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Abstract
Prostate cancer is one of the leading causes of mortality among aging males. There is an

unmet requirement of clinically useful biomarkers for early detection of prostate cancer to re-

duce the liabilities of overtreatment and accompanying morbidity. The present population-

based study investigates the factors disrupting expression of multiple functionally related

genes of DNA mismatch repair pathway in prostate cancer patients to identify molecular at-

tributes distinguishing adenocarcinoma from benign hyperplasia of prostate. Gene expres-

sion was compared between tissue samples from prostate cancer and benign prostatic

hyperplasia using real-time-PCR, western blot and immunohistochemistry. Assessment of

genotypes of seven single-nucleotide-polymorphisms of three MMR genes was conducted

using PCR-coupled RFLP and sequencing. Promoter methylation was interrogated by

methylation-specific-PCR and bisulfite-sequencing. Interaction between microRNAs and

MMR genes was verified by 3'UTR-based dual luciferase assays. Concurrent reduction of

three MMR genes namely hMLH1, hMSH6 and hMSH2 (34-85%, P<0.05) was observed in

prostate cancer tissues. hMSH6 polymorphism rs1800932(Pro92Pro) conferred a border-

line protection in cancer patients (OR = 0.33, 95% CI = 0.15-0.75). Relative transcript level

of hMLH1 was inversely related (r = -0.59, P<0.05) with methylation quotient of its promoter

which showed a significantly higher methylation density (P = 0.008, Z = -2.649) in cancer

patients. hsa-miR-155, hsa-miR-141 and hsa-miR-21 gene expressions were significantly

elevated (66-85%, P<0.05) in tumor specimens and negatively correlated (r = -0.602 to

-0.527, P<0.05) with that of MMR genes. hsa-miR-155 & hsa-miR-141 and hsa-miR-155 &

hsa-miR-21 were demonstrated to bind to their putative seed sequences in hMLH1 and

hMSH6 3’UTRs respectively. Relatively higher expression of DNA methyl-transferases

(DNMT1 and DNMT3b) and HIF-1α genes (34-50%, P<0.05) were also detected in tumor

tissues. This study provides statistical evidence that MMR deficiency is correlated with

hypermethylation of hMLH1 promoter and upregulation of hsa-miR-155, hsa-miR-141 and
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hsa-miR-21 in prostate cancer. This comparative study reflects that microRNA expression

level, particularly hsa-miR-155, exhibits predictive signature of prostate adenocarcinoma.

Introduction
Prostate cancer is a complex multi-factorial disease characterized by an array of clinical pheno-
types ranging from slow growing indolent tumors to aggressively metastatic lesions. Rate of
prostate cancer incidence varies by over 25-fold globally with Australia, New Zealand, Europe
and Northern America having the highest rates [1,2]. The age-adjusted incidence rates in the
Asian countries are low and range between 2.3 to 9.0 per 1,00,000 [3–6]. Overall, the rate of
prostate cancer incidence in India is low (3.7/1,00,000) [7,8]. In recent past, with the increased
migration of rural population to urban areas, changing life styles, increase in the proportion of
elderly persons in the population and improvement in awareness and disease surveillance,
there has been a rise in the absolute number of new prostate cancer patients in the age group
above 65 years in the metropolitan cities of India [8–10]. According to the most recent Popula-
tion Based Cancer Registries (PBCRs) of different cities for the time period 2008–2011, prostate
is the second leading site of cancer among males in large Indian cities like Delhi, Kolkata, Pune
and Thiruvananthapuram and third leading site of cancer in cities like Bangalore and Mumbai
[11]. Since an increase in incidence rate is correlated with increased mortality rate particularly
in countries with lower resource setting, the current situation underscores the necessity for an
accurate and early detection of the disease.

Genome-wide and candidate gene based association studies in prostate cancer have at-
tempted to elucidate the role of common risk alleles affecting disease susceptibility and aggres-
siveness [12–14]. But many of these were inconclusive as a sizable fraction of disease-
associated SNPs were located in non-coding region while some of them suffered from lack of
replicability in other populations [15–17]. Non-reproducibility of genetic association studies
may be explained by multiple confounding factors such as, (a) a difference in risk allele fre-
quency between populations, (b) divergent association of an allele with risk in different popula-
tions, and (c) possible interaction of an allele with other genetic or environmental factors that
vary among populations [18]. This highlights the importance of an approach that explores the
biological association of cancer risk alleles which may essentially be broadly consistent across
ethnic groups.

Benign prostatic hyperplasia (BPH) is another common clinical syndrome in aging men
which often coexists with prostate cancer. Prostate cancer and BPH have striking similarities
with respect to hormone-dependent growth, response to anti-androgen therapy and risk fac-
tors such as prostate inflammation and metabolic disruption [19]. More than 80% of men with
prostate carcinoma also have a BPH component although the latter is not considered to be a
precursor [20–22]. A Swedish nationwide population-based record-linkage data analysis
among 86,626 men showed that selection of BPH treatment modalities also has significant im-
pact on prostate cancer risk and mortality [22]. Over the past few decades the serum prostate
specific antigen (PSA) level screening has been used as a tool for initial surveillance of prostatic
diseases. Since PSA is not a reliable screening tool, urologists, nowadays, use different pre-
treatment risk stratification models, which combine serum PSA level, clinical staging and biop-
sy Gleason score in order to define pathological stages and predict the risk of disease recurrence
following definitive local treatment [23–26]. Unfortunately, these stratification models do not
take into account the genetic and molecular characteristics featuring the tumors in the prostate
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gland. The high incidence of prostate cancer in many parts of the world and its frequent co-ex-
istence with BPH demand for identification of molecular criteria that may be incorporated in
the risk prediction tools of prostate cancer to reduce overtreatment and economic burden on
the healthcare system in many countries including India.

DNAmismatch repair (MMR) system plays a ubiquitous role in ensuring replication fidelity
that is central to preservation of genomic integrity [27]. Defects in MMR genes confer a muta-
tor phenotype with small genetic disruptions leading to emergence of somatic mutations that
may be significant for initiation of late onset diseases like prostate cancer [28]. Approximately
73% of prostate tumors are carriers of MMR gene mutations, which could be equated to carri-
ers having a 3.67-fold (95% CI, 2.32–6.67) increased risk of prostate cancer [29]. A number of
population-based case-control studies have indicated the possible association of different
MMR polymorphisms with susceptibility, aggressiveness and recurrence of prostate cancer
[30–33]. However, it is still controversial whether men with Lynch syndrome are at heightened
risk of prostate cancer. To address these conundrums, the present study compares MMR gene
expression in BPH and prostate cancer patients and appraises the factors regulating the pat-
tern. Apart from the heritable or somatic mutation, non-genetic chemical aberration such as
abnormal promoter methylation and dysregulation of microRNAs are increasingly recognized
as part of aging and age-related pathogenesis [34–36]. Therefore, to explore the regulatory fac-
tors underlying MMR gene expression, in addition to genetic epidemiology, we investigated
methylation status of MMR gene promoters. Since, altered microenvironment in the aging
prostate gland may affect the repertoire of noncoding regulatory RNAs, we also studied the ex-
pression of oncomiRs namely hsa-miR-21, hsa-miR-141 and hsa-miR-155 and their interac-
tion with the 3’UTR regions of MMR genes under study. The findings presented in this
comparative evaluation mirrored the heterogeneous events occurring in patients’ tissue speci-
mens and can be utilized to develop a cost-effective biomarker if incorporated as a tool in can-
cer prediction model.

Materials and Methods

Recruitment of patients
Age and ethnicity matched male patients with prostate cancer (n = 104) and BPH (n = 186)
were recruited from Departments of Urology from Saroj Gupta Cancer & Research Institute,
Thakurpukur, Kolkata and Calcutta National Medical College and Hospital, Kolkata in the pe-
riods between November 2007 to September 2012 and December 2012 to October 2013 respec-
tively. All patients were new cases with no medical history of chemotherapy or surgery. The
patients were then examined by a panel of expert urologists and evaluated according to stan-
dard imaging procedures and laboratory analyses for prostate cancer. Information on demo-
graphic and family histories and clinical parameters such as serum PSA, blood sugar, past
infections and biopsy report confirming the malignancy and Gleason score had been recorded
from all study participants. Patients with prostatitis and high-grade prostatic intraepithelial
neoplasia were excluded. Two ml of venous blood had been collected from all study partici-
pants and used for DNA isolation. Tissue samples were collected from a subset of BPH patients
(n = 25) undergoing trans-rectal ultrasound (TRUS) guided biopsy or transurethral resection
of prostate (TURP). On the other hand, tissue samples were collected from a subset of 25 pros-
tate cancer patients who underwent TRUS-guided biopsy. Prior to sample processing for fur-
ther molecular experiments, a pair of needle biopsy specimen was collected from the same
region of a patient, one of which was subjected for pathological justification of tissue composi-
tion to detect any cancerous lesions. Three pathologists independently examined the histologi-
cal features of each tissue specimen after hematoxylin and eosin staining. Cancer samples with
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70% tumor cell content and Gleason score between 6 and10 were included in this study. The
other section was stored at -80°C for future molecular biological analyses. Relevant clinical and
demographic details of all the study participants including those where from tissue samples
were collected have been summarized in Table 1.

Ethics statement
Each patient contributed to the study signed a written informed consent. The study was ap-
proved by the University Biosafety and ethics committee, University of Calcutta and had been
carried out following the ethical principles for medical research involving human subjects men-
tioned in declaration of Helsinki developed by World Medical Association (WMA).

Gene Expression assay
Total RNA (1μg) extracted from tissue (>50 mg) using TRI reagent (Sigma Aldrich) was re-
verse transcribed using random hexamers and High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems Inc.). The optimized condition for cDNA preparation was 10 mins at
25°C, 120 mins at 37°C followed by heating at 85°C for 5 mins in a thermal cycler (Applied Bio-
systems GeneAmp PCR System 9700) and stored at -20°C. 18S rRNA and β-actin (ACTB) were
used as endogenous controls. A 1:10 fold dilution of cDNA samples were used as the template
and all quantitative PCR reactions were carried out in a 10 ml reaction volume with 5 ml of
(2X) Maxima SYBR Green/ROX qPCR Master Mix (Thermo Scientific) with optimized con-
centrations of specific primers using Applied Biosystems 7900HT Fast Real-Time PCR System
(S1 Table). The thermal cycler was programmed for an initial denaturation step of 5 min at
95°C followed by 40 thermal cycles of 30 sec at 95°C, 30 sec at 60°C and 30 sec at 72°C.The

Table 1. Clinical and demographic characteristics of the study participants

Characteristics BPH Prostate Cancer P value Logistic regression analyses
Estimate (P values)

Genetic Epidemiology

Number of subjects 186 104

Mean Age(years) 67.33+7.7 68.5+8.88 0.241 3.952e-18(0.691)

Serum PSA level 6.04
+10.89

73.57+84.00 0.0001* 6.478e-17(0.541)

Prostate volume 52.57
+25.37

83.13+32.36 0.001* -9.093e-20(0.958)

Metastasis n = 16

Gleason Score < 6: n = 29 (27.9%); 7: n = 24 (23.07%); >8:
n = 51 (49.03%)

Gene expression and promoter
methylation

Number of subjects 25 25

Mean Age(years) 69 +7.13 71.71+9.63 0.263

Serum PSA level 5.8+6.5 73.4+38.57 0.0001*

Prostate volume 92.97
+72.89

73.11+30.69 0.215

Metastasis n = 04

Gleason Score < 6: n = 07 (28.0%); 7: n = 08 (32.0%); >8:
n = 10 (40.0%)

*P value significant at 0.05.

doi:10.1371/journal.pone.0125560.t001
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experiments were carried out in triplicate to ensure best reproducibility including the non-tem-
plate controls each time following MIQE criteria. Specificity of PCR amplification for each
primer pair was confirmed by melting curve analysis.

Western blot
Protein extracts (30–40 μg/lane) prepared from 100 mg of frozen tissue from 12 randomly se-
lected samples (n = 6 for each group) from the gene expression panel using RIPA buffer and
Protease inhibitor cocktail (Sigma) were resolved in SDS-PAGE using PageRuler Plus Pre-
stained Protein Ladder (Thermo Scientific) and transferred to polyvinylidene fluoride mem-
brane (Pall Corporation). The primary antibodies used included rabbit polyclonal anti-MLH1
(C-20: sc-582), anti-MSH2 (N-20: sc-494), goat polyclonal anti-MSH6 (N-20: sc-1243), mouse
monoclonal anti-HIF-1α (28b: sc-13515) and anti-β-actin (anti-ACTB) (C4: sc-47778) (Santa
Cruz Biotechnology). Band intensity estimation and quantification were done using ImageJ
software (http://imagej.nih.gov/ij/). Average optical density of the MMR proteins for a sample
was normalized with respect to that of ACTB.

Immunohistochemistry
Paraffin-embedded tissue sections of size 5 μmwere deparaffinized and rehydrated. Following
antigen-retrieval, nonspecific binding and endogenous peroxidase were blocked by incubating
sections in PBS with BSA and a solution of H2O2 in methanol successively. Tissue sections
(n = 4 for each group) were incubated with primary antibody overnight at 4°C in a moist cham-
ber, washed and incubated with corresponding secondary antibody. Peroxidase activity was vi-
sualized with 3,3'-diaminobenzidine. After hematoxylin counterstaining, sections were
dehydrated and mounted in Distyrene Plasticizer Xylene. In negative controls PBS substituted
primary antibody. The slides were examined under light microscope with 400X magnification.
The primary antibodies used were the same as those used for Western blot.

Genetic epidemiology
Approximately 100 ng of genomic DNA isolated from Buffy coat of blood samples (2 ml) using
DNeasy blood and tissue kit (Qiagen) was amplified with primer pairs specific for seven single
nucleotide polymorphisms (SNPs) (S2 Table). Genotypes were assigned by digesting the PCR
products with 10U of respective restriction endonucleases (NEB Inc.) as per manufacturer’s in-
structions followed by agarose gel (1.5–2%) electrophoresis. To confirm the genotypes ascribed
by RFLP, PCR products from 15% of the total sample were subjected to sequencing using Big-
Dye Terminator v3.1 and ABI Prism-3100 Genetic Analyzer (Applied Biosystems). Locus
rs1799977 was genotyped directly by sequencing.

Promoter methylation assay
CpG islands were mapped using CpGplot (http://www.ebi.ac.uk/Tools/seqstats/emboss_
cpgplot/) along 1 kb upstream of the transcriptional start site (TSS) of all three MMR genes.
DNA (1μg) isolated from tissue samples using DNeasy blood and tissue kit were subjected to bi-
sulfite treatment with Epitect Bisulfite kit (Qiagen). A specific nested-PCR was performed using
products from first amplification reaction and methylation specific primers with bisulfite-modi-
fied DNA from tissue samples (S1 Table). Negative control samples with water were included
for each set of PCR reaction to check for PCR contamination. To establish methylation-specific
PCR (MSP), the technique was standardized by using different concentrations of bisulfite modi-
fied DNA (e.g. 50, 100, 200 and 250 ng) as starting material to identify a threshold minimum
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concentration that produced positive result. Once the DNA concentration was optimized, MSP
was repeated for different number of cycles (e.g. 30, 35, 38 and 40 cycles) to standardize the PCR
protocol. DNA from normal leukocytes treated in vitro with SssI methyltransferase (NEB Inc.)
following manufacturer’s protocol was used as a positive control for the methylated alleles. DNA
from normal leukocytes that was not bisulfite-modified was used as negative control for methyl-
ation. Each PCR product (10μl) was directly loaded onto 2% agarose gel, stained with ethidium
bromide and visualized directly under UV illumination. Quantitative assessment of methylation
status of hMLH1 promoter was performed with bisulfite-modified DNA in 7900 HT instrument,
using SYBR Green/ROX qPCRMaster Mix (Thermo Scientific). A region devoid of CpG islands
was amplified from ACTB locus that served as endogenous control in qMSP. Leukocytes DNA
(5 μg) from a healthy individual was fully methylated in vitro with 20 U SssI methyltransferase
(NEB Inc.) and its serial dilutions (90–0.009 ng) were used to construct a calibration curve for
each plate. Negative controls without template and positive controls with completely methylated
DNA were included in each set of PCR assays. The relative level of hMLH1 promoter methyla-
tion for each sample was normalized with respect to that of ACTB [(MLH1/ACTB) x 1000] and
log-transformed value of this measure was referred to as methylation quotient (MQ). Bisulfite-
modified DNA (100 ng) isolated from tissue (n = 50) and Buffy coat (n = 30) was amplified
using methylation-specific primers followed by sequencing of the PCR products. Bisulfite se-
quencing of hMLH1 promoter for leukocyte samples was carried out for the same set of samples
employed in qMSP experiments and the cancer patients included in this assay had localized
tumor.

3'UTR assay
3'UTR sequences from hMLH1 (326bp), hMSH2 (485bp) and hMSH6 (352bp) genes encom-
passing target sites for microRNAs under study were amplified using specific primers contain-
ing recognition sites for XhoI and NotI, cloned into pTZ57R/T vector (InsTAclone PCR
Cloning Kit, Fermentas) and subcloned into pSiCHECK2 (S1 Table). Approximately 100 bp
upstream and downstream sequences flanking the 70 nucleotide pre-miR sequences (http://
www.genecards.org/) were amplified for hsa-miR-21, hsa-miR-141 and hsa-miR-155 using ap-
propriate primers with BamHI and HindIII recognition sites and cloned into pRNAU6.1 vector
(S1 Table). PC3 and HepG2 cell lines obtained from National Centre for Cell Science, Pune,
India were maintained in RPMI 1640 and DMEMmedia respectively containing 10% (v/v)
fetal calf serum (Gibco BRL), 100 units/ml penicillin, 100 mg/ml streptomycin in a humidified
5% CO2 chamber. Cells (105) were seeded 14–16 hrs before transfection, transiently transfected
with empty pSiCHECK2 and cotransfected with 0.1 mg/ml of the 3'UTR construct in pSi-
CHECK2 with either 0.25 mg/ml of empty pRNAU6.1 or with pre-microRNA construct in
pRNAU6.1. Cells were lysed after 48 hrs and Firefly and Renilla luciferase activities were evalu-
ated using DLR assay system in a GloMax 20/20 Luminometer (Promega). Renilla luciferase
activity was normalized with respect to Firefly luciferase activity and total protein produced
was estimated by Bradford method. All transfection assays were done in triplicate. The change
in normalized luciferase expression was denoted as percentage RLU relative to the control.

MicroRNA expression
To find out the potential microRNA binding sites, 3'UTR region of a gene was scanned using
TargetScan (www.targetscan.org/), miRBase (www.mirbase.org/), microRNA.org (www.
microrna.org/), RegRNA (www.regrna.mbc.nctu.edu.tw/) and MicroCosm (www.ebi.ac.uk/
enright-srv/microcosm/). Target microRNAs were selected based on its conserved seed match
or seed match with a higher context score. Total RNA (1μg) isolated from tissue samples were
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reverse transcribed using miScript PCR starter kit (Qiagen) according to manufacturer’s proto-
col and microRNAs were quantified using miScript SYBR Green PCR kit and 10X miScript
Primer Assay (specific for microRNA of interest, Qiagen). U6 small nuclear 2 was quantified to
normalize the levels of microRNA expression using Hs_RNU6B_2 miScript Primer Assay
(Qiagen).

Statistical Analysis
Expression of MMR and microRNA genes was quantified in terms of RQ (Relative Quantifica-
tion = 2-ΔΔCq) value where ΔCq expression of a cancer sample is normalized to BPH control.
Percentage reduction in mRNA level calculated as (1-ΔΔCq)�100 was represented by bar dia-
gram and analyzed by Student-t test in GraphPad Prism (http://www.graphpad.com). Pairwise
Pearson’s correlation co-efficients and corresponding P values (two-tailed) were calculated
using the ΔCq values representing MMR and microRNA transcripts under study. Genotype
and allele frequencies of polymorphic loci were computed by gene counting. Any departure
from Hardy–Weinberg equilibrium (HWE) for a locus was examined using HaploView (http://
www.broadinstitute.org/scientific-community/science/programs/medical-and-population-
genetics/haploview/haploview). Genetic association was tested using logistic regression with
adjustment for covariates such as age, serum PSA level and prostate volume. Association of a
SNP with prostate cancer risk at genotype levels was evaluated under co-dominant (11 vs 12 vs
22) and dominant (12+22 vs 11) models using 3-way and 2-way contingency tables respective-
ly. Allele frequencies of each locus from BPH and cancer samples were compared using a
2-way contingency table. Statistical significance defined as P value for each comparison was
corrected using Benjamini-Hochberg procedure [37]. Studies on linkage disequilibrium (LD)
were performed with the genotypic frequencies of the loci under study using HaploView.
MicroRNA-mediated repression of MMR gene expression in terms of luciferase activity was
tested using Student-t test in GraphPad Prism (http://www.graphpad.com/). A heat map dis-
playing variations in intensity on a color scale representing relative transcript levels of different
genes was generated using dChip (http://www.biostat.harvard.edu/~cli/dchip_2010_01.exe).

Results

Evaluating MMR gene expression
The evaluation of relative transcript levels with respect to 18S rRNA in a sample size of 15 pros-
tate cancer and 15 BPH patients revealed a significantly lower expression of hMLH1 (62%; P
value<0.01), hMSH6 (85%; P value<0.001) and hMSH2 (34%; P value<0.05) genes in tumor tis-
sues (Fig 1A). A similar pattern of reduction in MMR transcript levels was observed in tumor
samples using ACTB as endogenous control (S1 Fig). To detect the proportion of tumor samples
showing concomitant down-regulation of MMR genes, the ΔCq estimate of individual MMR
transcript of each cancer sample was compared with mean ΔCq estimate of the of 15 BPH pa-
tients. The relative expression of hMLH1, hMSH6 and hMSH2 genes was diminished in 13, 14
and 11 patients respectively (Fig 1B). Reduction of gene expression was significantly correlated
in all three pairwise combinations in cancer tissues, namely hMLH1 and hMSH2 (r = 0.97, P
value<0.001), hMSH2 and hMSH6 (r = 0.9, P value<0.001) as well as hMSH6 and hMLH1
(r = 0.94, P value<0.001) in cancer tissues (Fig 1C, upper panel). In BPH tissues expressions of
only hMSH6 and hMSH2 genes were weakly correlated (r = 0.6, P value<0.05) (Fig 1C, lower
panel). A semi-quantitative densitometric measurements of band intensities from theWestern
blot assays confirmed the down-regulation of hMLH1 (2.02 fold, P value<0.01), hMSH6 (2 fold,
P value<0.01) and hMSH2 (1.95 fold, P value<0.05) proteins in tumor samples (n = 6) in com-
parison with BPH samples (n = 6) (Fig 1D). The reduced expression of MMR genes was also
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Fig 1. MMR gene expression in cancer and benign hyperplasia of prostate glands. (a) Bar diagram
showing decreased expression of transcripts of hMLH1, hMSH6 and hMSH2 genes in prostate cancer

Mismatch Repair Deficiency and Prostatic Diseases

PLOS ONE | DOI:10.1371/journal.pone.0125560 May 4, 2015 8 / 22



validated in immunohistochemical analysis of representative tissue samples collected from pros-
tate cancer and BPH patients. Immunohistograms depicted hMLH1 and hMSH2 expressions
predominantly nuclear while hMSH6 staining was observed both in nucleus and cytoplasm.
(Fig 1E).

Dissecting the factors regulating MMR gene expression
Genetic association of MMR gene polymorphisms. To address whether dysregulated ex-

pression of MMR genes in tumor tissues was attributed to any germline polymorphisms, the
genotype and allele frequencies of seven tagSNPs located within 1 kb upstream from the tran-
scriptional start sites and in the coding sequences of hMLH1, hMSH6 and hMSH2 genes were
selected for their possible genetic association with prostate cancer risk. These include
rs1800734, rs1799977 of hMLH1, rs2303425, rs6753135 of hMSH2 and rs3136228, rs1042821
and rs1800932 of hMSH6. rs6753135 was found to be monomorphic in our study population.
Genotype frequencies of remaining loci were in accord with HWE in cancer and BPH samples.
To study the effect of confounding factors on prostate cancer risk, logistic regression analyses
were performed which resulted in P values of 0.691, 0.541, 0.968 for age, log-transformed
serum PSA level and prostate volume respectively. Therefore, for subsequent association analy-
ses, the data was not corrected for the above covariates. The allele and genotype frequency dis-
tribution for none of the hMLH1 and hMSH2 SNPs varied significantly between cancer and
BPH patients in the present cohort. A statistically significant difference in genotypic propor-
tions between two study groups was observed for hMSH6 Pro92Pro polymorphism under co-
dominant (χ2 = 10.5, P value = 0.03) and dominant (χ2 = 9.36, P value = 0.012) models
(Table 2). The significance was not retained following Benjamini-Hochberg correction when
allelic proportions of the locus were compared between the groups (χ2 = 6.56, P value = 0.06;
OR = 0.388 [0.18–0.82]). AG and GG genotypes together was associated with a decreased risk
of prostate cancer (χ2 = 9.36, P value = 0.012; OR = 0.33 [0.15–0.75]) compared to the refer-
ence AA genotype of rs1800932.

CpG hypermethylation of MMR gene promoter. Next, we investigated possible influence
of promoter methylation and microRNAs on the observed transcriptional aberration of MMR
genes. A map of putative CpG islands in promoter region of the MMR genes was constructed
(Fig 2A). The overall C+G content in the regions selected for evaluating methylation status were
68% (324 bp), 65% (247 bp) and 79% (472 bp) respectively. A semi-quantitative estimation of
methylation status was carried out using bisulfite-modified genomic DNA isolated from 15 pros-
tate cancer and 15 BPH tissues by MSP using nested primers. This patient pool was the same as
that was employed in the mRNA expression assays. Thirteen prostate cancer samples yielded
PCR products using methylation-specific primers for hMLH1, four of which were also amplified

tissues compared to that of BPH patients. 18S rRNA was used as endogenous control. * indicates P <0.05.
(b) Fold differences of hMLH1, hMSH6 and hMSH2 expression in each of 15 cancer tissue specimens with
respect to population mean of ΔCq estimate of the said gene in BPH tissues. (c) Upper panel: Plots showing
correlation between transcript levels of hMSH6 and hMSH2, hMSH6 and hMLH1 and hMSH2 and hMLH1 in
prostate cancer. Lower panel: Plots showing correlation between transcript levels of hMSH6 and hMSH2,
hMSH6 and hMLH1 and hMSH2 and hMLH1 in BPH. Pearson’s correlation coefficient (r) and P values are
indicated for each test. * indicates P <0.05. (d) Upper panel: Representative result of Western blot for MMR
proteins in cancer and benign tissue of prostate. β-Actin acted as endogenous control. Lower panel: Bar
diagram showing difference in expression of hMLH1, hMSH6 and hMSH2 at the protein level between BPH
and prostate cancer tissue samples. Fold changes and statistical significance are indicated. * indicates
P <0.05 and n indicates the number of samples. (e) Photomicrograph of representative prostate archival
specimens immune-stained with antibodies against hMLH1, hMSH6 and hMSH2 at 400x magnification
showing decreased expression of the MMR genes in prostate cancer tissues compared to benign
hyperplastic tissues.

doi:10.1371/journal.pone.0125560.g001
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with primers specified for unmethylated sequences. The genomic DNA from all 15 BPH patients
yielded PCR products using methylation-specific hMLH1 primers. Five BPH samples were also
amplified with unmethylated primers. All 30 bisulfite-modified DNA samples were amplified
using both methylation and unmethylation-specific primers for hMSH2 promoter (Figs 2B and
S2). None of the samples were amplified with methylation-specific primers embedding hMSH6
promoter. Quantitative analysis of methylation profile was exclusively pursued for hMLH1 gene
promoter which displayed a differential behavior. Although the distribution of MQs and average
MQ estimates between prostate cancer (3.00±0.06) and BPH (3.04±0.04) patients did not differ
significantly (Fig 2C), the relative transcript level of hMLH1 was shown to correlate inversely
with MQ estimates in prostate cancer patients (r = -0.599; P value<0.05) only (Fig 2D).

To capture the methylation pattern of CpG dinucleotides located internally to primer se-
quences in hMLH1 promoter spanning -766 and -566, a region harboring 20 CpGs, was se-
quenced using bisulfite-modified genomic DNA from tissue samples of 50 patients (n = 25
for each group). Five CpG sites (12th, 14th-17th) remained unmethylated in all 50 samples. A
closer look at the data revealed few distinct features in the methylation pattern distinguishing
the study groups. Of 15 CpGs methylated in cancer, four (5th in n = 8, 6th in n = 5, 8th in n = 5
and 9th in n = 7) were methylated exclusively in tumor samples. The numbers of methylated
CpGs in cancer and BPH samples were 15 and 11 respectively. The highest and lowest num-
bers of methylated CpGs in cancer samples were 12 and 1, while those in BPH patients
were 7 and 0 respectively (Fig 3A–3B). The proportion of methylation was higher at ten CpG

Table 2. Genotype and allele based association of MMR gene polymorphisms with prostate cancer risk.

Gene-dbSNP ID position Control/
Case

Genotype
Proportion

MAF
+STDEV

Comparison of allelic proportions 2
(P value)

Comparison of genotypic
proportions 2 (P value)

11 12 22 11vs12vs22 (12+22)
vs11

MLH1-rs1800734 (-93G>A) BPH 0.42 0.5 0.08 0.33±0.003 0.53 (0.620) 0.94 (0.620) 0.174
(0.677)

Cancer 0.38 0.5 0.115 0.36 ±0.005

MLH1-rs1799977 Ile121Val
(A>G)

BPH 0.77 0.2 0.03 0.13 ±0.002 2.1 (0.336) 2.171
(0.506)

0.914
(0.408)

Cancer 0.83 0.16 0.009 0.09 ±0.003

MSH2-rs2303425 (-118T>C) BPH 0.86 0.14 0 0.071
±0.001

0.24 (0.620) 0.434
(0.612)

0.909
(0.408)

Cancer 0.88 0.12 0 0.057
±0.002

MSH6-rs3136228 (-557G>T) BPH 0.8 0.18 0.02 0.102
±0.002

4.61 (0.270) 4.13 (0.260) 3.65
(0.112)

Cancer 0.7 0.28 0.02 0.16
±0.0035

MSH6-rs1042821 Gly39Glu
(G>A)

BPH 0.59 0.36 0.05 0.218
±0.003

2.4 (0.338) 6.56 (0.120) 6.45
(0.033)*

Cancer 0.73 0.21 0.06 0.16
±0.0036

MSH6- rs1800932 Pro92Pro
(A>G)

BPH 0.8 0.2 0 0.104
±0.0016

6.56 (0.270) 10.5 (0.030)
*

9.36
(0.012)*

Cancer 0.92 0.07 0.01 0.043
±0.0019

MAF denotes minor allele frequency and STDEV denotes standard deviation.

*P<0.05.

doi:10.1371/journal.pone.0125560.t002

Mismatch Repair Deficiency and Prostatic Diseases

PLOS ONE | DOI:10.1371/journal.pone.0125560 May 4, 2015 10 / 22



positions (1st-4th, 7th, 10th, 13th and 18-20th) in prostate cancer samples while cytosine at 11th

CpG were methylated in higher proportion among BPH patients (Fig 3C). An inspection of
the data revealed a critical zone spanning CpG 5th to 10th (-736 to -709), which was hyper-
methylated in prostate cancer samples (19/25 prostate cancer and 2/25 BPH tissues). Bisulfite
sequencing of DNA derived from blood leukocytes from a subset of the same patient pool (15
samples from each group) revealed that CpGs in the critical zone were unmethylated in 29/30
samples. CpG at position 5th of this critical zone was methylated in only one cancer samples
(S3 Fig).

In accordance with the significantly high methylation density in prostate cancer tissues as
shown by Wilcoxon Signed-rank test (P value = 0.008, Z = -2.649), a statistically significant
overexpression of DNA methyl-transferase-1 (DNMT1) (34%, P value<0.01), de-novo-meth-
yl-transferase (DNMT3b) (50%; P value<0.05) andHIF-1α (44%; P value<0.05) genes were
observed in cancer tissues w.r.t. 18S rRNA and ACTB controls (Figs 3D, 4A–4B and S1). Our
study revealed tissue-specific hypermethylation of hMLH1promoter in cancer samples.

Fig 2. Promoter hypermethylation of MMR genes. (a) Diagram showing the in silicomapping of putative CpG islands in the promoter region of hMLH1,
hMSH6 and hMSH2 genes with position of forward and reverse primers demarcated as half arrows which were used in methylation assays. TSS indicates
the transcriptional start site.(b) Gel photograph illustrating the methylation status of hMLH1 and hMSH2 promoter region CpG islands in prostate cancer and
BPH tissues as determined by methylation-specific PCR in the left and right panels respectively. Primer sets for amplification were designated as
unmethylated (U) and methylated (M).The presence of PCR product in lanes marked U indicates unmethylated hMLH1 and hMSH2; product in lanes marked
M indicates hypermethylated hMLH1 and hMSH2. L indicates 100 bp plus ladder. (c) Distribution of methylation quotients [MQ = (logMLH1/ACTB) X1000]
obtained from analyzing prostate cancer and BPH tissue DNAs using qMSP. The calibration curve was generated to determine quantitative accuracy of
qMSP with five different dilutions of in vitro fully methylated DNA from normal healthy human lymphocytes.(d) Plot showing correlation between transcript
levels of hMLH1 (ΔCq) in prostate cancer tissue samples with methylation quotients corresponding hMLH1 promoter. Pearson’s correlation coefficient (r) and
P values are indicated for each test. * indicates P <0.05.

doi:10.1371/journal.pone.0125560.g002
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Fig 3. Bisulfite sequencing of hMLH1 promoter at tissue level. (a) and (b) A ball and stick model showing
differential methylation of 20 CpG sites in hMLH1 promoter region spanning 200 bp (-766 to -566) under
study in prostate cancer and BPH tissues. The grey balls represent unmethylated CpG and black balls
represent methylated CpG in the string of DNA sequence. (c) Bar diagram comparing the proportion of
methylation of 15 differentially modified CpGs in 50 tissues (prostate cancer: n = 25) and (BPH: n = 25). (d)
Bar diagram showing elevated expression of DNMT1 and DNMT3b genes in prostate cancer compared to
BPH patients at mRNA level. * indicates P <0.05.

doi:10.1371/journal.pone.0125560.g003

Fig 4. Expression of HIF-1α in malignant and benign prostatic tissues. (a) Upper panel: Bar diagram
showing elevated expression of HIF-1α in prostate cancer compared to BPH patients at mRNA level. *
indicates P <0.05. Lower panel: Representative result of Western blotting for HIF-1α in cancer and benign
tissue of prostate where ACTB acted as endogenous control. (b) Photomicrograph of representative prostate
archival specimens immune-stained with antibodies againstHIF-1α at 400x magnification showing elevated
expression of HIF-1α in prostate cancer tissues.

doi:10.1371/journal.pone.0125560.g004
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MicroRNAmediated control of MMR gene expression. Role of microRNAs in modulat-
ing 3’UTR activity of MMR genes was also explored. The 3'UTR activity of three pSiCHECK2-
constructs containing the sequences from hMLH1 (+2305 to +2631), hMSH6 (+3925 to +4309)
and hMSH2 (+2723 to +3108) genes were compared with that of empty pSiCHECK2 vector
using DLR assay. Significantly higher reporter gene activity was detected in all three 3’UTR-
constructs: hMSH6 (5.83 fold, P value = 0.001), hMLH1 (2 fold, P value = 0.01) and hMSH2
(1.5 fold, P value = 0.05) (Fig 5A). A consensus microRNA map of the 3'UTRs of three genes
using at least three different databases was prepared (Fig 5B). Three candidate microRNAs
were selected for cell-based reporter gene assay on the basis of biological plausibility and high
degree of sequence conservation in mammalian and non-mammalian vertebrate genomes
(Fig 5C). To verify the binding of target microRNAs with the putative seed sequences in the
3'UTRs of MMR genes, each pre-miR construct was co-transfected in HepG2 and PC3 cells
with respective pSiCHECK2-3'UTR chimera. A significant reduction in Renilla luciferase activ-
ity of pSiCHECK2-hMSH6 by hsa-miR-155 (HEPG2: P value = 0.019; PC3: P value = 0.025)
and hsa-miR-21 (HEPG2: P value = 0.0013; PC3: P value = 0.0034) constructs was detected in
both cell lines. Similar reduction in Renilla luciferase activity was observed for pSiCHECK2-
hMLH1 construct by hsa-miR-141 (HEPG2: P value = 0.0013; PC3: P value = 0.02) and hsa-
miR-155 (HEPG2: P value = 0.0001; PC3: P value = 0.05) constructs. The normalized RLU ob-
tained remain unaltered when hMSH6 and hMLH1 3’UTR constructs were cotransfected with
hsa-miR-141 and hsa-miR-21 respectively (Fig 5D). Moreover, none of the three microRNAs
under study modulated Renilla luciferase activity of pSiCHECK2-MSH2 3’UTR in similar
transfection assays. The relative levels of hsa-miR-155 (85%; P value<0.01), hsa-miR-141
(66%; P value<0.05), and hsa-miR-21 (66%; P value = 0.01) were significantly increased in can-
cer tissues compared to BPH samples (Fig 5E). A heat map displaying variations of relative
transcript levels of three MMR and three microRNAs genes on a color scale showed that rela-
tive expression of MMR and the microRNAs genes under study were inversely related. Above
analysis stratified the study subjects in definite disease categories with exception to only one
BPH sample which congregated with prostate cancer samples (Fig 5F). Pairwise comparison of
transcript levels representing MMR and microRNA genes revealed an inverse correlation be-
tween hMSH6 with hsa-miR-155 (r = -0.564; P value = 0.036) & hsa-miR-21 (r = -0.527; P
value = 0.044) and between hMLH1 with that of hsa-miR-155 (r = -0.602; P value = 0.023) and
hsa-miR-141 (r = -0.531; P value = 0.049) only in cancer tissues (S4 Fig). Our study showed
that upregulated oncomiRs, hsa-miR-155, hsa-miR-141 and hsa-miR-21, physically interacted
with the 3’UTRs of hMLH1 and hMHS6 genes to disrupt their expressions.

Discussion
Genome-wide and candidate gene based association studies have identified an unprecedented
number of common variants influencing disease risk in complex disorders. Despite this accom-
plishment, the variants identified by these studies have, in general, explained only a small frac-
tion of the heritable component of disease risk, and have not pinpointed with precision the
causal variant(s) at the associated loci. This is partly because of our inability to establish clear
connection between associated genetic variant with known disease biology [38, 39]. Biological
pathway-based analysis that tests whether a set of genes from a pathway is associated with a
disease trait can serve as a complementary approach [40]. Furthermore, gene expression, geno-
typing and other types of molecular data can be leveraged to characterize the dysregulated
pathway in a disease process to accelerate the progress from genetic studies to biological knowl-
edge that can steer the development of predictive, preventive, or therapeutic measures. Keeping
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in line with this, the present study summarizes our effort to detect prostate cancer related mo-
lecular events/factors that are amenable to specific management strategies.

Our population-based study recorded a concerted loss of expression of hMLH1, hMSH6
and hMSH2 genes in majority of the prostate cancer samples examined. The possible genetic

Fig 5. Interaction of MMR gene 3'UTRs with microRNAs. (a) Bar diagram illustrating positive 3'UTR activity of hMLH1, hMSH6 and hMSH2 genes in
HEPG2 cells following reporter gene assay. Fold changes were appended in the diagram. (*) indicates statistical significance of functionality of 3'UTR
regions measured in terms of P value by t-test. (b) Entire 3'UTR region of hMLH1, hMSH2 and hMSH6were mapped for putative microRNA binding sites.
The highlighted and boldfaced segments within the 3'UTR sequences represent the seed positions for the microRNAs. (c) Multiple alignments indicated that
miR-155, miR-21 and miR-141 seed sequences are evolutionarily conserved across mammalian and non-mammalian species. (d) Normalized relative light
units (RLU) in HEPG2 and PC3 cells were measured for hMLH1 and hMSH6 3'-UTR constructs in pSiCHECK2 with (+) and without (-) the effect of
microRNAs. Co-transfection of the pRNAU6.1 empty vector (+) with the 3'UTR-pSiCHECK2 constructs of hMLH1 and hMSH6were set as 100% and
percentage reduction in luciferase activity mediated by the three microRNAs were measured in relation to this was shown in the bar diagram. Statistical
significance in terms of P values was measured with t-test. (*) indicates the statistical significance P<0.05. (e) Bar diagram showing upregulation of hsa-miR-
21, hsa-miR-155 and hsa-miR-141transcripts in prostate cancer tissues compared to that of BPH patients. * indicates P<0.05. (f) Heat map showing the
combination of two dendrograms displayed above and to the right. The rows represent genes on the right of the figure. Individual patient sample is shown as
columns. Color represents expression level of the gene. Red represents low expression, while green represents high expression. The expression levels are
continuously mapped on the color scale provided at the bottom of the figure. The dendrograms show stratification of samples into two groups: BPH (B) and
prostate cancer (P), based on gene expression.

doi:10.1371/journal.pone.0125560.g005
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and epigenetic factors underlying the observed MMR gene deficiency in prostate cancer was
subsequently investigated. Our findings suggested that the downregulation of hMLH1 gene
was associated with promoter hypermethylation of a critical zone encompassing 6 CpG dinu-
cleotides and overexpression of microRNAs such as hsa-mir-155 and hsa-mir-141 interacting
with its 3’ UTR. It also showed that disruption of hMSH6 gene expression was mediated
through microRNAs, hsa-mir-155 and hsa-mir-21. In addition, an association of hMSH6
Pro92Pro with prostate cancer was also registered. However, the effect size of this SNP in our
population was weak and any biological role of this variant could not be clearly ascertained in
the present study setup.

Deregulation of transcriptional machinery by hypermethylation of promoter CpGs and
microRNAs are observed in a wide variety of cancers [41–46]. Our study recorded an inverse
correlation between hMLH1 transcript level and its promoter methylation quotient in the pros-
tate cancer patients together with a distinctly higher methylation density. Similar findings have
also been reported for HNPCC and gastric cancers [47, 48]. To delineate the molecular events
in prostate cancer, we used BPH as an age-matched non-malignant control. BPH and prostate
cancer often coexist and are major sources of morbidity in older men. Approximately 90% of
men between 50–80 years of age have LUTS and a significant proportion of these patients suf-
fer from hyperplasia of prostate gland [49, 50]. Identification of molecular criteria distinguish-
ing the diseases early will be beneficial given the improved life expectancy in the modern
scenario. Prostate cancer is a multi-focal disorder displaying histological and molecular hetero-
geneities which may arise due to presence of unique combination of somatic changes, genetic
and/or epigenetic, some of which drive tumor development [51]. A diverse range of epigenetic
heterogeneities characteristic of prostate cancer and BPH have been reported in several studies.
For example, GSTP1 silencing was the most frequently detected epigenetic alterations charac-
teristic of over 90% prostate cancer samples but rarely detected in the BPH/normal tissues [52].
Again, promoters of ER1 and ER2 were differentially methylated in prostate cancer and BPH
samples with the extent of methylation being significantly higher in cancer tissues [53, 54]. On
the other hand, calcium binding protein S100A2 functioning as tumor metastasis protein has
been reported to be methylated in 75% cancer tissues and in 100% BPH tissues [55]. Further-
more, frequency and extent of aberrant methylation appears to increase with age in normal cell
population. Consistent age-related methylation changes have been observed in normal prostate
and breast tissues and in colonic mucosa [56–58]. These confounding factors that weaken the
molecular signals would be ideally resolved by use of age-matched disease-free prostate tissues
as control. As an alternative to normal tissues, in this study, we have analyzed methylation pat-
tern of hMLH1 promoter from DNA isolated from blood leukocytes in a panel of 15 BPH pa-
tients and 15 cancer patients without metastasis. This enables us to identify a central zone
spanning (-736 to -709) typically hypermethylated in prostate cancer. The CpGs located on the
either side of this critical zone were consistently methylated irrespective of disease type and tis-
sue of origin and hence appear to result from age-related changes. To investigate probable
functional significance of this differentially methylated zone, the sequence (28 bp) was sub-
jected to BLAT analysis using the transcription factor ChIP data available on ENCODE (http://
genome.ucsc.edu/ENCODE/). Of the several transcription factors identified, a few namely
E2F1, MYC, YY1, CHD1 and SMARCA4 which have been shown to express in prostate cancer
tissues are of particular interest. Since ChIP data from ENCODE does not include any cell lines
from prostate epithelial origin, future studies examining the efficacy of binding of any of the
above transcription factors with this DMR are needed to decipher its causal role in
hMLH1 downregulation.

In our study, the heat map analysis based on relative levels of MMR and microRNA gene
expression, clustered prostate cancer and BPH patients as two independent disease entities
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indicating the a specific association of these microRNAs with prostate cancer. Although our
study concentrated on patients’ biopsy specimens, serum levels of hsa-miR-155, hsa-miR-141
and hsa-miR-21 were reported to correlate the clinical stages in different cancers such as lung
adenocarcinoma, breast cancer and NSCLC with moderate sensitivity and specificity [59–63].
To this end, our findings pave the ground for prospective studies to fine-tune the applicability
of this microRNA panel as one of the components of risk prediction tool.

Tumor microenvironments, characterized by low pH, nutrient deprivation, and hypoxia
have an unequivocal role in shaping malignant progression [64]. The molecular mechanisms
of response to hypoxia are extremely complex, a key role being played by a transcriptional reg-
ulator, hypoxia-inducible factor (HIF), which orchestrates the expression of a wide variety of
epigenetic factors like DNA methyltransferases and oncomiRs such as hsa-miR-155, hsa-miR-
21, hsa-miR-424, hsa-miR-210 and hsa-miR-373[65–69]. Putative consensus sequence for
HIF1- α binding site, termed as hypoxia responsive element (HRE) has been identified in the
promoter region of each of hsa-miR-155 (-7521bp, -8018bp), DNMT1 (-619bp) and DNMT3b
(-2467bp, -4505bp, -4509bp) (http://alggen.lsi.upc.es/). And, HIF1- α has been demonstrated
to interact with the target promoter region through the HRE element modulating their gene ex-
pressions in intestinal epithelial and colorectal cells as well as in cardiac fibroblasts [67, 70, 71].
Upregulated HIF1-α in prostate cancer tissues as observed in the present study could likely to
be responsible for induction of promoter hypermethylation and hsa-miR-155 mediated modu-
lation of 3’UTR activity of hMLH1 and hMSH6 genes as detected by others [72, 73].

Epidemiological screening of seven SNPs located in the promoter and coding region of MMR
genes has been conducted to explore any possible role of genetic variants on the observed MMR
genes downregulation in prostate cancer. These SNPS have been previously implicated with sus-
ceptibility of different cancers and other phenotypes in Indian and non-Indian populations.
hMLH1 -93G>A polymorphism (rs1800734) was identified to confer significant risk for pros-
tate cancer in North Indian population (n = 331) [74]. hMLH1 SNP rs1799977 was found to be
associated with aggressive form of prostate cancer in a study population of 1,458 Caucasian and
African-American men from King County, Washington [75]. The hMSH2 -118T>C polymor-
phism (rs2303425) was significantly associated with an increased risk of gall bladder in North
Indian population [76]. The hMSH6 promoter SNP rs3136228 (-557G>T) was reported to be
significantly associated with increased risk of neutropenia in a panel of 154 colorectal cancer pa-
tients from Italy [77]. hMSH6 SNP rs1042821 showed a significant trend (Ptrend<0.001) associ-
ating younger age at diagnosis (<50) in breast cancer cases in North Carolina [78]. hMSH6
Pro92Pro polymorphism (rs1800932) showed a protective effect for tumors in the colorectum
and colon in patients with Swedish origin (n = 1103 for colon cancer, n = 637 for rectal cancer,
and n = 436 for controls) with the rare allele being associated with increased levels of mRNA
and ovarian aging [79, 80]. In this study, the genotypes carrying the variant allele of Pro92Pro
polymorphism was associated with reduced risk to prostate adenocarcinoma. Pro92Pro poly-
morphism has been reported to be an expression-quantitative-trait-locus for hMSH6 in colorec-
tal cancer [81]. To search for an extended haplotype that may harbor a putative cis-regulatory
SNP, a linkage disequilibriummap around this locus was constructed using the data from GIH
population (Gujarati Indians from Houston, TX) of 1000 genomes project (http://browser.
1000genomes.org/Homo_sapiens). Pro92Pro was found to be in strong linkage disequilibrium
with its downstream variants such as rs1800935 (r2 = 0.89) and rs2020911 (r2 = 0.99) but not
with any of the upstream variants including rs3136228 and rs1042821 we studied. Pairwise r2 es-
timates of these two comparisons in our population were 0.34 and 0.41 respectively. However,
any direct genetic impact of this low effect size polymorphism could not be drawn due to small
sample size in the present replication cohort. Further studies with a larger sample-size and a
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comprehensive annotation of mutational landscape of hMSH6 gene are required to connect the
observed genetic protection imposed by hMSH6 gene with prostate cancer [82].

Collectively, this population-based study establishes that the deficiency of hMLH1 and
hMSH6 genes is one hallmark differentiating prostate cancer from BPH. It also presents statis-
tical and molecular evidences that disruption of above genes is correlated with promoter hyper-
methylation and upregulation of oncomiRs, hsa-miR-155, in particular. To the best of our
knowledge, this study presents the most comprehensive research on MMR deficiency in pros-
tate cancer patients in India. In absence of a robust population based surveillance program,
majority of the carcinogenesis cases gets detected either at the advanced stage or during treat-
ment for BPH. Since BPH and prostate cancer are both age-related cyto-proliferative diseases
with the similar hormones and inflammatory processes playing crucial roles in their develop-
ment, our attempt to determine a differential molecular attribute which could be used as a pre-
dictive sign of prostate cancer has a significant clinical relevance.

Supporting Information
S1 Table. Sequences and product sizes of the primers used in Real Time PCR and cloning
experiments
(DOC)

S2 Table. Primer sequences, PCR conditions, and restriction endonucleases used in geno-
typing of single nucleotide polymorphisms.
(DOC)

S1 Fig. MMR gene expression w.r.t. β-actin in BPH and prostate cancer tissues. Bar diagram
showing relative expression at transcript level of (a) hMLH1, hMSH6 and hMSH2, (b) DNMT1
and DNMT3b and (c) HIF1-α in prostate cancer tissues compared to BPH with ACTB as en-
dogenous control. � indicates P<0.05
(TIF)

S2 Fig. Methylation specific PCR for hMLH1and hMSH2 with controls. Primer sets for am-
plification were designated as unmethylated (U) and methylated (M). Corresponding lanes are:
100 bp plus ladder (L) in lane number 1, 11. Water was used as negative control for each PCR
reaction (lanes 2, 3). SssI methyl transferase treated normal lymphocytes (NL) was used as pos-
itive control for methylation (lanes 4, 5). Bisulfite modified DNA from representative BPH
(lanes 6, 7) and CaP (lanes 8, 9) tissues were amplified in MSP. Unmodified DNA from normal
lymphocyte serves as negative control for methylation (lane 10).
(TIF)

S3 Fig. Bisulfite sequencing of hMLH1 promoter at tissue level. (a) and (b) A ball and stick
model showing differential methylation of 20 CpG sites in hMLH1 promoter region spanning
200 bp (-766 to -566) under study in blood lymphocytes from 15 prostate cancer and 15 BPH
patients. The grey balls represent unmethylated CpG and black balls represent methylated
CpG in the string of DNA sequence. Portion of the sequence in blue box indicates the 6 CpG
dinucleotides that cover a critical zone typically methylated in prostate cancer.
(TIF)

S4 Fig. Correlation between MMR genes and microRNAs. Upper panel: Plots showing corre-
lation between transcript level of hMSH6 with that of hsa-miR-155 and hsa-miR-21 in prostate
cancer. Lower panel: Plots showing correlation between transcript level of hMLH1with that of
hsa-miR-155 and hsa-miR-141 in BPH. Pearson’s correlation coefficient (r) and P values are
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indicated for each test. � indicates P<0.05.
(TIF)
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