphism

Cloning

Everglades Suwannee Central Florida North Carolina Gulf–Atlantic Total

Clones collected and sequenced 480

Clones containing an L1 element 380

Total sequences mapped to database 265

Number of different L1AC18 inserts

Flanking sequences located in database 55 23 43 22 29 172

Insertion sites occupied in database 42 20 37 17 21 137

Insertion sites empty in database 13 3 6 5 8 35

Tested by PCR 10 3 5 4 6 28

Proportion <50% polymorphism 80% 63% 83% 100% 0

No. FL inserts 0 2 2 1 4 9

Proportion FL >50% – 0 0 0 100%

Number of different L1AC20 inserts

Flanking sequences located in database 18 12 34 14 15 93

Insertion sites occupied in database 12 9 26 14 12 73

Insertion sites empty in database 6 3 6 0 3 18

Tested by PCR 6 2 5 – 2 15

Proportion <50% polymorphism 100% 50% 100% – 50%

No. FL inserts 0 2 0 0 0 2

Proportion FL >50% (%) – 50 – – –
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Table 2

Locus-Specific Information for 52 L1 Loci Retrieved from the Anolis Genome and Their Frequencies in Five Green Anole Populations

Locus Coordinates Length

(bp)

FL or

TR

% Divergence

from Consensus

North

Carolina

Suwannee Central

Florida

Everglades Gulf–Atlantic

L1AC20_684 chr4:68403974–68404330 357 TR 3.80 0.50 0.57 0.84 0.44 0.90

L1AC12s_4:12 chr4:126979289–126979702 414 TR 2.50 1.00 0.96 1.00 1.00 1.00

L1AC12s_GL3 chrUn_GL343596:105315–105733 419 TR 3.70 1.00 0.75 0.59 0.00 1.00

L1AC11s_6:33 chr6:33204599–33205038 440 TR 0.00 0.25 0.07 0.03 0.00 0.28

L1AC20_150 chr1:150575039–150575547 509 TR 7.30 1.00 0.97 1.00 0.94 0.88

L1AC16s_GL3 chrUn_GL343395:465703–466212 510 TR 4.30 1.00 1.00 1.00 1.00 1.00

L1AC16s_GL4 chrUn_GL343471:34099–34667 569 TR 1.80 1.00 1.00 1.00 1.00 1.00

L1AC16s_GL5 chrUn_GL344110:24189–24796 608 TR 1.50 1.00 1.00 1.00 1.00 1.00

L1AC20_257 chr1:257099845–257100469 625 TR 12.20 1.00 1.00 1.00 0.63 1.00

L1AC20_227 chr5:22764139–22764850 712 TR 11.00 1.00 1.00 1.00 1.00 1.00

L1AC18_223 chr1:223912127–223912841 715 TR 3.90 1.00 1.00 1.00 1.00 1.00

TE_3 chr1:214783982–214784696 715 TR 1.40 0.04 0.00 0.00 0.00 0.21

L1AC13s_4:27 chr4:27512892–27513664 773 TR 3.00 0.40 0.00 0.00 0.00 0.91

L1AC18_128 chr1:128475510–128476320 811 TR 3.60 1.00 1.00 1.00 1.00 1.00

L1AC18_543 chr5:54332386–54333253 868 TR 5.20 1.00 1.00 1.00 1.00 1.00

L1AC20_660 chr5:66011824–66012703 880 TR 4.70 0.38 0.27 0.33 0.13 0.71

L1AC17s_1:544 chr1:54502268–54503155 888 TR 2.70 0.82 0.67 0.71 1.00 1.00

L1AC17s_Gly chrUn_GL343200:1968310–1969771 916 TR 1.40 0.27 0.00 0.03 0.00 0.00

L1AC19_139 chr3:139851678–139852602 925 TR 1.90 1.00 1.00 1.00 1.00 1.00

L1AC19_2:144 chr2:144963722–144964741 1,020 TR 1.70 0.88 0.45 0.45 0.00 0.25

L1AC18_107 chr1:107831209–107832288 1,080 TR 1.20 1.00 1.00 1.00 1.00 1.00

L1AC2.26 chrUn_GL343239:906018–907246 1,229 TR 1.10 1.00 1.00 1.00 1.00 1.00

L1AC15s_1:87 chr1:87962249–87963655 1,407 TR 0.42 0.10 0.00 0.00 0.00 0.03

L1AC3.25 chr2:172762715–172767090 4,376 TR 0.45 1.00 0.94 1.00 1.00 0.97

L1AC3.24 scaffold_24:516031–520,687a 4,657 TR 0.53 1.00 0.71 1.00 0.83 0.81

L1AC3.21 chrUn_GL343497:464966–469686 4,721 TR 0.45 0.50 0.03 0.00 0.00 0.07

L1AC4.17 scaffold_125:1567058–1571933a 4,876 TR 0.54 1.00 1.00 1.00 0.93 1.00

L1AC4.18 scaffold_43:3503254–3508180a 4,927 TR 0.54 1.00 0.00 0.05 0.07 0.25

L1AC4.15 chr3:96424624–96429616 4,993 TR 0.50 n/a 0.70 0.77 1.00 0.96

L1AC3.18 chrUn_GL343280:1636141–1641248 5,108 TR 0.57 1.00 n/a n/a 1.00 1.00

L1AC4.8 chr5:19962314–19967530 5,217 FL 0.39 n/a 0.00 n/a 0.00 n/a

L1AC4.19 chrUn_GL343243:1081190–1086410 5,221 FL 0.52 1.00 0.50 0.41 1.00 0.93

L1AC4.22 chr2:90589288–90594512 5,225 FL 0.46 n/a n/a n/a 0.00 0.31

L1AC4.20 scaffold_527:549438–554665a 5,228 FL 0.85 0.90 0.13 0.69 0.13 0.88

L1AC4.11 chr3:178322659–178327899 5,241 FL 0.91 n/a 0.56 n/a 0.00 0.83

L1AC4.2 scaffold_85:3499711–3504951a 5,241 FL 0.35 0.31 0.03 0.00 0.00 0.54

L1AC4.25 chr3:170477780–170483021 5,242 FL 0.46 1.00 0.00 0.00 0.00 0.24

L1AC4.26 chr3:159015596–159020837 5,242 FL 0.50 0.80 0.17 0.18 0.40 0.65

L1AC20_3:170 chr3:170477780–170483022 5,243 FL 0.31 0.00 0.00 0.00 0.00 0.00

L1AC4.21 chr3:32972264–32977686 5,243 FL 0.66 0.63 0.00 0.00 0.25 0.68

L1AC4.4 scaffold_30:3968578–3973822a 5,245 FL 0.52 0.00 0.18 0.10 0.50 0.23

L1AC4.1 chr2:172917348–172922593 5,246 FL 0.35 0.00 0.00 0.03 0.00 0.00

L1AC8_1:108 chr1:108322088–108328343 5,334 FL 1.00 0.00 0.00 0.00 0.00 0.00

L1AC3.4 chr6:54998113–55004259 6,147 FL 0.47 0.00 0.13 0.03 0.00 0.38

L1AC3.10 chrUn_GL343295:80571–86721 6,151 FL 0.36 1.00 0.06 0.23 0.00 0.78

L1AC15_5:14 chr5:142569373–142575532 6,160 FL 0.10 0.80 0.22 0.56 0.00 0.69

L1AC3.8 Chr3:168587085–168593244 6,160 FL 0.31 1.00 0.18 0.10 0.00 0.61

L1AC15_2:15 chr2:153639275–153645435 6,161 FL 0.31 0.70 0.56 0.87 0.00 1.00

L1AC3.3 scaffold_57:1761641–1767805a 6,165 FL 0.39 0.27 0.28 0.03 0.20 0.23

L1AC11_2:10 chr2:107077315–107083913 6,599 FL 0.06 0.42 0.11 0.28 0.00 0.05

L1AC14_GL chrUn_GL343255:672694–679409 6,716 FL 0.70 0.92 0.00 0.23 n/a 0.85

L1AC10.2 chr3:172235202–172242019 6,818 FL 0.73 0.00 0.00 0.00 0.00 0.00

NOTE.—n/a, not applicable.
aAn insert collected from the February 2007 version that we were not able to map onto the May 2010 version.
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populations during the cloning. Overall, we were able to col-

lect population frequency data on 52 insertion loci from 16 of

the 20 Anolis L1 families described in Novick et al. (2009),

including 22 full-length and 30 truncated insertions.

Widespread Fixation of L1 in Anolis

Many L1 inserts were fixed in green anole populations. For

instance, 22 out of the 30 truncated insertions (73%) col-

lected from the database have reached fixation in at least

one of the five green anole populations, as well as 5 out of

the 22 full-length insertions (23%). This widespread presence

of fixed insertions was surprising, because L1 copy number is

very low in the Anolis genome and ancient insertions are ex-

tremely rare. Therefore, we decided to estimate the number

of fixed L1 insertions in the genome. To do this, we first

looked at the frequencies of L1 inserts with varying levels of

divergence in each population. In an attempt to remove the

potentially confounding effects of demographic history, we

focused at first on only the Gulf–Atlantic and North Carolina

populations (fig. 3). This is because the individual that was

sequenced for the Anole Genome Project was collected in

Aiken, SC, and is an admixed individual whose genome is

derived from both of these populations (Tollis M and

Boissinot S, unpublished data). In the Gulf–Atlantic and

North Carolina populations, 70% and 66% of L1 inserts

that diverge from their consensus by more than 1% are

fixed, respectively. This does not mean that only old elements

become fixed; the fraction of elements that are both fixed and

younger than 1% divergent is somewhat smaller—10% in the

Gulf–Atlantic and 34% in North Carolina—which suggests

that at least some elements can reach fixation rather quickly.

From the divergence curve, we multiplied the proportion of

total elements that are fixed by the 1,006 total L1 copies in the

Anolis genome reported by Novick et al. (2009) and estimated

the total number of fixed inserts to be 342 in the Gulf–Atlantic

population and 482 in North Carolina. Although these num-

bers do not comprise a majority of the L1 repertoire in the

Anolis genome, they do amount to a significant proportion of

fixed elements.

It is possible that the unique demographic histories of these

populations may be affecting the number of L1 inserts that

become fixed. The Gulf–Atlantic and North Carolina popula-

tions are relatively young when compared with their conspe-

cifics living on the Florida peninsula (Campbell-Staton et al.

2012; Tollis et al. 2012), and they may have smaller effective

population sizes (Ne). When Ne is small, it can affect the effi-

ciency of purifying selection, causing otherwise harmful alleles

to drift toward fixation, as well as contribute to an overall

higher rate of allele fixation (Charlesworth 2009). Therefore,

we decided to look at the number of fixed elements in the

Central Florida population (fig. 3), which has considerably

more genetic diversity, suggesting a larger Ne (Campbell-

Staton et al. 2012). We found that 62% of elements diverging

from their consensus by more than 1% are fixed in this pop-

ulation, and 11% of elements younger than 1% divergent are

fixed as well. This translates into an estimated 335 total fixed

FIG. 3.—Number of fixed and polymorphic L1 elements extrapolated from population data according to their divergence from consensus.
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L1 inserts in the Central Florida population, which is still an

appreciable amount of fixed elements, but is lower than what

was estimated for the Gulf–Atlantic population, and even

more so than the North Carolina population.

Selection against Full-Length L1 Elements

Our estimates of the amount of fixed L1 elements in green

anole populations suggest that nLTR-RTs accumulate in the

Anolis genome, which is in contrast to previous suggestions

(Novick et al. 2009; Tollis and Boissinot 2011). However, this

does not necessarily mean that all L1 insertions are selectively

neutral. Figure 4 shows the proportion of inserts that are

either fixed or polymorphic according to whether they are

FL or TR. The figure shows that in all populations, TR elements

are much more likely to be fixed than FL elements, and, con-

versely, FL elements are much more likely to be polymorphic

than TR ones. That a much larger proportion of TR inserts are

fixed suggests that FL elements are prevented from reaching

fixation, and perhaps this is because they are subjected to

stronger purifying selection. Sixteen FL insertions (73%)

were completely absent in at least one green anole popula-

tion, compared with 8 TR (27%), including 16 out of the 22

full-length inserts we screened in the Everglades population. It

is difficult to say whether purifying selection keeps these in-

serts at such low population frequencies that we failed to

detect them in our sample. Another explanation is that they

may have recently inserted into the host genome, sometime

after the split in the population histories. The Everglades line-

age likely split off from the rest of the species relatively early in

its history (Campbell-Staton et al. 2012; Tollis et al. 2012), so

this latter situation is plausible. Therefore, to detect purifying

selection within each population, we excluded all loci for

which we failed to detect presence on a single chromosome.

This should not prevent us from detecting selection, because

full-length and truncated inserts are generated by the same

biological mechanism, and any bias against low frequency

alleles will similarly shift the frequency distribution for inserts

that are both full-length and truncated.

Table 3 gives the total number of TR and FL insertions com-

pared within each population, their average population fre-

quencies, and the statistical significances of the differences in

the population frequency means and of the shapes of their

distributions. The average frequency of TR elements was

higher than the average frequency of FL elements in all pop-

ulations; however, this difference was not statistically signifi-

cant in the Everglades and North Carolina populations. The

statistical significance of the difference in population fre-

quency between FL and TR elements was significant in the

Gulf–Atlantic population (P<0.01), and highly significant in

the Suwannee and Central Florida populations (P<0.001).

The shapes of the frequency distributions between TR and

FL elements were significantly different in all populations

that were tested except for North Carolina. The shape of

the distribution could not be estimated for FL elements in

the Everglades, because the number of FL elements in this

population was too small to draw any conclusions.

Host Demography Affects the Fixation of Full-length L1
Elements

It is possible that if purifying selection is acting against FL el-

ements, its efficiency may be different across populations if

the effective population sizes of those populations are differ-

ent. We used the full data set to compare the frequencies of

TR and FL insertions within and between each population and

found that while the frequencies of TR elements are not sig-

nificantly different between any of the populations, the fre-

quencies of FL elements are highly significantly different

between populations of starkly different demographic histo-

ries (table 4). Figure 5 shows the frequency distributions of FL

and TR L1 elements in each green anole population. From this,

it is evident that FL inserts segregate very differently in the

Florida populations versus the mainland populations. For in-

stance, the proportion of FL inserts below 50% population

frequency is 83% in the Everglades, 76% in Suwannee, and

80% in Central Florida. FL L1 elements are much more

common in the mainland populations, with only 29%

below 50% population frequency in both North Carolina

FIG. 4.—Fraction of polymorphic and fixed L1 elements according to their length in green anole populations. The distribution is based on 52 L1-

containing loci retrieved from the Anolis genome database.
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the Gulf–Atlantic. As these two populations have either a

small estimated Ne or have recently experienced a dramatic

range expansion (Tollis et al. 2012), it is likely that relaxed

purifying selection due to stronger genetic drift is generating

a higher rate of fixation for FL L1 insertions in these

populations.

Discussion

We present here the first study of retrotransposon population

dynamics in a reptile, based on a double-sided approach: We

collected L1 inserts directly from the genomic DNA of individ-

uals via cloning, and we developed population genetic mar-

kers from the Anolis genome database. We have three main

conclusions: 1) L1 elements are able to reach fixation in Anolis

more readily than previously thought; 2) TR elements are more

likely to accumulate in the Anolis genome while FL elements

are subjected to purifying selection and thus do not accumu-

late; and 3) the efficiency of purifying selection to remove FL

elements is highly dependent on the demographic history of

the population, such that FL elements are more likely to be

fixed in populations of small Ne. Thus, the selective turnover

model as it applies to TEs in Drosophila cannot fully explain the

L1 profile of Anolis. In fact, the L1 profile in Anolis is remark-

ably similar to the nLTR-RT landscape in stickleback fish

(Gasterosteus aculeatus), in which TR insertions accumulate

while FL elements are subjected to purifying selection (Blass

et al. 2012).

Because of the fact that our database-generated markers

result from the sequencing a single individual, there could be

an ascertainment bias that could skew our estimation of the

number of fixed elements in the Anolis genome as well as the

certainty with which we could detect purifying selection (Clark

et al. 2005). Indeed, within the Florida populations, novel L1

insertions were found at low population frequencies (table 1),

which might suggest that using the database caused us to

miss rare alleles. Yet, the frequency distribution of all ele-

ments, including those retrieved from the database, shows

an overabundance of rare inserts in Florida. In addition, all

of the novel cloned L1 inserts we collected from the Gulf–

Atlantic population were either at very high population fre-

quency (>50%) or were fixed, suggesting that the genetic

variation we captured with this method closely mirrors what

is in the database. The database was not more likely to yield

fixed inserts than the cloning, as our PCR presence/absence

study of cloned novel insertions was able to retrieve some

elements that were fixed (10%). Therefore, our conclusion

that a significant number of L1 has reached fixation in

Anolis is accurate and supported by a more unbiased assess-

ment. Even if we were able to completely remove all bias and

sample more rare alleles, the frequency distribution of FL ele-

ments, which are rare as suggested by our data, would still be

shifted toward zero and would not change the fact that many

TR insertions are fixed; this would actually strengthen our con-

clusion that purifying selection is acting against FL elements.

Compared with the human genome, L1 in Anolis is rela-

tively low in copy number, and the few elements that are

found in the genome are of very recent age (Novick et al.

2009). These features of the nLTR-RT landscape in Anolis

are reminiscent of what is found in the teleost fish genomes

that have been studied so far (Volff et al. 2003; Duvernell et al.

2004; Furano et al. 2004; Neafsey et al. 2004; Blass et al.

2012). To explain these observations in teleost fish, it was

originally proposed that TE accumulation was prevented by

a high rate of turnover (Furano et al. 2004) in which the in-

sertion of new elements is offset by the selective loss of inser-

tions, and it was hypothesized that many TEs would exist in

populations at low frequencies. This model was initially pro-

posed for and supported by studies of TE dynamics in

Drosophila (Charlesworth 1989; Biemont et al. 1994).

Table 3

Comparison of TR and FL Allele Frequencies in Five Green Anole

Populations

Population TR FL Wilcoxon

Rank-Sum Test

Kolmogorov–Smirnov

Test

P Value D

Gulf–Atlantic N¼30 N¼ 21 <0.01 0.002 0.510

0.74 0.58

North Carolina N¼30 N¼ 14 ns ns 0.348

0.78 0.71

Everglades N¼27 N¼ 6 ns – –

0.81 0.41

Suwannee N¼25 N¼ 17 <0.001 0 0.800

0.78 0.24

Central Florida N¼27 N¼ 15 <0.001 0 0.674

0.84 0.29

NOTE.—The number of inserts measured (N) for each category is indicated
above the average population frequency. The P value for the Wilcoxon rank-
sum test is given. D indicates the largest difference between the cumulative dis-
tributions of each sample. ns, not significant.

Table 4

Pair Wise Population Comparisons of FL and TR L1 Insertions

Populations Compared Wilcoxon Rank-Sum Test

TR FL

North Carolina–Suwannee ns <0.001

North Carolina–Central Florida ns <0.001

North Carolina–Everglades ns ns

North Carolina–Gulf/Atlantic ns ns

Gulf/Atlantic–Suwannee ns <0.001

Gulf/Atlantic–Central Florida ns <0.001

Gulf/Atlantic–Everglades ns ns

Suwannee–Everglades ns ns

Suwannee–Central Florida ns ns

Everglades–Central Florida ns ns

NOTE.—ns, not significant.
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However, the turnover hypothesis was rejected when it was

tested in two teleost fish models: stickleback (Blass et al. 2012)

and pufferfish (Neafsey et al. 2004). In pufferfish, the majority

of the nLTR-RT insertions that were studied were found at

middle or high population frequencies, which suggests that

these elements are not subjected to strong purifying selection.

This was a surprising finding as the pufferfish genome is so

devoid of nLTR-RTs. However, this analysis only looked at short

elements and therefore it may have been biased towards neu-

tral or nearly neutral alleles. In stickleback, all FL insertions

were polymorphic, which suggests that purifying selection

acts preferentially against FL elements in this genome,

whereas a large number of TR insertions were fixed in

populations.

We found that 38 out of 43 novel cloned inserts and 44 out

of 52 database-recovered L1-containing loci were polymor-

phic in at least one green anole population, which is a signif-

icant amount of polymorphism that is greater than, for

instance, what was observed in the Ta-1 family of L1 inserts

of the human genome (86% vs. 69%, respectively) (Boissinot

et al. 2000). However, five of the novel cloned loci (12%)

were fixed in their population of origin, and eight (15%) of

the loci from the database were fixed in every population—

and therefore in the entire species—which suggests that L1 is

quite capable of reaching fixation in the Anolis genome. This

widespread fixation of L1 elements suggests that, as in stick-

leback, the turnover model cannot explain the scarcity and

young age of L1 elements found in Anolis. An alternative

explanation would be that L1 has no effect on host fitness,

which would be consistent with the conclusion of selective

neutrality suggested by Neafsey et al. (2004). We find here

that the vast majority of L1 elements that are fixed in Anolis

are TR, and that TR insertions make up the vast majority of

older elements. This suggests that at least short L1 insertions

may behave as neutral alleles, which would be consistent with

the fact that in both Drosophila (Petrov et al. 2003) and

human (Boissinot et al. 2006) TR elements seem to be neutral

or at least are under much weaker selection than FL insertions.

Universal neutrality of L1 in Anolis is an unlikely scenario,

however, because the data suggest that some elements are

subjected to purifying selection. FL elements are rare within all

Anolis L1 families, comprising about 18% of all L1 in the

genome (Novick et al. 2009), and within all natural popula-

tions they are found at lower population frequencies relative

to TR elements. The scarcity of FL elements in Anolis is similar

to what was found in a study of teleost fish genomes that

included zebrafish, Medaka, stickleback, and pufferfish (Basta

et al. 2007), and their low frequencies in green anole is rem-

iniscent of stickleback as well (Blass et al. 2012). This suggests

not only that the Anolis genome is similar to fish in its auton-

omous nLTR-RT repertoire, but also that a similar mechanism

is preventing the fixation of FL elements in nonmammalian

genomes. As similar patterns of element decay was reported

in stickleback and Anolis (Novick et al. 2009; Blass et al. 2012),

it is possible that a high rate of DNA loss could account for the

scarcity of fixed FL elements found in both fish and reptiles.

FIG. 5.—The frequency distributions of FL and TR L1 elements in five green anole populations.

Tollis and Boissinot GBE

1764 Genome Biol. Evol. 5(9):1754–1768. doi:10.1093/gbe/evt133 Advance Access publication September 6, 2013

since 
while 
ersu
 -- 
 -- 
-
; Novick etal. 2009


However, large DNA deletions would also remove TR inser-

tions at the same rate, and we now have evidence that TR

elements do become fixed, therefore it is more likely that the

turnover model actually does apply to Anolis—but only to FL

elements.

Element length was reported to be the main driver of pu-

rifying selection against nLTR-RTs in both Drosophila, (Petrov

et al. 2003, 2011) human (Boissinot et al. 2006), and stickle-

back (Blass et al. 2012) and the patterns we are reporting for

Anolis are consistent with that. In both Drosophila and

human, longer elements are probably more likely than TR

ones to be involved in ectopic recombination, which can

cause extremely deleterious chromosomal breaks (Langley

et al. 1988). Another line of evidence used to support the

ectopic recombination model in Drosophila and human was

that FL elements accumulate only in genomic regions that are

nonrecombining (Boissinot et al. 2001; Petrov et al. 2003,

2011; Song and Boissinot 2007). In fact, it has been proposed

that an overall low rate of ectopic recombination rate may be

a factor that has allowed mammalian genomes to be more

tolerant of significant L1 accumulation (Eickbush and Furano

2002). However, recombination rates are not yet known in

the Anolis genome or for reptiles in general, so we cannot rule

out a mechanism of purifying selection against L1 other than

ectopic recombination.

As FL elements contain the open reading frames and pro-

moter necessary for autonomous retrotransposition, another

possibility could be that purifying selection acts against the

deleterious effect of this process itself (Nuzhdin et al. 1996;

Brookfield and Badge 1997). It is clear from our study that in

Anolis FL elements are limited not only in genomic copy

number but also population frequency; these factors would

undoubtedly act to reduce the number of active copies capa-

ble of retrotransposition. The mouse genome contains 2,000–

3,000 potentially active L1 copies (Akagi et al. 2008), which is

in stark contrast to the approximately 90 Anolis L1 copies that

contain both ORFs and are therefore potentially active (Novick

et al. 2009). The human genome contains 80–100 potentially

active L1 copies (Brouha et al. 2003), yet it seems that purify-

ing selection against FL elements in the human genome is not

strong enough to prevent fixation and accumulation of some

active copies (Boissinot et al. 2000, 2001). If potentially active

FL elements were at very low frequencies in populations, then

the transposition rate would be lower than in genomes with

more common active elements. The overall result of this

would be a relatively low copy number of elements, which

is the case in reptiles and fish. Regardless of the mechanism,

the low population frequencies of FL L1 inserts, especially in

conjunction with the fact that the only old and fixed inserts are

TR, strongly suggest that purifying selection is limiting the

ability of FL elements to become fixed in the Anolis genome.

Whether FL or TR L1 elements are being subjected to vary-

ing degrees of purifying selection, all TEs are parasites that

proliferate within a host genome, and they are therefore

dependent on the evolutionary history of their host.

Theoretical and empirical studies of TE dynamics in eukaryotes

have shown that any change in the effective population size

(Ne) of the host can affect the efficiency of purifying selection

(Charlesworth B and Charlesworth D 1983; Le Rouzic and

Deceliere 2005), and in populations of small Ne, otherwise

deleterious alleles are able to reach higher population frequen-

cies due to stronger genetic drift (Charlesworth 2009). The

Everglades, Suwannee, and Central Florida populations are

the oldest green anole populations, they are the most demo-

graphically stable, and by every measure contain high neutral

genetic diversity (Campbell-Staton et al. 2012; Tollis et al.

2012); all of these aspects are associated with a large Ne. In

contrast, the North Carolina population was estimated to have

the smallest Ne of the green anole lineages (Tollis et al. 2012);

and the largest number of fixed L1 insertions was estimated in

this population. The Gulf–Atlantic population experienced a

recent expansion in Ne that may be the result of a westward

dispersal of anoles across the Gulf Coastal Plain (Tollis et al.

2012), and we observed a high number of fixed TE insertions

in this population. It is thought that strong genetic drift at the

wave front of an expansion causes higher fixation rates, lead-

ing to the spread of fixed alleles across the territory of a pop-

ulation (Lohmueller et al. 2008; Slatkin and Excoffier 2012).

The extensive fixation of L1 insertions in the Gulf–Atlantic

green anole population adds to recent empirical evidence of

this kind of allele surfing in reptiles (Gracia et al. 2013).

The different fixation rates of full-length L1 insertions in

green anole populations with different demographic histories

show us how important genetic drift can be for genomic evo-

lution. For instance, if a FL element is purged from a popula-

tion via purifying selection, it will be unable to produce new

copies. This may result in the removal of harmful alleles, but it

might also be the case that the species will potentially lose a

source of genetic variation that throughout the history of life,

particularly in reptiles (Di-Poi et al. 2009, 2010) has been co-

opted in adaptive ways (Bowen and Jordan 2007; Oliver and

Greene 2009). In a landmark paper, Lynch and Conery (2003)

suggested that the origins of eukaryote genome complexity

might be a direct result of the shift in the selection-drift bal-

ance that occurred during the evolution of smaller effective

population sizes. Indeed, variation in GC content has been

correlated with certain life history traits including Ne across

mammals (Romiguier et al. 2010), and our results suggest

this may also apply other genomic features such as TEs. It

leaves the intriguing possibility that the waxing and waning

of Ne during lineage diversification can have far-reaching con-

sequences and may account for the divergent patterns of TE

evolution observed across amniotes.

Although purifying selection seems to be limiting the

number of FL elements, TR insertions do accumulate readily

in the Anolis genome. However, as there is a complete ab-

sence of L1 insertions that are anywhere near the order of

divergence that is typical of some L1 families in the human
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genome, which can be up to 30% (Khan et al. 2006), it ap-

pears that L1 elements are removed from the Anolis genome

soon after they become fixed. Novick et al. (2009) analyzed

the decay of Anolis nLTR-RTs in the RTE clade and reported

that large-scale deletions account for the heavily fragmented

copies of this group of insert. A similar pattern was found in

the Expander nLTR-RT clade in the stickleback genome (Blass

et al. 2012). In both of these cases, these elements were much

more fragmented than human L1 insertions of similar age,

suggesting that DNA loss in the form of large deletions is

counteracting the accumulation of retrotransposon copies in

fish and reptiles, thus limiting the expansion of the sizes of

these genomes. In contrast, large deletions are rare in mam-

mals, which may account for the large size of mammalian

genomes. It is therefore possible that DNA loss is a major

factor controlling genome size and structure more than pre-

viously thought. However, if this were true then some of the

TR elements studied here may have once been FL inserts that

became fixed but subsequently accumulated deletions over

time. To confirm that TR and FL elements are indeed separate

classes and not simply at varying stages of the drift-deletion

process due to differences in age (Blumenstiel et al. 2012), we

compared the population frequencies of TR and FL insertions

of similar age (<1% divergent from their consensus sequence)

in the Central Florida green anole population. We determined

the population frequency distributions of these age-matched

sets of insertions to be significantly different (P<0.05, Mann–

Whitney U test), thus strengthening our conclusion that TR

elements can reach fixation relatively quickly and are subse-

quently removed by large deletions. The role of large deletions

is still a controversial subject, as Petrov (2002) found that small

deletions are actually more common in small insect genomes,

and suggested that large deletions are probably too deleteri-

ous to be common. However, this may apply only to the com-

pact genomes of insects, as the larger genomes of most

vertebrates contain vast intergenic regions that could possibly

experience large deletions without consequence.

Conclusion

We have provided here the first study of TE population dy-

namics in reptiles. Contrary to earlier suggestions in which

strong purifying selection limits the accumulation of nLTR-

RTs in the Anolis genome, we find that the L1 retrotransposon

actually accumulates readily in this genome. By studying the

population frequencies of L1 inserts collected by direct cloning

from genomic DNA and by marker design from the genomic

database, we found that TR L1 insertions are very often fixed

in green anole populations, and some appear to be fixed

across the entire species. This suggests that short elements

behave neutrally in populations and may have little to no

effect on host fitness. In contrast, FL inserts are rare in green

anole populations, and none are fixed at the species level,

suggesting that purifying selection is at least acting on long

L1 elements. The deleteriousness of FL L1 elements may stem

from their ability to mediate ectopic recombination or their

potential for retrotransposition activity. We also found that

the demographic history of populations is an important

factor that affects the strength of selection against FL ele-

ments. By comparing the frequency spectrum of L1 elements

by length in different populations, we found that FL elements

are found at significantly higher frequencies in populations

where genetic drift is likely to be very strong. Meanwhile, FL

elements are found at significantly lower frequencies in pop-

ulations of large Ne and demographic stability, suggesting pu-

rifying selection is much more efficient at removing harmful

alleles in these populations. The deleterious effect of FL ele-

ments does not appear to completely prevent fixation of L1

elements, yet there are very few ancient elements in the Anolis

genome. Therefore, we suggest that DNA loss plays a major

role in removing L1 insertions after they become fixed. This

interplay of selection, demography, and large-scale deletions

may account for the differences between the high-copy

number L1 profile of mammalian genomes and the low-

copy number profile of the genomes of nonmammalian

vertebrates.

Supplementary Material

Supplementary files are available at Genome Biology and

Evolution online (http://www.gbe.oxfordjournals.org/).
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