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Abstract: Charge transfer (CT) is a very important issue in the design of biosensors and biofuel
cells. Some nanomaterials can be applied to facilitate the CT in these bioelectronics-based devices.
In this review, we overview some CT mechanisms and/or pathways that are the most frequently
established between redox enzymes and electrodes. Facilitation of indirect CT by the application
of some nanomaterials is frequently applied in electrochemical enzymatic biosensors and biofuel
cells. More sophisticated and still rather rarely observed is direct charge transfer (DCT), which is
often addressed as direct electron transfer (DET), therefore, DCT/DET is also targeted and discussed
in this review. The application of conducting polymers (CPs) for the immobilization of enzymes
and facilitation of charge transfer during the design of biosensors and biofuel cells are overviewed.
Significant attention is paid to various ways of synthesis and application of conducting polymers
such as polyaniline, polypyrrole, polythiophene poly(3,4-ethylenedioxythiophene). Some DCT/DET
mechanisms in CP-based sensors and biosensors are discussed, taking into account that not only
charge transfer via electrons, but also charge transfer via holes can play a crucial role in the design of
bioelectronics-based devices. Biocompatibility aspects of CPs, which provides important advantages
essential for implantable bioelectronics, are discussed.

Keywords: conducting polymers (CPs); electrochemical deposition; microbial and enzymatic biofuel
cells; bioelectrochemistry; biosensors; glucose biosensors; polymer-modified electrodes; direct charge
transfer; direct electron transfer; electrochemical sensors

1. Introduction

Advanced technologies and materials are required to fulfil new challenges that have
been raised during the development of analytical systems that are required for food,
beverage, environmental, and biomedical analysis. One of the most promising research
directions, which is aiming to solve these challenges is related to the development of
biosensors. Therefore, nowadays, biosensor-based techniques are applied for the deter-
mination of different biologically active materials [1,2]. Amperometric enzyme-based
biosensors are the most frequently used among many other types of biosensors [3,4]. En-
zymatic and non-enzymatic (enzyme-mimicking) [5] reactions are the most frequently
exploited during the action of catalytic biosensors and sensors. Very similar principles
can be used in enzymatic [6] and microbial biofuel cells [7,8], which can eventually be
applied for a long-lasting electrical current supply for implantable biosensors and some
other bioelectronics-based devices [9]. However, during the action of these bioelectronics-
based devices, charge transfer from the active site of the redox enzyme is the most critical
issue, which limits the generated voltage and current. Direct charge transfer ability can
be well exploited for the transfer of electric charge between redox centers of enzymes and
electrodes in many bioelectronics-based devices including amperometric biosensors and
biofuel cells [10–12]. In order to extend the efficiency of charge transfer, inorganic and
organic redox mediators [13,14] or additionally added enzyme cofactors [15,16] and/or

Nanomaterials 2021, 11, 371. https://doi.org/10.3390/nano11020371 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-0885-3556
https://doi.org/10.3390/nano11020371
https://doi.org/10.3390/nano11020371
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11020371
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/11/2/371?type=check_update&version=2


Nanomaterials 2021, 11, 371 2 of 22

some types of semiconducting materials [17] can be applied. Some types of redox polymers
and redox polymer-based composites can also be applied for this purpose and/or in order
to improve the microenvironment required for efficient action of immobilized enzymes or
other redox-able proteins [18–21]. However, from this point of view, conducting polymers
seem to be the most promising because they can be used in order to advance charge transfer
efficiency in bioelectronics-based devices [22] and some analytical characteristics of biosen-
sors [23,24]. In addition, conducting polymers have great environmental stability [25]
and are characterized by rather good biocompatibility [26]. Conducting polymers (CPs)
are organic materials, which have rather good electrical conductivity [27,28]. Polypyrrole
(Ppy), polyaniline (PANI), and polythiophene (PTH), poly(3,4-ethyle nedioxythiophene)
(PEDOT) are mostly used in the design of various high-tech devices and technological
applications such as corrosion preventing layers [29], accumulators [30], solar cells [31],
super-capacitors [32,33], coatings for electromagnetic shielding [34], sensors [35–38], and
biosensors [39].

Due to the high technological potential of CPs, a lot of attention has been dedicated to
the synthesis of these materials, and many chemical [40], electrochemical [39,41], enzyme
assisted [24], and even living cell-based CP synthesis approaches have been developed dur-
ing the last decades. During the here mentioned synthesis of CPs, various structures based
on CPs can be designed and the formed CPs can be easily doped by various compounds
and ions. In addition, some biological molecules can be entrapped within the formed
conducting polymer-based layers and these molecules (e.g., antibodies [42], receptors [39],
DNA [43], and enzymes [44]) in many cases can retain some biological functions, which
are important for biosensors and/or biofuel cells. If such CP-based composite materials
are integrated within proper electronics, they exhibit characteristics that are required for
particular bioelectronics. In some studies, it was demonstrated that some CPs are not
only compatible with biomolecules and are providing well suitable confinement for these
molecules, but are also compatible with neuronal cell lines [45], osteoblastics cells [46],
and stem cells [47] and do not irritate the immune system of mammalians [26]. Such
good biocompatibility of some conducting polymers provides new possibilities for the
application of them as ‘stealth coatings’ during the design of implantable biosensors and
biofuel cells. Biofuel cells are based on bio-functionalized electrodes that can generate
electrical power using some chemicals that are present in physiological fluids. Biofuel
cells can be open for the uptake of these chemicals, which are renewable by metabolic
processes, therefore, biofuel cells can use a practically unlimited amount of these materials.
Glucose is among the most reliable fuels for implantable biofuel cells [48]. These facts
enable significantly reduced dimensions of biofuel cells [49,50]. Hence, the possibility of
applying biofuel cells for the powering of biomedical devices seems very attractive because
it provides a good balance between the size of a power source and implanted biomedical
device (e.g., sensor). Some ‘implantable’ biofuel cells are able to generate electrical power
by conversion of glucose and some other chemical compounds, which are present in blood
and other fluids of mammalians [51–55], however, the biocompatibility aspects of such
biofuel cells still have been not well covered. Therefore, in this review, some insights
toward biocompatibility aspects of conducting polymers, which can be applied to hide the
most immunogenic parts of implantable biomedical devices from the immune system of
the patient, are outlined. Some CPs are finding very interesting applications in the design
of sensors based on molecularly imprinted conducting polymers, which can be imprinted
by various molecules ranging from rather small organics up to rather large DNA-based
structures and even proteins. Such CP-based structures possess rather high sensitivity
and selectivity comparable to that of affinity sensors based on immobilized antibodies,
receptors, and/or other affinity toward analyte exhibiting molecules/compounds [3,56].
Hence, CPs have many valuable properties that can be well exploited in sensors, biosensors,
and biofuel cells.

Therefore, in this review, we aim to overview some the most attractive methods of
CP-synthesis, and the involvement of some CPs in the charge transfer between biological
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structures (enzymes and/or living cells) and electrodes, which is critical in the development
of amperometric biosensors and the design of biofuel cells.

2. Immobilization of Biomaterials within Conducting Polymer-Based Structures

Different CP synthesis methods were applied for the modification of electrodes applied
in the design of amperometric biosensors, which are mainly based on chemical synthe-
sis, electrochemical techniques, and the biochemically induced formation of CP-based
structures.

The application of oxidizing compounds in the chemical synthesis of conducting poly-
mers is rather frequently applied to design conducting polymer-based sensing structures.
Chemical synthesis of CPs is based on the involvement of rather strong oxidizers such
as FeCl3 or H2O2 [40]. A very attractive way that is suitable for the synthesis of some
CPs is based on the initiation of their polymerization by H2O2 (Figure 1A). This method
is important because a rather clean conducting polymer can be formed by using H2O2
because the extent of this compound is easily degrading into water and oxygen and rather
clean conducting polymers can be formed. The only drawback of H2O2-based synthesis
is that for the more efficient formation of some CPs, the addition of some surfactants is
necessary, therefore, in addition to CP-based structures, some surfactant surrounding the
formed particles remains in the solution [40]. In one of our studies, we showed that the
formed polypyrrole optical absorbance maximum was ~465 nm and constantly increased
during the course of H2O2 induced polymerization (Figure 1B,C), and finally, polypyrrole
particles ~30 nm in diameter formed (Figure 1D) [40].
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It was determined that Ppy-based particles have a sufficient biocompatibility with
enzymes and even living cells [47,57] and minimally irritate the immune cells of mice
while such Ppy-particles were injected into the peritoneum of mice [26]. We have also
demonstrated that some CPs (e.g., Ppy) can be synthesized using [Fe(CN)6]4−/[Fe(CN)6]3−-
based redox cycling [58]. This synthesis route was later applied for the modification of
some microorganisms by this conducting polymer [59]. Using chemical synthesis, a large
quantity of CP can be formed; mostly, formed CPs are in the form of nano-and micro-
particles that remain suspended in colloidal solution and can later be deposited on the
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surface of the selected electrode. If it is necessary, such particles can be further modified by
some other molecules and/or structures. The main drawback of chemically synthesized
conducting polymers is not sufficient solubility in traditional solvents, which significantly
decreases the processability of formed CPs.

2.1. Enzyme Induced Formation of Conducting Polymers

Enzymes, which belong to the class of oxidoreductases, can be successfully applied
for the synthesis of some conducting polymers. There are two main routes of enzymatic
formation of CP: one is based on the direct formation of a polymerizable species in the
active site of enzyme and another one is based on the initiation of the polymerization
reaction by redox compounds (e.g., H2O2), which are formed during enzymatic reaction
catalyzed by oxidoreductases [60–69]. In such a way, the formation of polypyrrole was
performed by glucose oxidase (GOx) assisted polymerization and GOx was encapsulated
within the formed Ppy layer [24,44,61,64,68,69] (Figure 2).
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Such CP formation reactions are performed in the presence of environmentally friendly
compounds; therefore, they are often ascribable to ‘green’ chemistry based technologies.
Another advantage of such synthesis is that enzymatic formation of CPs can be performed
at room temperature and at almost neutral pHs [62,63]. Glucose oxidase (GOx) and some
other oxidases act as oxidizers of various substrates, in addition, at natural conditions in the
presence of the dissolved oxygen, they generate H2O2 [24], which is a rather strong oxidant
and can induce polymerization of some monomers, namely pyrrole [24,44,61,64,68,69],
aniline [61,65], phenanthroline [11], thiophene [61,66], and 9,10-phenanthrenequinone [67],
which all by this polymerization method are forming corresponding conducting poly-
mers. Polymerizable monomers can be polymerized by oxidases purified from different
microorganisms.

For the formation of CPs by water dissolved and by immobilized H2O2, generating
enzymes can be applied (Figure 3) and used to tune some analytical characteristics of
enzymatic-amperometric biosensors such as apparent Michaelis constant (KM(app.)), which
is extended due to the formation of an additional diffusion layer and an increase in charge
transfer efficiency [68,69], which is especially effective if additional structures that facilitate
charge transfer through the CP-based layer are embedded within the CP-based layer.
The stability of most enzymes is limited [70,71], therefore, in some particular cases, the
stability of immobilized enzymes can be improved by ‘self-encapsulation’ of enzymes
during enzymatic polymerization of CPs due to rather good biocompatibility of formed
CP-layers with entrapped enzymes (e.g., glucose oxidase immobilized on AuNPs/graphite
electrodes become at least three times more stable when covered by the Ppy layer) [72].
Therefore, this method is very useful in the design and improvement of amperometric
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biosensors and design of biofuel cell anodes and/or cathodes, while enzymatic reactions
can be applied for the generation of electrical current.

Nanomaterials 2021, 11, x FOR PEER REVIEW 5 of 23 
 

 

the stability of immobilized enzymes can be improved by ‘self-encapsulation’ of enzymes 
during enzymatic polymerization of CPs due to rather good biocompatibility of formed 
CP-layers with entrapped enzymes (e.g., glucose oxidase immobilized on 
AuNPs/graphite electrodes become at least three times more stable when covered by the 
Ppy layer) [72]. Therefore, this method is very useful in the design and improvement of 
amperometric biosensors and design of biofuel cell anodes and/or cathodes, while 
enzymatic reactions can be applied for the generation of electrical current. 

 
Figure 3. Formation of conducting polymer (A—polyaniline, B—polypyrrole, C—polythiophene) layers around the redox 
enzyme—glucose oxidase, which during catalytic action is producing H2O2, which in the presented polymerization 
reactions acts as an initiator. Adapted from [61]. 

2.2. Microorganism-Assisted Synthesis of Conducting Polymers 
Various microorganisms [73,74] and even some mammalian cells (such as 

erythrocytes [75] and lymphocytes [76]) can be applied in the design of biosensors and 
biofuel cells, however, charge transfer from these microorganisms toward the electrode is 
always the key issue and major challenge during the design of these bioelectronics-based 
devices. The employment of microorganisms in the formation of CPs enables us to 
improve some charge transfer properties of microorganisms modified in this way. In 
numerous studies, it was demonstrated that living cells [47,57] and microorganisms 
[59,77] could retain their biocatalytic properties after modification by conducting 
polymers. Microorganism-based synthesis of conducting polymers is very advantageous 
because microorganisms can retain their biocatalytic activity for a much longer period of 
time in comparison to isolated enzymes [78]. Therefore, various microorganisms have 
been applied for the formation of different polymers [79] including conducting polymers, 
e.g.: we have used several types of living microorganisms in the formation of polypyrrole, 
which is one of the most popular among the recently used conducting polymers. In 

Figure 3. Formation of conducting polymer (A—polyaniline, B—polypyrrole, C—polythiophene) layers around the redox
enzyme—glucose oxidase, which during catalytic action is producing H2O2, which in the presented polymerization reactions
acts as an initiator. Adapted from [61].

2.2. Microorganism-Assisted Synthesis of Conducting Polymers

Various microorganisms [73,74] and even some mammalian cells (such as erythro-
cytes [75] and lymphocytes [76]) can be applied in the design of biosensors and biofuel
cells, however, charge transfer from these microorganisms toward the electrode is always
the key issue and major challenge during the design of these bioelectronics-based devices.
The employment of microorganisms in the formation of CPs enables us to improve some
charge transfer properties of microorganisms modified in this way. In numerous studies, it
was demonstrated that living cells [47,57] and microorganisms [59,77] could retain their
biocatalytic properties after modification by conducting polymers. Microorganism-based
synthesis of conducting polymers is very advantageous because microorganisms can re-
tain their biocatalytic activity for a much longer period of time in comparison to isolated
enzymes [78]. Therefore, various microorganisms have been applied for the formation of
different polymers [79] including conducting polymers, e.g.: we have used several types of
living microorganisms in the formation of polypyrrole, which is one of the most popular
among the recently used conducting polymers. In another related research, we synthe-
sized polypyrrole by ‘redox cycling’ of [Fe(CN)6]4−/[Fe(CN)6]3−, which was assisted by
metabolic processes running in yeast [59]. As has been reported in our previous research,
the formation of Ppy can be induced by [Fe(CN)6]3− [58,59]. Therefore, in the case, if ‘redox
cycling’ of [Fe(CN)6]4−/[Fe(CN)6]3− is performed by redox-enzymes—oxido-reductases,
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which are present in plasma membrane, then Ppy is formed within the cell wall of yeast
cells (Figure 4) [59]. Later, we showed that polypyrrole formation can be performed without
any additional redox-able compounds [77].
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Bacterial strain Streptomyces spp., which synthesizes some extracellular redox enzymes
including phenol-oxidases, can initiate the polymerization of various phenolic compounds,
and was applied for the synthesis of polypyrrole [80]. In order to determine the location
of polypyrrole formed within the microorganism, we applied the ‘nonradioactive isotope
method’, which showed that polypyrrole was formed within the cell-wall and periplasmic
area, which is between the cell-wall and cell-membrane [81]. It is very attractive that after
the formation of Ppy, the modified cells remained viable, and synthesized Ppy integrated
into the cell wall and in the interphase area between the cell-wall and cell-membrane. In
this case, the synthesis of polypyrrole is induced by oxidized products formed during
the catalytic cycle of enzymes that are involved in metabolic processes of microorganisms
and/or other living cells. We determined that Ppy-based structures form intergrowths
within the cell wall of microorganisms (e.g., yeast cells) and, in this way, they influence
the elasticity of the cell wall and charge transfer efficiency through the cell wall and
membrane [81]. Through this conducting polymer, polypyrrole, the formation method
sufficient for charge transfer efficiency through the cell wall was achieved to form Ppy-
modified Rhizoctania sp. and Aspergillus niger [77,82,83], which can be applied in the design
of biofuel cells [77]. A similar CP formation method was applied for the enhancement of
the cell wall conductivity of Streptococcus thermophilus, Ochrobacterium anthropic, Shewanella
oneidensis, and Escherichia coli [84]. Increased charge transfer efficiency enabled these
microorganisms to be applied in biosensors [85,86] and in microorganism-based biofuel
cells (MBFCs) [77]. [Fe(CN)6]4−/[Fe(CN)6]3− conversion based redox cycling enables
the formation of Ppy in the solution [58] and inside living cells [59]. In this way, some
mammalian cells are also modified by polypyrrole [87]. There are some expectations that
some cell lines can be modified by conducting polymers and will probably find practical
applicability in biofuel cells.

2.3. Electrochemical Synthesis of Conducting Polymers

Electrochemical synthesis is very efficient during the formation of CP-based layers on
the electrode surface. A variety of electrical characteristics should be adjusted in order to
form a CP-based layer with the expected physico-chemical characteristics, but the most
important among them are: (i) adjustment of the most optimal potentials required for initi-
ation of polymerization reaction, and for periods that are applied between polymerization
periods, this is important when potential pulses are applied for the polymerization [39];
(ii) setting up of the limiting current, which is important when galvanostatic approaches
are applied, and (iii) potential scan diapason and sweep rate, which is important when
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potential cycling is applied [25,88]. Hence, the physico-chemical properties (thickness,
permeability and some others) of CPs can be controlled by changing these electrical charac-
teristics and some chemical parameters such as composition and pH of the polymerization
bulk solution. In addition, various biologically active materials (e.g., proteins) (Figure 5)
can be entrapped within the conducting polymer backbone by adding them into the
polymerization bulk solution [89–92].
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Adjustment of proper electro-polymerization conditions enables the analytical char-
acteristics of CP-based sensors to be changed [24,93]. Electro-deposition of the CP-based
layer enables layers to be formed with different characteristics and to cover electrodes by
layers with different selectivity and sensitivity. These electrodes can form sensor-arrays
that can be applied for the determination of multiple analytes [94]. The diffusion of organic
compounds, which acts as an organic fuel of the biofuel cell, via a matrix-based on CPs,
is also a significant factor during the generation of electrical current by amperometric
biosensors and electrodes used in biofuel cell design. Electrochemically accessible surface
area and porosity can be changed by the incorporation of organic molecules as spacers
between CP-forming chains [95]. The effect of various parameters on the conductivity
of free standing electrosynthesized polypyrrole films [96] and formation of polyaniline-
based urea biosensors [97] was well analyzed by Lakard’s research team. In addition,
we have provided a mathematical model (Figure 6B) suitable for the calculation of the
electrochemical formation of polypyrrole by potential pulses [40] (Figure 6A).
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3. Physicochemical Characteristics of Conducting Polymers

The polymeric backbone of conducting polymers is based on conjugated π–π bonds,
therefore, through these bonds, electrical charge can be easily transferred via the poly-
meric chain [92,98,99]. Due to advanced conductivity and other attractive charge transfer
properties [100,101], CPs are applied in the design of light emitting diodes, monitors, bat-
teries, sensors, and organic-based photovoltaic devices and smart windows, which can
be installed in cars, houses, and some other infrastructural units [102–104]. In addition to
unique electrical properties [24], some structures based on CPs can show very selective
affinity [105] and/or advanced optical/spectral characteristics [106]. Hence, the variation
of some of the physical characteristics (e.g., changes of electrical impedance and/or capaci-
tance, variation of spectral characteristics or fluorescence behavior, etc.) of the sensing layer
based on conducting polymers is mostly exploited for the registration of analytical signal.
A vast number of conducting polymers has been used in the structure of amperometric
biosensors and biofuel cells, but among them, polypyrrole is used the most frequently [24].
Some conducting polymers form porous [107,108] and/or gel-based structures [109–111],
therefore, they are well suited for the efficient immobilization of redox enzymes that need
water for their catalytic activity, which is required for amperometric biosensors and biofuel
cells. Furthermore, some conducting polymers possess a rather low solubility in water,
but they have been reported as biodegradable, therefore, such CPs can be exploited in the
design of biodegradable electronics and/or bioelectronics [112,113]. Some CP-based com-
posite materials are selective to particular metal ions [114], hence, they can be applied in
the development of analytical systems for the detection of mercury(II) [115], lead(II) [115],
and copper(II) [115,116].

4. Compatibility of Conducting Polymers with Proteins, Living Cells and Immune
System of Mammalians

Nowadays, implantable biomedical devices are very rapidly evolving [117] and they
demand miniature power sources [118]. Therefore, the demand for biofuel cells suitable for
implantable bioelectronics-based devices, especially for biosensors, is constantly increasing.
However, this research direction has many specific challenges [119], one of which is related
to various biocompatibility aspects of implanted biosensor and/or biofuel cell structures,
which can be fouled by proteins and/or other biomolecules [120–122], which are present in
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various ‘body-fluids’, and/or can irritate the immune system of the patient [123]. Despite
these challenges, biofuel cells are ‘occupying new horizons’ including implantation into
various plants [124,125] and organisms (including rats [126–128], rabbits [129], snails [53],
clams [55], and insects [130]), and despite the divergence of many different opinions [131,132],
they are expected to be successfully implanted in the human body [133–135].

Many various researches have been dedicated to evaluate some biocompatibility
aspects of CPs with proteins [3,11,24,61,64], DNA [43,105], and stem cells [47,57] and
microorganisms [59,81–83]. However, only a few of them have been dedicated to inves-
tigate how conducting polymers affect the immune system of mammalians [26]. These
biocompatibility-related issues have become the most important because some biofuel cells
and amperometric biosensors have recently been implanted into patient organs [136,137] or
attached to different parts of the body (e.g., to skin, eyes, mucosa) [138]. If the biocompati-
bility of implanted/attached biosensors and/or biofuel cells [139] with the patient body is
not sufficient, then inflammation and various forms of allergies can be induced [140,141].
Selection of a proper immobilization method suitable to retain the activity of immobilized
biomaterial is critical during the development of biosensors [142,143] and biofuel cells.
Therefore, many studies have been dedicated to the assessment of CP-compatibility with
proteins, and here, practically all cases where entrapped, covalently immobilized, and/or
adsorbed proteins retained their biological functions can be declared as biocompatible. In
this research direction, we evaluated the influence of polypyrrole toward more advanced
‘biological systems’ such as living stem cells [47,57] and or the immune system of mam-
malians [26]. In the last here mentioned research, we determined that polypyrrole does not
has any significant effect on the immune system of mice cells because these hematologi-
cal parameters, which reflect the state of the immune system, remained unchanged [26].
However, some dose-dependent influence of polypyrrole-based nanoparticles on bone
marrow-derived stem cells has been observed at a rather high concentration of nanoparti-
cles [57]; here if a low concentration of polypyrrole nanoparticles was applied, the toxic
effect to mouse hepatoma (MH-22A), human T lymphocyte Jurkat, and primary mouse
embryonic fibroblast (MEF) cells was not observable [57]. Above-mentioned evaluations
illustrated that polypyrrole is rather well biocompatible with assessed cell-lines [47,57]
and are compatible with the immune system of mammalians (laboratory mice) [26]. Some
biocompatibility related aspects of the conducting polymer polyaniline were also evalu-
ated and determined [144]. Moreover, in some scientific works, it was demonstrated that
some specific stimulation by an electric field induced nerve cell differentiation deposited
on a composite structure consisting of polypyrrole/poly(2-methoxy-5 aniline sulfonic
acid) [145]. There are some positive expectations that the biocompatibility of CP-modified
electrodes can be increased when they can be mixed with some other biocompatible
polymers (such as chitosan [146–148]) and/or form hydrogels that contain a significant
amount of water [109,149,150]. Such conducting polymer-based gels can be applied as
the scaffolds for the incorporation of some tissue-forming cells [151,152], which can be
used for tissue engineering and/or transplantation [153] as well as in many other fields of
biomedicine [154–157]. The rather good biocompatibility of polypyrrole and some other
conducting polymers enables the use of these polymers in the creation of enzymatic biofuel
cells [77] that can power some implantable/attachable sensors or other biomedical tools.
However, it should be noted that the number of real biocompatibility-based evaluations is
still not very high, therefore, significant attention could be paid to this research direction.

5. Most Important Functions of Conducting Polymers in Amperometric Biosensors
and Biofuel Cells

Amperometric biosensors and biofuel cells are mostly based on immobilized enzymes
or living cells [158,159]. Among the many oxidoreductases, glucose oxidase (GOx) is used
mostly in biosensor design [160]. The same GOx can be well applied for the development of
biofuel cells [161–163] and self-charging capacitors [164] based on the operation of biofuel
cells [165–167]. GOx itself can be involved in the polymerization reaction of many CPs,
namely, polypyrrole, polyaniline (Figure 7), polythiophene, etc.
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CPs-based layers play a number of different roles in the design of amperometric
sensors because they can serve: (i) as an immobilization matrix [24]; (ii) as a diffusional
barrier for enzymatic reaction substrate, which increases the so called apparent Michaelis
constant (KM(app.)) for immobilized enzymes and, therefore, in this way can extend the
linear-range of amperometric biosensors [44]; and (iii) and in some cases, they act as charge
transfer mediators [11]. Therefore, the entrapment of enzymes within conducting polymer-
based structures enables some bioanalytical characteristics (such as limits of detection and
linear ranges) of biosensing systems to be changed. Biosensors based on GOx, which is
modified by conducting polymers (e.g., polyaniline, polypyrrole, or polythiophene) have
been reported and in such systems, soluble redox mediators (ferrocene, benzoquinone,
2,6-dichlorophenol indophenol, phenazine methosulfate, and some others) were applied
in order to facilitate charge transfer between the enzyme and electrode. Facilitation of
indirect CT by the application of some nanomaterials (such as metal and semiconductor
nanoparticles) is rather simple, therefore it is applied in most electrochemical enzymatic
biosensors [65,68,69] and biofuel cells [169].

Several ‘generations’ of amperometric biosensors are determined according to the ap-
plied charge principle. In ‘first-generation’ amperometric biosensors, charge is transferred
via enzymatic reaction products [170] (e.g., if oxidases are applied, then electrons from
one substrate are transferred to dissolved oxygen and hydrogen peroxide is formed [171]);
in the case of such amperometric sensors, the analytical signal can be based on electro-
chemical registration of decreasing oxygen concentration or increasing hydrogen peroxide
concentration (Figure 8A).
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In the ‘second generation’ of amperometric biosensors, dissolved charge transfer medi-
ators are applied that transfer the charge while oxidized/reduced forms of these redox me-
diators diffuse between the redox-able active site of the enzyme to the electrode (Figure 8B).
In the ‘third generation’ of amperometric biosensors, charge transfer is based on the direct
exchange of charge carriers between the enzyme’s active site and electrode [172,173], and
the same effect can be exploited in direct electron transfer-based biofuel cells [161] (Figure 9);
to improve/facilitate this process, conducting polymers can be applied [174–176]. Some-
times, additional sophisticated ‘wiring’ routes are applied in order to establish the charge
transfer between the redox sites of enzymes and electrodes [174,177–179].
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It should be noted that fast and efficient charge transfer is especially critical for the
action of biofuel cells. It should be noted that in addition to the charge transfer between the
enzyme and electrode, very critical is the understanding of the charge carrier pathways and
their dynamics within oxidoreductases applied in the design of bioelectronics-based de-
vices [179]. From the scientific point of view, understanding of the charge transfer pathways
and mechanisms is extremely important in order to exploit enzymes efficiently [180], which
is important during the design of biofuel cells and biosensors. In some redox enzymes,
charge transfer pathways are rather complex because some radicals of amino acids can be
involved in intrinsic charge transfer pathways [181]. Such amino acids (e.g., tryptophan
and tyrosine [182]) are mostly based on aromatic radicals and they can attend not only
in intrinsic, but also in extrinsic charge transfer pathways that are typical for various
biological systems [183–185]. Both electron- and hole-based charge transfer pathways can
be observed between some redox enzymes (e.g., in GOx) and some conducting polymers
that act as p-type organic semiconductors (e.g., carbazole-derivatives) [174,179].

Some other p-type semiconducting polymers (including poly(3,4-ethylenedioxythi-
ophene (PEDOT) due to suitable ionization potential, which is below 5.0 eV) show suffi-
cient ability to transfer holes [186]. It was predicted that charge transfer via hole hopping
to some extent protects enzymes from oxidative damages [187]. Such polymers are able
to not only transfer charge via holes, but can even inject them into the intrinsic charge
transfer pathway of some redox enzymes including glucose oxidase as reported for some
carbazole derivatives [174,179] or PEDOT [188–190]. Application of such p-type semicon-
ducting polymers is very promising for biosensors and biofuel cells because it enables
the stability of the enzymes to be retained for a longer period of time, therefore, in some
of our works, we applied several p-type semiconducting carbazole-based derivates for
the development of rather stable glucose oxidase-based biosensors [174,179]. The action
of such glucose biosensors is well supported by DFT-based computations [179], which
enabled the charge transfer mechanism to be elaborated not only in polymer, but also
inside the enzyme, and to calculate charge transfer characteristics [179] that were in agree-
ment with those determined by experimental approaches [174]. All these properties of
conducting polymers can be applied during the development of advanced biosensors,
which will have analytical characteristics better suitable for particular analytical purposes
(e.g., the entrapment of redox enzymes), which initially possess rather low KM(app.), within
CPs enables the increase in the ‘upper limits of analyte determination’ due to the formed
CP-based ‘diffusion layer’ [24,65,66]. In this way, glucose biosensors can be based on
glucose oxidases that mostly have rather low KM(app.), which are mostly much lower than
the glucose concentration in the blood serum [191].

Some CPs can facilitate electron transfer between the active-site of the enzyme and
electrode [11], which is important during the development of biofuel cells and amperomet-
ric biosensors [24,44]. However, active-sites in some redox enzymes are located within the
protein backbone. Therefore, charge transfer to/from these active-sites is not possible even
through conducting polymer-based structures.

In some of our previously published studies, we determined that charge transfer
could be established by structures based on polyphenontraline [11] and carbazole-based
derivatives [174,179]. During the modeling of amperometric biosensors, glucose oxidase
is applied as a model enzyme. Therefore, glucose oxidase was entrapped within some
CPs [11,24,44]. However, electron transfer from the active-site of enzymes and the elec-
trode still remains a challenging problem in these structures, the most frequent charge
transfer is established by dissolved redox mediators or by electrodeposited conducting
polymers [11]. Therefore, in some biosensors, conducting polymers can serve as electron
transfer mediators and as a matrix within which redox enzymes are immobilized [192,193].
The applicability of conducting polymers can be improved by the formation of various
copolymers based on monomers that form conducting polymers (e.g., in this way, specific
functional groups, which are required for covalent immobilization of enzymes (namely,
carboxylic groups, amino groups, etc.), can be introduced) [194]. In this way, the pyrrole-2-
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carboxylic acid was polymerized into particles of poly-(pyrrole-2-carboxylic acid) (PCPy)
by chemical polymerization initiated by H2O2, and then covalently modified by glucose
oxidase via formed amide bonds, which were formed after the activation of carboxylic
groups by N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) and N-
hydroxysuccinimide (NHS). During this activation step, EDC reacts with carboxyl groups
and forms active O-acylisourea intermediates, which couple NHS and form amine-reactive
N-sulfosuccinimidyl esters on the surface of the PCPy layer that during the next step react
with the amino groups of glucose oxidase. Then, this GOx/PCPy nanocomposite was
applied for the modification of graphite electrodes and applied in the design of a glucose
sensor [194] (Figure 10).
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The immobilization of enzymes enables biosensors to be applied for continuous
and/or repeating measurements of analytes, however, despite numerous efforts to retain
the stable activity of enzymes, they gradually lose their activity, which negatively influ-
ences the accuracy of the analytical signal [168]. Hence, limited stability of amperometric
biosensors is a drawback that requires special attention and, therefore, these biosensors
require additional calibration procedures that are performed periodically and/or periodical
exchange/replacement of enzyme-based structures.

It should be noted that various charge transfer reactions play a very important role
in photosynthesis, metabolic pathways, and many other biological and artificial redox
systems [195–198]. Both electron and hole transfer mechanisms are important for charge
transfer in biosensors and biofuel cells. However, recent developments in electrochem-
istry and bioelectronics mostly take into consideration only the electron transfer-based
reactions. For this reason, advanced understanding of the charge transfer mechanisms and
pathways is required for the development of advanced bioelectronics-based devices. In
addition, charge hopping and/or tunneling mechanisms [199,200] can be involved for the
charge transfer between electrodes and redox enzymes or other redox proteins [201,202].
These mechanisms provide the ability to transfer charge through rather long distances,
however, the efficiency of these charge transfer mechanisms is not very high and is always
determined by the electrical potential of electrodes and redox potentials of used materials.
Conducting polymers, which are used for the modification of electrodes applied in the
design of amperometric biosensors and/or biofuel cells, can provide hole- or electron-based
conductivity. Therefore, charge transfer between these conducting polymers and redox
enzymes could also be evaluated in such a way that takes into account the many different
mechanisms of charge transfer between redox enzymes and conducting polymers [174,179].

6. Conclusions

Efficient charge transfer (CT) plays a crucial role in the design of biosensors and
especially in the development of reliable biofuel cells. In order to improve CT in these
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bioelectronics-based devices, some nanomaterials are applied. Indirect CT is the most
frequently exploited during the design of biosensors and even during the development of
biofuel cells, here, nanomaterials, especially metal and semiconductor nanostructures, play
an important role. Nanocomposites based on conducting polymers and some nanomaterials
can provide various technological advantages including increased surface area, which
is required for the establishment of higher current densities that are of special interest
during the development of biofuel cells. In addition, CPs offer very attractive ways for the
immobilization of enzymes. Among the many different methods used for the formation
of conducting polymer-based structures and nanostructures, electrochemical deposition
is one of the most efficient due to the possibility of precise control of the polymerization
process by the adjustment of the most suitable electrochemical parameters. In addition to
electrochemical synthesis, oxidizing agents, redox enzyme, and microbes can be applied as
initiators of CP synthesis, which all confirmed that through these ways, formed CP-based
enzyme/CP composites could be applied in the design of biosensors and biofuel cells.
In enzymatic-electrochemical biosensors and biofuel cells, some other characteristics of
the enzyme/CP-based layer are also very important, namely, density, permeability, and
thickness of the structure, which is formed over the electrode.

Direct charge transfer (DCT), which is very often simply called direct electron transfer
(DET), from enzymes, except DCT/DET for a few types of enzymes (hemoproteins, Cu
ion-based proteins, and some other enzymes), is still very rarely realized. Despite of this
evaluation of DCT/DET is a very interesting and promissing research direction, which in
the future will provide many interesting solutions. Recently, some rather sophisticated
DCT/DET pathways from enzymes toward electrodes have been established by several
research groups. In some of these DCT/DET routes, conducting polymers (CPs) such as
polypyrrole and carbazole-derivatives were applied. In some of our research and theoretical
calculations, we have demonstrated that not only electron transfer, but also hole transfer,
can play a role and can be well exploited in the design of bioelectronics-based devices.

The good biocompatibility of some conducting polymers provides new possibilities
for their application as ‘stealth coatings’ in the design of implantable biosensors and
biofuel cells.
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