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Abstract: Indium-based chalcogenide semiconductors have been served as the promising candi-
dates for solar H2 evolution reaction, however, the related studies are still in its infancy and the
enhancement of efficiency remains a grand challenge. Here, we report that the photocatalytic H2

evolution activity of quantized indium chalcogenide semiconductors could be dramatically aroused
by the co-decoration of transition metal Zn and Cu. Different from the traditional metal ion doping
strategies which only focus on narrowing bandgap for robust visible light harvesting, the conduction
and valence band are coordinately regulated to realize the bandgap narrowing and the raising of
thermodynamic driving force for proton reduction, simultaneously. Therefore, the as-prepared noble
metal-free Cu0.4-ZnIn2S4 quantum dots (QDs) exhibits extraordinary activity for photocatalytic H2

evolution. Under optimal conditions, the Cu0.4-ZnIn2S4 QDs could produce H2 with the rate of
144.4 µmol h−1 mg−1, 480-fold and 6-fold higher than that of pristine In2S3 QDs and Cu-doped
In2S3 QDs counterparts respectively, which is even comparable with the state-of-the-art cadmium
chalcogenides QDs.

Keywords: artificial photosynthesis; bandgap engineering; quantum dots; transition metal doping

1. Introduction

Artificial photosynthesis is regarded as a promising approach to convert solar energy
into usable energy forms, such as molecular hydrogen (H2), to resolve the energy crisis and
environment pollution [1–5]. Hence, synthesis of efficient and low-cost photocatalysts is
with vital importance for solar-to-fuel conversion. The semiconductor quantum dots (QDs)
which the size is less than their exciton Bohr radius in three dimensions have been attracted
tremendous attention in this field owing their unique properties, such as large surface
area, abundant surface active sites, multiple exciton generation, short charge transfer
distance and so on [6–11]. Among the popular chalcogenide semiconductor-based QDs
in artificial photocatalysis, the indium-based chalcogenides seem to be more promising
photocatalysts due to their less toxic, noble metal-free as well as the potential visible
light harvesting [12–15]. However, the photocatalytic H2 evolution activity of indium-
based photocatalysts is relatively faint so far, especially compared with their cadmium
chalcogenide analogs [16–19], so more works remained to be done in optimizing the
properties of indium-based QDs. In general, though the bandgap of bulk In2S3 (~2.3 eV)
is suitable for absorbing visible light, the bandgap of quantized indium chalcogenide
nanoparticles is usually larger than 3.0 eV as a result of quantum confinement effect [19–23].
On the other hand, the more negative conduction band edge corresponds to the stronger
thermodynamic driving force for proton reduction [24,25], which would result in the higher
photocatalytic performance. To balance the above two contradictory effects of narrowing
the bandgap and upshifting the conduction band edge, the conduction and valence band
should be well designed.

Nanomaterials 2021, 11, 1115. https://doi.org/10.3390/nano11051115 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-1041-9334
https://orcid.org/0000-0002-1288-3408
https://doi.org/10.3390/nano11051115
https://doi.org/10.3390/nano11051115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11051115
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11051115?type=check_update&version=1


Nanomaterials 2021, 11, 1115 2 of 12

In this contribution, we present that the conduction and valence band edge of indium
chalcogenide-based QDs are regulated coordinately by introducing transition metal ions,
Zn and Cu. The introduction of Zn ions could level up the conduction band by hybridizing
Zn 4s4p and In 5s5p orbitals, while the doping of Cu would form a discrete level from Cu 3d
above the valence band of pristine nanocrystals. As the upshift of valence band is obviously
larger than that of conduction band, the bandgap of Cu-doped ZnIn2S4 QDs narrows
remarkably to be suitable for absorbing visible light. And the upshift of conduction band
by the introduction of Zn resulted in the higher thermodynamic driving force for proton
reduction, prominently enhancing the photocatalytic H2 evolution activity of as-prepared
QDs photocatalysts. With the assistance of Ni2+ and visible light irradiation, the Cu-doped
ZnIn2S4 QDs could produce H2 efficiently with the rate of 144.4 µmol h−1 mg−1, 480-fold
and 6-fold higher than that of pristine In2S3 QDs and Cu-doped In2S3 QDs, respectively.
Under optimal conditions, more than 1000 µmol of H2 could be produced from 6.0 mL
aqueous solution within 16 h irradiation, giving rise to the turnover number (TON) of more
than 20260 per QD. The value is even comparable to the cadmium chalcogenide QDs-based
photocatalytic systems (Table S1) [6,26]. Further, the apparent quantum yield (AQY) of
Cu0.4-ZnIn2S4 QDs could reach 11.8% at 460 nm.

2. Materials and Methods
2.1. Materials

Indium acetate (99.99%), zinc acetate dihydrate (98%), copper(II) acetate monohy-
drate (99%), L-cysteine (98%), thioacetamide (99%), nickel acetate tetrahydrate (99.9%) and
ascorbic acid (H2A, 99%) were purchased from Alfa Aesar Chemicals Co. Ltd. (Shang-
hai, China). Other chemicals were of analytical grade without further purification unless
otherwise noted. The ultrapure water with 18.2 MΩ cm @ 25 ◦C was used throughout all
the experiments.

2.2. Instruments and Characterizations

UV-vis spectra were measured with a Shimadzu UV-2600PC spectrophotometer (Shi-
madzu Corp., Kyoto, Japan). Fluorescence measurements were carried out with a Hitachi
(model F-4600) spectrophotometer (Hitachi High-Tech Corp., Tokyo, Japan) at room temper-
ature. TEM images were obtained on a JEM 2100 (JEOL Co. Ltd., Tokyo, Japan) operating
at 200 kV. X-ray diffraction (XRD) pattern was obtained by using Bruker D8 Focus (Bruker
Corp., Billerica, MA, USA) under Cu-Kα radiation. X-ray photoelectron spectroscopy
(XPS) measurements were taken on an ESCALAB 250 spectrophotometer (ThermoFisher
Scientific Corp., Waltham, MA, USA) with Al-Kα radiation. The binding energy scale was
calibrated using the C 1s peak at 284.60 eV. All pH measurements were made with a Model
pHS-3C meter (Mettler Toledo FE20, Mettler Toledo (Shanghai) Co. Ltd., Shanghai, China).
The generated amount of H2 was characterized by GC analysis (GC-2014 Shimadzu, Shi-
madzu Corp., Kyoto, Japan) using N2 as the carrier gas with a molecular sieve column (5 Å;
30 m × 0.53 mm) and a thermal conductivity detector.

2.3. Synthesis of the Cu-Doped ZnIn2S4 and In2S3 QDs

The indium-based chalcogenides QDs were synthesized through a simple hydrother-
mal method referring to the previous reported method with some revisions [22]. Taking
the Cu0.4-ZnIn2S4 QDs (0.4 represents the precursor molar ratio of Cu with Zn) for exam-
ple, 0.85 mmol of zinc acetate, 1.70 mmol of indium acetate, 0.34 mmol of copper acetate
monohydrate and 3.25 mmol of L-cysteine were dissolved in 30 mL of ultrapure water and
adjusted the pH to 9.0. Following this, 3.25 mmol of thioacetamide was added and the
mixture was heated to 110 ◦C for 4 h after vigorous stirring. After reaction, the solution was
swiftly cooled to room temperature, and then the product was precipitated and purified
with isopropanol and water. The obtained Cu-doped ZnIn2S4 QDs were dispersed in 40 mL
of ultrapure water for further use.
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The QDs with different contents of Cu and/or Zn were synthesized by regulating
the amount of copper and/or zinc precursors (copper/zinc acetate), while the amount of
thioacetamide was also changed with stoichiometric ratio. For the pristine In2S3 QDs, the
reaction was carried out with the same expect for the absence of copper and zinc precursors.

2.4. General Procedure for Photocatalytic H2 Evolution

The photocatalytic reactions were performed under 460 nm LEDs irradiation with
the Ni2+ as cocatalysts and H2A as the electron donor. Generally, 1.6 mg of QDs, 10 µg of
nickel acetate tetrahydrate and 400 mg of ascorbic acid were added to a 20 mL of Pyrex
tube. The total reaction volume of the mixture was 6.0 mL by adding ultrapure water and
the pH of the solution was adjusted to 5.2 by HCl or NaOH. Prior to irradiation, the sample
was sealed and de-aerated by bubbling N2 for 10 min to remove the dissolved oxygen, and
then 1.0 mL of CH4 was injected the system to serve as internal standard. The amount of
evolved H2 gas was quantified by comparing the area ratio of CH4 to H2 and the response
factor of CH4/H2 in the gas chromatography (GC).

2.5. The Calculated of AQY for Cu0.4-ZnIn2S4 QDs

For the optimal photocatalytic H2 evolution, the irradiation area was 3.0 cm2 by 460 nm
LEDs (light intensity 100 mW·cm−2). The calculation of apparent quantum efficiency (Φ) is
according to the following equation:

Φ =
2 × nH2

N
× 100%

wherein nH2 is the amount of photo-generated H2 and N is the corresponding amount
of incident photon. The amount of incident photon was calculated from the irradiation
time, the irradiation area and the illumination power. It showed that about 5.5 mL of H2
was generated after 1.0 h irradiation. From the combined measurements of the amount
of photo-generated H2 and the corresponding amount of incident photon, the apparent
quantum yield was calculated to be 11.8%.

3. Results and Discussion
3.1. Microstructure Characteristics and Composition Analysis

The photocatalysts with different contents of Zn and/or Cu decorated In2S3 QDs were
synthesized by regulating the species and amount of precursors. According to the photocat-
alytic H2 evolution performance, the as-prepared pristine In2S3, ZnIn2S4, Cu0.4-In2S3 and
Cu0.4-ZnIn2S4 QDs were selected for the structure and morphology characterizations. As
shown in Figure 1, the diffraction peaks of the pristine In2S3 can be indexed as the tetrago-
nal phase In2S3 (JCPDS no. 25-0390) [27]. However, though the XRD patterns change clearly
after the co-decoration of Zn and Cu ions (Cu0.4-ZnIn2S4), the synthesized counterparts
exhibit three characteristic peaks at about 28.0◦, 47.5◦ and 55.3◦, which can be assigned
to (112), (024) and (132) lattice plane of tetragonal phase of Cu0.412In0.412Zn0.175S (JCPDS
no. 47-1371) [20]. What’s more, the diffraction peaks of Zn or Cu decorated In2S3 QDs
(ZnIn2S4 or Cu0.4-In2S3) are well corresponding to that of Cu0.4-ZnIn2S4, demonstrating
the identical crystal structure of the above QDs. Additionally, the varied contents of Zn
or Cu hardly shifted the diffraction peaks of the as-prepared indium-based chalcogenide
QDs (Figure S1), which probably owes to the similar radius of Zn2+ (0.74 Å), Cu+ (0.74 Å)
and In3+ (0.76 Å) [28,29], demonstrating the preservation of crystal structure during the
transition metal ions decoration.
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duction of Zn and/or Cu ions into the In2S3 QDs. 

Figure 1. The XRD patterns of In2S3, Cu0.4-In2S3, ZnIn2S4 and Cu0.4-ZnIn2S4 QDs.

The size and morphology of the synthesized various QDs were also investigated.
According to Debye–Scherrer formula, the broad diffraction peaks implied the ultra-small
size of the nanocrystals in three dimensions [30,31]. While the similar full width at half
maximum (FWHM) of different contents of Zn and/or Cu decorated In2S3 QDs indicated
the approximate size (Figure 1). It should be mentioned that FWHM of pristine In2S3
QDs was smaller than the other QDs, which implied the slightly larger size of In2S3 QDs.
Indeed, the diameters in terms of XRD patterns for In2S3, Cu0.4-In2S3, ZnIn2S4 and Cu0.4-
ZnIn2S4 QDs along the (024) plane is 3.8 nm, 2.6 nm, 2.6 nm and 3.1 nm, respectively
(the difference of size could be ignored in the photocatalytic activity comparison owing
to the seriously faint photocatalytic H2 evolution of In2S3 QDs). The diameters of various
QDs were further characterized by the transmission electron microscope (TEM) images.
As shown in Figure 2a, the In2S3 QDs displayed the near-spherical nanocrystals with
the diameter of about 3.9 nm, while the other three QDs (Figure 2b–d) were also near-
spherical nanocrystals with the diameter ranging from 2.7~3.0 nm, slightly smaller than
the pristine In2S3 QDs. What’s more, the high-resolution TEM (HR-TEM) images revealed
that the lattice spacing of all the QDs was 3.1 Å [20,32,33], which was corresponding to
the (112) plane of tetragonal phase of In2S3, ZnIn2S4 or their doped counterparts, further
demonstrating that the crystal structure of tetragonal phase was well preserved after the
introduction of Zn and/or Cu ions into the In2S3 QDs.
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lence state of Cu probably owes to the reduction by L-cysteine. What’s more, the binding 
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Figure 2. The TEM images of (a) In2S3, (b) Cu0.4-In2S3, (c) ZnIn2S4 and (d) Cu0.4-ZnIn2S4 QDs. The insets show the
corresponding high-resolution TEM images.

To gain more insight into the chemical composition and valence state of metal elements
in the prepared various QDs, the X-ray photoelectron spectroscopy (XPS) was explored.
The peaks of Cu, Zn, In and S elements were clearly observed in the XPS survey spectrum
of Cu0.4-ZnIn2S4 QDs [19,34,35], while the In2S3, ZnIn2S4 and Cu0.4-In2S3 also clearly
manifested their respective peaks without the presence of other metal elements (Figure 3a),
suggesting the rational chemical composition in the designed QDs. Furthermore, the
binding energy of Cu 2p3/2 and Cu 2p1/2 in both Cu0.4-In2S3 and Cu0.4-ZnIn2S4 QDs was
at 932.3 eV and 952.1 eV (Figure 3b), suggesting the monovalent Cu in the QDs, which
could be further demonstrated by the absence of satellite peak [36]. The decrease of valence
state of Cu probably owes to the reduction by L-cysteine. What’s more, the binding energies
of Zn 2p (1022.1 eV for 2p3/2 and 1045.2 eV for 2p1/2) and In 3d (444.6 eV for 3d5/2 and
452.2 eV for 3d3/2) in Cu0.4-ZnIn2S4 QDs (Figure 3c,d), suggested that the chemical states
of Zn and In are +2 and +3, respectively, which were in good agreement with the previous
reports on Zn-In-S ternary semiconductors [37,38]. Additionally, the features and positions
of In 3d, Zn 2p and S 2p peaks (Figure 3c,d and Figure S2) remained the same in the four
QDs, indicating the similar lactic framework and coordination environment of the indium-
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based chalcogenide QDs. Combining all the above results, we believe that by regulating
the species and amount of precursors, the Zn and/or Cu decorated In2S3 QDs with the
identical crystal structure and similar size have been successfully prepared.
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3.2. Photocatalytic H2 Evolution

The photocatalytic activity of the as-prepared QDs were investigated by using the
QDs as absorber and in situ loaded Ni2+ as cocatalysts. It indicated that without the
introduction of Cu, there was no H2 to be detected for the ZnIn2S4 QDs, and only trace
amount of H2 was produced for In2S3 QDs under 460 nm LEDs irradiation (Figure 4a).
However, the photocatalytic H2 evolution activity dramatically increased after the doping
of Cu for both In2S3 and ZnIn2S4 QDs, probably owing to the outstanding visible light
harvesting by the narrowed bandgap. Therefore, the photocatalytic H2 evolution activities
for different contents of Cu decorated QDs were further explored. As shown in Figure S3,
the photocatalytic H2 evolution activity of both Cu-doped In2S3 and ZnIn2S4 QDs increased
with the increased Cu contents at first and then decreased. This is due that the introduction
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of Cu would decrease the bandgap of QDs, which resulted in the enhanced photocatalytic
activity. While the excess introduction of Cu would lead to the decreased redox driving
force as well as the formation of Cu defects for non-radiative carrier recombination centers,
which was unfavorable for the photocatalytic H2 evolution.
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The photocatalytic H2 evolution rate for optimal Cu-doped ZnIn2S4 (Cu0.4-ZnIn2S4)
QDs could reach to 144.4 µmol h−1 mg−1, which was nearly 480-fold and 6-fold higher
than that of pristine In2S3 and Cu0.4-In2S3 QDs under identical conditions respectively
(Figure 4a), implying the significant impact of Zn introduction for the enhancement of
photocatalytic performance. Apparently, the photocatalytic H2 evolution rate is even com-
parable to the state-of-the-art cadmium chalcogenides QDs [26,39]. Control experiments
also demonstrated that without the Ni2+, the photocatalytic activity would decrease by
three fourths, indicated the vital role of cocatalysts. Long-time H2 evolution performance
of the Cu0.4-ZnIn2S4 QDs was also examined under optimal conditions. As shown in
Figure 4b, the rate was decreased with the irradiation time probably owing to the pho-
tocurrosion, however, ~1013 µmol of H2 could be obtained from 6.0 mL aqueous solution
within 16 h irradiation, giving the TON of 20260 per QD. And the AQY of Cu0.4-ZnIn2S4
QDs could reach 11.8% at 460 nm.

3.3. Mechanism for Photocatalytic H2 Production

To shed light on the effect of the introduction of transition metal ions, the UV-visible
absorption spectra of various QDs were carried out. As shown in Figure 5a, the In2S3 QDs
exhibited faint absorption for visible light, which was corresponding to their negligible
photocatalytic activity. As the intrinsic bandgap of bulk In2S3 is 2.3 eV [40–42], the faint
visible light absorption of the as-prepared In2S3 QDs was mainly owing to broadening
bandgap resulted by the quantum confinement effect. Further investigation indicated that
the introduction of Zn and Cu elements played the opposite effect for the In2S3 QDs [43].
The absorption onset of ZnIn2S4 QDs was less than 400 nm, implied the broader bandgap
after the introduction of Zn. However, the Cu-doped In2S3 QDs displayed the robust visible
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light harvesting and the absorption tail could rise up to 700 nm, implied the narrower
bandgap. What’s more, the doping of Cu would also narrow the bandgap of ZnIn2S4 QDs,
and the absorption onset of Cu0.4-ZnIn2S4 QDs redshifted to 600 nm [44]. Therefore, the
introduction of Cu makes the main contribution for the bandgap narrowing.
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Although the optical density of Cu0.4-ZnIn2S4 was slightly higher than that of Cu0.4-
In2S3 at 460 nm (Figure 5a), the difference of absorption ability hardly resulted in the 6-fold
enhancement of photocatalytic activity. Therefore, the band positions of the four QDs were
further investigated by Tauc plot and XPS valence band spectra. Figure 5b revealed that the
bandgap of In2S3, ZnIn2S4 and their Cu-doped counterparts were 2.98 eV, 3.32 eV, 1.93 eV
and 2.25 eV, respectively, which was consistent with the results of absorption spectra.
While the valence band edges of In2S3 and ZnIn2S4 were close, at 1.20 V and 1.22 V (vs.
NHE) respectively (Figure 5c), which was owing that the valence band of the chalcogenide
semiconductors were mainly composed by S 3p orbitals [45]. However, the introduction
of Cu ions would create a Cu dopant level above the pristine valence band edge [3,46],
causing their obvious upshift (ca. 0.8 V). Combined with the difference in bandgap, the
conduction band edges of In2S3 and ZnIn2S4 could be calculated at −1.78 V and −2.10 V,
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indicated the 0.32 V upshift after the introduction of Zn, which could also be observed
for the comparison of Cu0.4-In2S3 and Cu0.4-ZnIn2S4 (Figure 5d). This is because that the
conduction band minimum is mainly composed of hybrid d and sp orbitals of the metal
cations [47], therefore, the introduction of Zn would result in the change of conduction band
from In 5s5p to more negative hybrid orbitals of In 5s5p and Zn 4s4p [46,48]. The upshift
of the conduction band edges gave rise to a higher thermodynamic driving force of proton
reduction, and hence remarkably accelerating the H2 evolution rate in water splitting.

Next, we employed the steady-state emission quenching experiments to evaluate
the charge transfer process. Take the Cu0.4-ZnIn2S4 QDs as example, excitation of QDs
at 430 nm would result in strong luminescence at 630 nm (Figure 6a), which roughly
corresponded to the bandgap energy of Cu0.4-ZnIn2S4 QDs, indicating that this is the band
edge emission of Cu0.4-ZnIn2S4 QDs. However, the emission intensity was dramatically
quenched with the adding of Ni2+ (Figure 6a), indicating that the binding of Ni2+ with the
QDs would result in the electron transfer from the QDs to Ni2+ and consequently inhibit
the radiative recombination of photogenerated electron-hole pairs [49]. What’s more, after
adding electron donor, H2A, into the QDs aqueous solution, the emission would also be
quenched obviously (Figure 6b), demonstrating the hole transfer from QDs to H2A [50].
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On the basis of the above results, we proposed that the introduction of Zn and Cu ions
would regulate the conduction and valence band of indium chalcogenide QDs, respectively.
As the upshift of valence band edge was significantly larger than that of conduction band
edge, the bandgap of Cu doped QDs was clearly narrowed and gave rise to the robust
visible light harvesting. Therefore, the photocatalytic activity of QDs remarkably enhanced
after the doping of Cu. On the other hand, with the upshift of the conduction band edge,
the thermodynamic driving force of proton reduction raised, thus the Cu-doped ZnIn2S4
QDs exhibited the superior photocatalytic activity. Under visible light irradiation, the
photogenerated electron of Cu0.4-ZnIn2S4 QDs would transfer to the surface Ni species,
the H2 evolution cocatalysts, which would assist the proton reduction and formation of H2.
Simultaneously, the hole transferred to the surface of QDs and oxidized the electron donor
to accomplish the whole reaction (Figure 7).
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4. Conclusions

In summary, we have regulated the bandgap and conduction/valence band levels of
indium-based chalcogenides QDs simultaneously by introducing transition metal ions to
construct efficient and noble metal-free photocatalysts. The bandgap is mainly determined
by the doping of Cu, which could remarkably upshift the valence band edge. While the
introduction of Zn would slightly enhance the conduction band level and provide higher
driving force for proton reduction. Therefore, the as-prepared Cu-doped ZnIn2S4 QDs
exhibit outstandingly higher photocatalytic performance. Under the optimal conditions,
the Cu0.4-ZnIn2S4 QDs could produce H2 with the rate of 144.4 µmol h−1 mg−1, which is
even comparable to the state-of-the-art cadmium chalcogenide QDs. We believe that this
approach has given a much deeper recognition on the band engineering, which can be
extended to related systems as an effective strategy for the design of photocatalysts.
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