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A kinetic model of multiple 
phenotypic states for breast cancer 
cells
Kang Qiu1,2, Kai-fu Gao   1, Li-jian Yang1, Zhao-kang Zhang1, Ran Wang1,  
Hui-shu Ma1 & Ya Jia1

Quantitative modeling of microscopic genes regulatory mechanisms in an individual cell is a crucial 
step towards understanding various macroscopic physiological phenomena of cell populations. Based 
on the regulatory mechanisms of genes zeb1 and cdh1 in the growth and development of breast cancer 
cells, we propose a kinetic model at the level of single cell. By constructing the effective landscape of 
underlying stationary probability for the genes expressions, it is found that (i) each breast cancer cell 
has three phenotypic states (i.e., the stem-like, basal, and luminal states) which correspond to three 
attractions of the probability landscape. (ii) The interconversions between phenotypic states can be 
induced by the noise intensity and the property of phenotypic switching is quantified by the mean first-
passage time. (iii) Under certain conditions, the probabilities of each cancer cell appearing in the three 
states are consistent with the macroscopic phenotypic equilibrium proportions in the breast cancer 
SUM159 cell line. (iv) Our kinetic model involving the TGF-β signal can also qualitatively explain several 
macroscopic physiological phenomena of breast cancer cells, such as the “TGF-β paradox” in tumor 
therapy, the five clinical subtypes of breast cancer cells, and the effects of transient TGF-β on breast 
cancer metastasis.

The regulation of cell phenotype decisions is critical for the survival of living cells. The clonal or stem cell was 
found with multiple phenotypic states, for example, the multiple states can arise in a cell with different gene 
expression states in E. coli1. The cell state changes occur in response to microenvironmental signals and fluc-
tuations2–17. The multiple phenotypic states also exist in a variety of cancer cells18–24, such as breast, colorectal 
cancers, etc.

Recent experimental observations25 demonstrated there are three mammary epithelial cell phenotypic states 
(i.e., the stem-like, basal, and luminal states) in human breast cancer cell lines (the primary tumors SUM159 and 
SUM149), and the subpopulations of cancer cells purified for a given phenotypic state return towards equilibrium 
proportions of three phenotypes over time. It was found that the phenomenon of phenotypic proportions in 
human breast cancer cell lines is not due to differential growth rates of cells in the basal, stem-like, or luminal state 
but rather to interconversion between the three states, and a Markov model in which breast cancer cells transit 
stochastically between states was proposed to explain those experimental observations.

The observed breast cancer populations25 are composed of a large number of cancer cells, although the cancer 
cells transition stochastically between three states, it is assumed that each cancer cell has the same gene regulatory 
pathways or kinetics of genes regulatory mechanisms in vivo. Understanding how the macroscopic phenotypic 
equilibrium proportions arise in each cancer cell and how the multiple states coexistence of an individual cell is 
mapped onto various macroscopic phenomena at the level of the whole cancer populations, implies that we ought 
to structure useful kinetic models of microscopic regulatory mechanisms at the single cell level. Therefore, the 
question of how the cell-state decisions of each cancer cell are made by genes regulatory mechanisms is critical 
outstanding. To our knowledge, however, the kinetic model of microscopic regulatory mechanisms for the mul-
tiple phenotypic states of an individual cancer cell is still unknown so far.

Although there are a large number of genes involved in the multiple phenotypic states of an individual cancer 
cell, a few key genes regulations might determine the cancer cell’s phenotype or invasion and metastasis, and the 
cancer cell’s response to microenvironmental signals (such as oestrogen, TGF-β, survival factors, cytokines and 
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extracellular matrix)26–28. For example, genes zeb1 (the transcription factor ZEB1) and cdh1 (encoding the protein 
E-Cadherin) play a vital role in cancer cells developmental processes29, 30, especially in the epithelial-mesenchymal 
transition (EMT) process, which is a key developmental program that is often activated during cancer invasion 
and metastasis. Thus, interesting questions now arise: Can the macroscopic phenotypic equilibrium phenomena 
at the level of the whole breast cancer populations be understood by the multiple states coexistence of each cancer 
cell at the level of single cell? What is the kinetic model of the key genes regulatory mechanism in a cancer cell?

In this paper, based on the transcriptional regulatory mechanisms between two key genes (zeb1 and cdh1) 
in the developmental process of breast cancer cells, we proposed a general kinetic model of the genes regulation 
mechanisms for each cancer cell, our results showed that each cancer cell also exists three phenotypic states (i.e., 
the stem-like, basal, and luminal states), and there are interconversions between the three phenotypic states. In 
order to quantify the properties of phenotypic transition (or switching) between states, a theoretical formula of 
mean first-passage time is derived. Most interestingly, our general kinetic model of genes regulation mechanisms 
at the single cell level could help one to understand some macroscopic physiological phenomena at the level of 
whole breast cancer cell population, such as the phenotypic equilibrium in subpopulations of breast cancer lines25, 
the “TGF-β paradox” in tumor therapy31–41, the five clinical subtypes of breast cancer cells42, 43, and the effects of 
transient TGF-β on cancer metastasis44.

The paper is arranged as follows. Firstly, a general kinetic model for the multiple phenotypic states of each 
breast cancer cell is proposed at the level of single cancer cell, and a theoretical formula of mean first-passage 
time for the phenotypic switching between states is derived by using an approximate Fokker-Planck equation. 
Secondly, we study the multiple phenotypic states coexistence and the phenotypic switching of an individual 
cancer cell. Then, the expression levels of genes zeb1 and cdh1 and the probabilities of an individual cancer cell 
appearing in three phenotypic states are compared with those of the human breast SUM159 line. Most interest-
ingly, several clinical and therapeutic phenomena of breast tumors are qualitatively discussed by virtue of the 
general kinetic model. We end with the conclusions and discussions.

General kinetic model of key genes regulations
The stochastic kinetic model.  In the developmental process of breast cancer cells, it was found that the 
transcription factor ZEB1 can promote EMT through inhibiting the expression of gene cdh1 (which encodes 
the adhesion protein E-Cadherin) as shown in Fig. 1(a)24, 29, 30, 45. The E-Cadherin is a kind of transmembrane 
protein and essential for the stable cell-cell adhesion, and plays an important role in cellular development and 
cancer metastasis through modulating the EMT and the mesenchymal-epithelial transition (MET)29, 30, 45. The 
low expression of E-Cadherin (through allelic loss and methylation/hyper-methylation of 5’CpG sites of cdh1) 
can promote tumor metastasis and malignancy in the early stage of a tumor, the high expression of E-Cadherin 
can induce new tumors forming at distant organs in the late stage of the tumor46–48. The activation of zeb1 induces 
the stem-like cells by inhibiting the expression of mir-200 family members which repress the stemness-associated 
factors such as SOX2 and KLF428, 49, 50. The expression of EMT-associated transcription factors (such as SNAIL1, 
SNAIL2, ZEB1, ZEB2, and LEF1) can be induced by TGF-β signal51.

Above microscopic regulatory mechanisms of the key genes zeb1 and cdh1 in the developmental process of 
breast cancer cells can be described by a general regulatory model as shown in Fig. 1(b), where X1 represents the 
gene zeb1, and X2 represents the gene cdh1. In the deterministic description, the kinetic model of the genes reg-
ulatory mechanisms with a transcriptional negative regulation can be written as following ordinary differential 
equations in the dimensionless:
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where x1 and x2 represent the expression level of genes X1 and X2, respectively.a1 and a2 are the self-activation 
rates of genes, b1 is the basal expression rate of X1, and b2 is the strength of inhibition by the transcriptional 

Figure 1.  A schematic diagram of key genes regulations. (a) The microscopic regulatory mechanisms between 
genes zeb1 and cdh1 in breast cancer cells24, 29, 30, 45, where the expression of EMT-associated transcription 
factor ZEB1 can be induced by TGF-β signaling51. (b) A general kinetic model of the genes regulatory 
mechanisms, where a1 and a2 are the self-activation rates of genes X1 and X2, b2 is the strength of inhibition by 
the transcriptional factor of X1.
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factor of X1. k1 and k2 are the self-degradation rates.θ represents the threshold which is the critical value needed 
for appreciable changes, and n is the Hill coefficient which controls the steepness of the sigmoidal function. The 
parameter values are k1 = k2 = 1.0, θ = 0.5, n = 4, b1 = 0.2, and b2 = 1.0 for simplicity. It is hypothesized that the 
transcriptional negative regulation on X2 by X1 and the self-activation of X2 do not simultaneously occur and the 
regulations in equation (2) follow an “or” rather than “and” logic13.

The regulations and expressions of genes are the intracellular random biochemical events4–8, 10, and the sto-
chasticity plays an important role in regulating cell-state equilibria in subpopulations of cells25. In the stochastic 
description, the equations (1) and (2) are described by following stochastic differential equations:

dx
dt
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where ξ1(t) and ξ2(t) are Gaussion white noises with zero means and 〈ξ1(t)ξ1(s)〉 = 2D1δ(t − s), 〈ξ2(t)ξ2(s)〉 = 2D2δ 
(t − s). Here we consider a homogeneous and non-correlation situation D1 = D2 ≡ D which represents the total 
effect of intrinsic and extrinsic noises. Hence, the probability distribution P(x1, x2, t) of equations (3) and (4) 
obeys the Fokker-Planck equation52–54:
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In the equilibrium case, the stationary probability Pst(x1, x2) of equation (5) represents the states distribution 
of cancer cells. An effective potential function Ust(x1, x2) for nonequilibrium system is defined by the stationary 
probability:

= −U x x P x x( , ) ln[ ( , )] (6)st st1 2 1 2

Each minimum of the potential function Ust(x1, x2) corresponds to one state (or phenotype) of a cancer cell. 
The phenotypic switching of a cancer cell means that the state of the cancer cell moves from one minimum of 
potential landscape to another.

A formula of phenotypic switching.  To quantify the properties of phenotypic switching between states 
in the case of multiple phenotypic states coexistence, one can calculate the escape time from one steady state of 
Ust(x1, x2) to another. A rigorous definition of escape time out of y1 is provided by the mean first-passage time 
(MFPT) τ of the stochastic process y(t) to reach the point y2 with initial condition y(t = 0) = y1. This is given by55, 56
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It is found that the potential function equation (9) is a bistable system with the given parameter values. Then, 
the probability distribution P(x0, x2, t) of expression concentration of X2 obeys the following Fokker-Planck 
equation:
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By using the stationary solution of equation (10) and the steepest-descent approximation to equation (7), the 
MFPT can be given by
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where x st
2  and x u

2  are the expression levels of gene X2 at the steady state and unstable steady state, U x x( , )st
st

0 2  and 
U x x( , )st

u
0 2  are the values of potential function at the steady state and unstable steady state, respectively.

Results and Discussions
Multiple phenotypes and phenotypic switching of a single breast cancer cell.  In the last section, 
based on the regulatory mechanism of genes zeb1 and cdh1 in the growth and development of breast cancer cells, a 
general kinetic model was proposed. In this section, by using our kinetic model, it is shown that an individual breast 
cancer cell can exists in any of three possible phenotypic states (i.e., the stem-like, basal, and luminal states) which 
correspond to three basins of attractions of the probability landscape. The cell-state transition between the three states 
can be induced by the noise, and the properties of phenotypic switching are quantified by the mean first-passage time.

Deterministic trajectories, probability distribution, and potential landscape of model.  By using the gene regula-
tory kinetic model, the multiple phenotypic states can arise in each breast cancer cell. Under the deterministic 
description equations (1) and (2), the deterministic trajectories of the kinetic model for each breast cancer cell 
show that there are three steady states and two unstable steady states as given by Fig. 2(a), and the three steady 
states correspond to the three phenotypes of each cancer cell: the stem-like (S), basal (B), and luminal (L) states.

Under the stochastic description of equations (3) and (4), the stationary probability Pst(x1, x2) and the potential 
landscape Ust(x1, x2) as given by Fig. 2(b,c) also show that a breast cancer cell can exist in any of three possible 
phenotypes (S, B, and L states) with different probabilities.

Multiple states coexistence and phase diagram.  The variation of expression level of genes can be considered as the 
change of self-activation strength of genes. In our kinetic model, the self-activation strength a1 of transcription 
factor ZEB1 can be induced by the microenvironmental signal (e.g., the TGF-β signal)51, the expression level of 
protein E-Cadherin determined by self-activation strength a2 of gene cdh1 can indicate the different stages of can-
cer. The expression of E-Cadherin in the early stage of some tumors is low (through allelic loss and methylation/
hyper-methylation of 5’CpG sites of cdh1), while the expression is high in the late stage of the tumor46–48.

A steady state of the kinetic model corresponds to a phenotypic state of a cancer cell. The steady state proper-
ties of the kinetic model show that there are the mono-stability (e.g., L or B), the bi-stability (e.g., LS, LB, or BS), 
and the tri-stability (e.g., LBS) under the different conditions. A phase diagram for the properties of phenotypic 
states of a single cancer cell is drawn in parameters (a1, a2) plane as shown by Fig. 3.

With the variation of parameter a1(or a2), the phenotypic states of each cancer cell are very different. From 
the phase diagram, it can be found that, in the early stage of cancer (i.e., a2 is small), a cancer cell is found in the 
L state at low level of TGF-β signal, and in the B state at high level of TGF-β signal. In the late stage of cancer (i.e., 
a2 is large), however, a cancer cell is found in the multiple phenotypic states coexistence at high level of TGF-β 
signal, such as the LS, LB, LBS, and BS states.

Phenotypic switching between states due to noise.  In the regions of multiple phenotypic states coexistence (e.g., 
the LS, LB, BS or LBS in Fig. 3), the cell-state transition can be induced by the noise, and the properties of phe-
notypic switching between phenotypic states are characterized by using the MFPTs (obtained by the theoretical 
formula equation (11) and the numerical simulation of stochastic process according to equations (3) and (4)). 
Furthermore, the barrier height of minima of potential function equation (9) can also be used to imply the prop-
erties of phenotypic switching, the height of barriers of two attractors (e.g., the B and S states) is defined by:

U U U U U U, (12)u B u B u S u S1 1 1 1
∆ = − ∆ = − .

where u1 is the saddle point between B and S states.

Figure 2.  Deterministic trajectories, probability distribution, and potential landscape of model. (a) 
Deterministic trajectories of kinetic model for an individual cancer cell. There are three steady states (filled 
circles) corresponding to three phenotypic states (the stem-like (S), basal (B), and luminal (L) states), and two 
unstable steady states (circles, U1 and U2). (b) Effective landscape of stationary probability distribution Pst(x1, 
x2) in two dimensions. (c) Potential landscape Ust(x1, x2) in three dimensions. The other parameters: a1 = 0.8, 
a2 = 0.85, and D = 0.02.
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It is interesting to note that in equation (10) the dependence on the height of potential function between the 
steady state and unstable steady state is contained in the exponential factor. The higher the barrier height is, the 
larger the MFPT of the phenotype will be. The larger MFPT means that this phenotype is more difficult to switch 
to the other phenotype. Hence, the barrier heights of minima of potential function can also be used to imply the 
transition directionality of phenotypic switching. In the case of multiple phenotypic states coexistence, for exam-
ple, the heights of barriers of two attractors (B and S states) are defined byequation (12).

For instance, taking into account the interconversions between B and S states, Fig. 4 shows that both the 
MFPTs (obtained by the theoretical formula and the numerical simulation) and the barrier heights of minima 
(the B and S states) of potential function are decreased with the increasing of noise intensity D, and there exists a 
threshold (the cross point) of noise intensity when the phenotype of cancer cells converts between B and S states.

With the increasing of noise intensity D, Fig. 4(a) shows that τBS and τSB are decreased, and the threshold of 
noise intensity is Dc ≈ 0.085. When D < Dc, τSB < τBS, a cancer cell can change from S state to B state (i.e., S → B), 
and the cancer cell has much larger probability to stay in B phenotype. However, when D > Dc, τSB > τBS, a cancer 
cell can change from B state to S state (i.e., B → S), and the cancer cell has larger probability to stay in S phenotype.

It should be pointed out that, in the regions of multiple phenotypic states coexistence, the transitions between 
cell phenotypes can also be induced by the self-activation strength a1 of ZEB1 through the increasing of the 
TGF-β signal, the self-activation strength a2 of cdh1 through the demethylation of 5′ CpG sites of cdh1, and the 
repression strength b2 of cdh1 by ZEB1, respectively. Those data are not provided in this paper.

Figure 3.  Phase diagram of multiple phenotypic states of a breast cancer cell in parameters (a1, a2) plane. The 
self-activation strength a1 of gene zeb1 can be induced by the TGF-β signal, and the self-activation strength a2 
of gene cdh1 (encoding protein E-Cadherin) can indicate the different stages of cancers. The point P (the star) 
corresponds to phenotypic equilibrium distribution in the SUM159 breast cancer line25. The five points (1, 2, 3, 
4, 5) on the dashed line correspond to the five clinical subtypes of breast cancer cells43.

Figure 4.  The properties of phenotypic switching due to noise in the multiple states coexistence regions. (a) The 
MFPTs (τBS and τSB) are obtained by the theoretical formula equation (11). (b) The MFPTs (τBS and τSB) are 
obtained by the numerical simulation of stochastic process of equations (3) and (4). (c) Relative barrier heights 
∆Uu B1

 and Uu S1
∆  are obtained by equation (12). The other parameters: a1 = 0.8, a2 = 0.85.
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Phenotypic equilibrium in SUM159 cell line.  The SUM159 populations are composed of a large number 
of breast cancer cells, in which the kinetics of genes regulatory mechanisms in each cancer cell is identical. It was 
found that25 the phenomenon of phenotypic proportions in breast cancer cell lines is due to the interconversions 
between states. The multiple phenotypic states of each cancer cell at the level of single cancer cell can be mapped 
onto the macroscopic phenotypic equilibrium in subpopulations of cancer cells at the level of the whole can-
cer population, where the expression levels of genes zeb1 and cdh1 associated with different subpopulations are 
different.

Expressions level of genes zeb1 and cdh1 in SUM159 cell line.  In SUM159 sorted cell subpopulations, the quanti-
tative RT-PCR showed that (see the Fig. 1E in ref. 25) the expression level of gene cdh1 (E-Cadherin) associated 
with stem and luminal states are specifically high, and the expression level of gene cdh1 associated with basal state 
is low. However, the expression level of gene zeb1 associated with stem state is same as that associated with basal 
state, and the expression level of gene zeb1 associated with luminal state is lower than that associated with basal 
or stem state.

By utilizing our kinetic model, under the deterministic description, Fig. 2(a) shows that the relative expression 
levels of genes zeb1 (i.e., x1) and cdh1 (i.e., x2) at the three phenotypic states of each breast cancer cell are consist-
ent with the experimental data of quantitative RT-PCR of genes associated with the stem-like, basal, and luminal 
states in SUM159 line (see the expression levels of Zeb1 and E-Cadherin in Fig. 1E of ref. 25).

Phenotypic equilibrium in SUM159 cell line.  Under certain conditions (for example, at point P in the phase 
diagram Fig. 3), the cell-state equilibria in subpopulations of cancer cells25 can be explained by our stochastic 
kinetic model.

Figure 5(a) shows the probability distributions of three phenotypes of a single cancer cell under certain noise 
intensity. Figure 5(b) shows that the cell-state proportions of three states of each cancer cell are consistent with 
those of phenotypic equilibrium in subpopulations of cancer cells (see the experimental data in Fig. 2B of ref. 25).  
The probability distribution is independent of the initial phenotype of each cancer cell, but depends on the 
microenvironmental fluctuations.

Our stochastic model can also predict that, with the increasing of noise intensity, the probabilities of each can-
cer cell in both L and S states become large, yet that of each cancer cell in B state becomes small as shown in Fig. 6.

Some macroscopic physiological phenomena of breast tumors.  “Most cancer patients die from 
their disease as a result of metastasis”57. Cancer cells in distinct phenotypic states exhibit differences in functional 
properties. In this section, it is showed that some macroscopic phenomena of breast cancer cells at the level of 
the whole cancer populations can also be qualitatively understood by using of the microscopic genes regulatory 
kinetic model at the level of single cancer cell.

The “TGF-β paradox” in breast tumor therapy.  TGF-β is a multifunctional cytokine, and plays an essential role in 
modulation of cellular growth, maturation, differentiation, apoptosis, adhesion, and microenvironment. In tumor 
therapy, the effects of TGF-β on cancer cells are quite different.

In the early stage of cancers, it can induce the epithelial cell cycle arrest and promote apoptosis through 
its canonical signaling pathway via SMAD protein. In the late stage of cancers, however, it is linked with sup-
porting cancer progression, such as higher cell motility, cancer metastasis, and immune evasion through the 

Figure 5.  Phenotypic equilibrium in SUM159 line. (a) Effective landscape of stationary probability distribution 
Pst(x1, x2) of three states (corresponding to point P in Fig. 3 with noise intensity D = 0.01) of an individual breast 
cancer cell. (b) Comparison the stationary probabilities proportions of three states (columns) of an individual 
cancer cell with the phenotypic equilibrium (stars represent the experimental data) in subpopulations of cancer 
cells in SUM159 line25.
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non-canonical signaling pathway. These contrasting, dichotomous TGF-β behaviors in cancer development and 
progression are referred to as the “TGF-β paradox”31–41.

In fact, the contrasting, dichotomous TGF-β behaviors in the breast tumor therapy can be easily understood 
by using the phase diagram (Fig. 3) and the differences in functional properties of cancer cells within distinct 
phenotypic states.

In the early stage of cancers (i.e., a2 is small), with the increasing of TGF-β, Fig. 3 shows that a cancer cell can 
transform from one phenotypic state (L) to the multiple phenotypic states coexistence (LB, or LB and LS), and 
then to another one phenotypic state (B). When the cancer cell is in L phenotype, it stays in a tumor, in which 
it cannot be identified and killed by immune cells located around that tumor. With the increasing of the TGF-β 
level, the cancer cell is possible to switch to B state which has larger motility and can be identified and killed by the 
immune cells. Thus, the increasing of TGF-β can inhibit tumor metastasis in the early stage of cancers.

However, in the late stage of cancers (i.e., a2 is large), with the increasing of TGF-β signal, Fig. 3 shows that 
a cancer cell can transform from one state (L) to a successive multiple states coexistence (LS, LBS, and BS) pro-
cess. In these coexisting states, the cancer cell has a certain probability of transition into S state, where it has the 
tumor-seeding ability, drug resistance, and the greatest cancer initiating capacity. Thus, the increasing of TGF-β 
can promote cancer progression in the late stage of cancers.

The five clinical subtypes of breast cancer cells.  It was observed that there are three types of cancer stem-like cells 
(CSCs) in breast cancers (the basal, luminal, and basal-luminal CSCs)42. The basal CSCs are the mesenchymal-like 
state which comes from EMT, the luminal CSCs are the epithelial-like state which comes from MET, and 
the basal-luminal CSCs in which the two surface makers of both basal and luminal CSCs are simultaneously 
expressed.

More recently, Brooks et al.43 found that these three phenotypes steady proportion distributions were appar-
ently different between the five clinical breast cancer subtypes which are luminal A, luminal B, Her2 positive, 
basal-like, and triple negative (TN, the clinically aggressive claudin-low subtype). The breast cancer clinical clas-
sification is based on the cellular surface markers expression of estrogen and progesterone receptor as well as the 
growth factor receptor HER2. The TN is similar to basal-like, which are both the most difficult ones to cure58, 59.

Our kinetic model of an individual cancer cell can be used to illustrate the five clinical subtypes of breast 
cancer cells since three types of CSCs have a similar pattern of gene expression and share a common regulatory 
pathway42, 43.

For each breast cancer cell, it is found that the five subtypes observed by clinical trials could be respectively 
corresponded to the five points 1, 2, 3, 4, 5 in the phase diagram of phenotypes (Fig. 3) in the late stage of cancers. 
The probability distribution of the five points are shown in Fig. 7, which are similar to those of clinical classifica-
tion of breast cancers (see the Fig. 2 of ref. 43).

The effects of transient TGF-β on cancer metastasis.  It was demonstrated that44 the consecutive high level of 
TGF-β can enhance the motility and intravasation of breast cancer cells by switching from cohesive to single cell 
motility but with low efficiency in forming new tumors at distant organs like the lung. However, the transient 
expression TGF-β can induce subsequent new tumor growth in the lungs. Thus, localized and reversible TGF-β 
signaling switches breast cancer cells from single cell motility to cohesive.

By virtue of the kinetic model, in the late stage of cancers (e.g., a2 = 0.8), when TGF-β signal is consecutively 
at high level (e.g., a1 > 0.9), Fig. 8 shows that the cancer cell is in the B state, in this case, the motility of the cancer 
cell is enhanced by the consecutive increasing of TGF-β.

However, when TGF-β is instantaneously increased to a high level (e.g., a1 > 0.9) and decreased subsequently, 
with the decreasing of TGF-β, Fig. 8 shows that a cancer cell converts from B (Fig. 9(e)) state to LB (Fig. 9(d)), 
LBS (Fig. 9(c)), LS (Fig. 9(b)) states, and ends in L (Fig. 9(a)) state, respectively. In this process, the cancer cell 
gradually loses the ability to metastasize since the cancer cell can transfer into S or L state with a certain probabil-
ity, and more and more of cancer cells have the ability to stick to distant organs and become resistant to immune 
cells, radiotherapy, and chemotherapy.

The motility capacities of cancer cells is decreased step by step as shown by the size of arrows in Fig. 8. The 
consecutive high expression of TGF-β can enhance the metastasis ability through promoting EMT, but the 

Figure 6.  Effects of noises on phenotypic switching in the region of LBS coexistence. When noise intensity 
D = 0.01, the stationary probability distribution of L state is too small to visualize. The other parameters: a1 = 0.8 
and a2 = 0.85.



www.nature.com/scientificreports/

8Scientific ReportS | 7: 9890  | DOI:10.1038/s41598-017-10321-1

transient expression of TGF-β can induce the reversible process MET, which makes it easier for the cancer cells to 
stick to new sites through enhancing the expression of E-Cadherin, and form new tumors.

Conclusions and Discussions
In this paper, a general kinetic model of microscopic regulatory mechanisms between two genes (zeb1 and cdh1) 
with a transcriptional negative regulation at the level of single cancer cell was proposed to uncover several inter-
esting macroscopic physiological phenomena of cancer cells observed by experiments and clinical trials, such as 
the phenotypic equilibrium in populations of breast cancer cell lines, the “TGF-β paradox” in tumor therapy, the 
five clinical subtypes of breast cancer cells, and the effects of transient TGF-β on cancer metastasis.

By using the effective landscape through construction of underlying stationary probability, it is found that 
each breast cancer cell can also exist in any of three possible phenotypic states (i.e., the stem-like, basal, and lumi-
nal states) which correspond to three basins of attractions of the probability landscape. The transitions between 
the three states are induced by the noise (or the self-activation strength, or the repression strength of genes). The 
property of phenotypic switching is quantified by the mean first-passage time. Under certain conditions, the 

Figure 7.  Effective landscape of stationary probability distributions of the three phenotypes. The probability 
distributions Pst(x1, x2) corresponding to the five points 1, 2, 3, 4, and 5 in Fig. 3 with noise intensity D = 0.02 
are similar to those of the five clinical subtypes (Luminal A, Luminal B, Her2, Basal, and Claudin-Low) of breast 
cancer43.

Figure 8.  Bifurcation diagram of the expression level x2 of E-Cadherin as a function of a1. Parameter a1 
represents the TGF-β signal since the self-activation strength a1 of gene zeb1 can be induced by the TGF-β 
signal. The motility capacity of cancer cells is decreased step by step as shown by the size of arrow in different 
regions. The parameter: a2 = 0.8.
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probabilities of each breast cancer cell appearing in the three states are consistent with the macroscopic pheno-
typic equilibrium in subpopulations of breast cancer cells observed by the experiments25. Comparing with the 
Markov model25 proposed by Gupta et al. which is a macroscopic model, our kinetic model which depends on 
microscopic regulatory mechanisms between two genes is more fundamental and can explain more physiological 
phenomena of breast cancers observed by experiments and clinical trials.

The phase diagram of the deterministic kinetic model in parameters (a1, a2) plane given by Fig. 3 shows that 
there are multiple phenotypic states coexistence regions (e.g., LB, LBS, LS, BS). The five breast cancer clinical sub-
types42, 43 can be explained by different proportion distributions of three cell phenotypes of each cancer cell, and 
the “TGF-β paradox”31–41 in the tumor therapy can be understood by the phase diagram. With the increasing of 
TGF-β signal, the motility of cancer cells is increased. While the motility of cancer cells is decreased by decreasing 
TGF-β, then the cancer cells can reach and form new tumors at distant organs44. Thus, high level of TGF-β signal 
is worse prognosis for tumors in the late stage of cancers.

In order to broadly explore the parameters used in the model, we first drew different phase diagrams with 
different parameters combinations, such as (a1, b2),(b1, a2) etc., and found they all had the similar phase dia-
grams which contain the same multiple phenotypic states coexistence regions (e.g., LB, LBS, LS, BS). Second, we 
changed the Hill power parameter n and found that there always exist three steady states which correspond to the 
stem-like, basal, luminal states except n < 2.24.

Our kinetic model also predicts that there exists a threshold of noise intensity when the phenotype of a cancer 
cell transits between B state and S state. Due to the complexities of the equations which is highly nonlinear and 
have two unknowns, it is difficult to calculate the corresponding potential functions between any two states, such 
as L and B or L and S, except B and S states which coincidentally have the same value of x1. However, the role of 
noise on state conversions is also numerically studied between the states of L, B and L, S in the LBS region and 
we found that higher noise intensity induce the cancer cell state switching from L to B or S state which means 
enhancing noise intensity can promote the breast cancer metastasis. Although our model can reveal the multi-
ple phenotypic states and phenotypic switching of breast cancer cells, it also should be mentioned that the real 
regulatory network of cell phenotype decisions is much more complex and there are probably other genes taking 
part in the dynamics of phenotypic switching. Above results reveal that the increasing of TGF-β can promote the 
metastasis ability of tumors through the EMT process, whereas the enhancing of the E-Cadherin expression, the 
noise intensity, and the transitory TGF-β signal can induce the forming of new tumors at distant organs through 
the opposite process MET.

In conclusion, by using a general kinetic model of microscopic regulatory mechanisms between two key genes, 
we demonstrated that the multiple phenotypic states of each cancer cell at the level of single cancer cell can be 
mapped onto some macroscopic physiological phenomena of breast cancer cells observed by experiments and 
clinical trials. Our results could provide new insights into the roles of microenvironmental signals and fluctua-
tions at different stages of cancer cells, and the kinetic model might give some insights for various tumors clinical 
therapy strategies.

Figure 9.  Deterministic trajectories of the five regions (I-V) in Fig. 8. The filled circle corresponds to the stable 
state, and the circle corresponds to the unstable steady states. (a) a1 = 0.3. (b) a1 = 0.6. (c) a1 = 0.7. (d) a1 = 0.88. 
(e) a1 = 0.95.
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