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Abstract

Chikungunya virus (CHIKV) epidemics around the world have created public health concern

with the unavailability of effective drugs and vaccines. This emphasizes the need for molec-

ular understanding of host-virus interactions for developing effective targeted antivirals.

Microarray analysis was carried out using CHIKV strain (Prototype and Indian) infected

Vero cells and two host isozymes, MAPK activated protein kinase 2 (MK2) and MAPK acti-

vated protein kinase 3 (MK3) were selected for further analysis. The substrate spectrum of

both enzymes is indistinguishable and covers proteins involved in cytokines production,

endocytosis, reorganization of the cytoskeleton, cell migration, cell cycle control, chromatin

remodeling and transcriptional regulation. Gene silencing and drug treatment were per-

formed in vitro and in vivo to unravel the role of MK2/MK3 in CHIKV infection. Gene silencing

of MK2 and MK3 abrogated around 58% CHIKV progeny release from the host cell and a

MK2 activation inhibitor (CMPD1) treatment demonstrated 68% inhibition of viral infection

suggesting a major role of MAPKAPKs during late CHIKV infection in vitro. Further, it was

observed that the inhibition in viral infection is primarily due to the abrogation of lamellipo-

dium formation through modulation of factors involved in the actin cytoskeleton remodeling

pathway. Moreover, CHIKV-infected C57BL/6 mice demonstrated reduction in the viral copy

number, lessened disease score and better survivability after CMPD1 treatment. In addition,

reduction in expression of key pro-inflammatory mediators such as CXCL13, RAGE, FGF,

MMP9 and increase in HGF (a CHIKV infection recovery marker) was observed indicating

the effectiveness of the drug against CHIKV. Taken together it can be proposed that MK2

and MK3 are crucial host factors for CHIKV infection and can be considered as important

target for developing effective anti-CHIKV strategies.
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Author summary

Chikungunya virus has been a dreaded disease from the first time it occurred in 1952 Tan-

zania. Since then it has been affecting the different parts of the world at different time

periods in large scale. It is typically transmitted to humans by bites of Aedes aegypti and

Aedes albopictus mosquitoes. Although, studies have been undertaken to combat its preva-

lence still there are no effective strategies like vaccines or antivirals against it. Therefore it

is essential to understand the virus and host interaction to overcome this hurdle. In this

study two host factors MK2 and MK3 have been taken into consideration to see how they

affect the multiplication of the virus. The in vitro and in vivo experiments conducted dem-

onstrated that inhibition of MK2 and MK3 not only restricted viral release but also

decreased the disease score and allowed better survivability. Therefore, MK2 and MK3

could be considered as the key targets in the anti CHIKV approach.

Introduction

The Chikungunya virus (CHIKV) is an insect-borne virus belonging to the genus Alphavirus
and family Togaviridae and transmitted to humans by Aedes mosquitoes[1]. Three CHIKV

genotypes, namely West African, East Central South African and Asian have been identified.

The incubation period ranges from two to five days following which symptoms such as fever

(up to 40˚C), petechial or maculopapular rash of the trunk and arthralgia affecting multiple

joints develop[2–4].

CHIKV is a spherical (60-70nm diameter) enveloped, positive sense single-stranded RNA

(~12Kb) virus [5–7]. Its genomic organization is 50-cap-nsP1-nsP2-nsP3-nsP4-(junction

region)-C-E3-E2-6K-E1-30[8]. The non-structural proteins (nsP1-4) are primarily involved in

virus replication, while structural proteins C, E3, E2, 6K and E1 are responsible for packaging

and producing new virions.

In India, CHIKV infection has re-emerged with the outbreak of 2005–08 affecting approxi-

mately 1.3 million people in 13 different states [9]. The clinical manifestations during these

outbreaks were found to be more severe leading to the speculation that either a more virulent

or an efficiently transmitted variant of this virus might have emerged [10].

CHIKV, among most other viruses across families, interacts with a number of cellular pro-

teins and consequently metabolic pathways to aid its survival in the host [11–17]. Several facets

of CHIKV pertaining to strategies required for ecological success, replication, host interaction

and genetic evolution are yet to be fully explored and are constantly evolving. This spurs the

need to identify important host pathways that can be targeted for developing antiviral thera-

pies against the virus.

Alternatively, host factors involved in viral replication may also be targeted. Previous stud-

ies have shown compounds targeting furin, protein kinases, and Hsp90, are inhibiting CHIKV

replication in vitro [18–20]. However, further validation through in vivo experiments and pre-

clinical studies need to be performed prior to developing effective antivirals. Literature also

displays an array of different viruses like Zika virus, HBV, DENV, Influenza virus, HIV and

HCMV for utilizing MAPKs like P38MAPK and its substrates for establishing persistent infec-

tion thereby ensuring their survival in the system for efficient progeny formation [21–27]. The

MAPK-activated protein kinases MAPKAPK2 (MK2) and MAPKAPK3 (MK3) form a pair of

structurally and functionally closely related enzymes and are one of the substrates of

p38MAPK. Although the expression level and activity of MK2 is always significantly higher
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than that of MK3, the substrate spectrum of both enzymes is indistinguishable and covers pro-

teins involved in cytokines production, endocytosis, reorganization of the cytoskeleton, cell

migration, cell cycle control, chromatin remodelling and transcriptional regulation. Both

enzymes are promising targets for the development of small molecule inhibitors which can be

used in anti-inflammatory therapy[28]. Moreover, it was reported earlier by our group that

P38MAPK is crucial for CHIKV infection [29]. Besides, our group has formerly reported an

Indian outbreak strain IS, to exhibit a faster replication rate than the CHIKV prototype strain,

PS in vitro [30]. Hence, the present study identifies host genes which are modulated differen-

tially during IS and PS-CHIKV infection in mammalian system and explores the involvement

of downstream host factors of P38MAPK pathway during virus infection using both in vitro
and in vivo conditions through inhibitor studies.

Materials and methods

Ethics statement

The mice related experiments were performed as per CPCSEA guidelines and were approved

by the Institutional Animal Ethics Committee (IAEC) committee.

Cells, viruses, antibodies, inhibitors

Vero cells (African green monkey kidney cells), CHIKV strains, prototype strain, PS (Acces-

sion no: AF369024.2) and novel Indian ECSA strain, IS (Accession no: EF210157.2) and E2

Monoclonal antibody were gifted by Dr. M. M. Parida, DRDE, Gwalior, India. The HEK 293T

cell line (Human embryonic kidney cells) was gifted by Dr. Rupesh Dash, Institute of Life Sci-

ences, Bhubaneswar, India. Cells were maintained in Dulbecco’s Modified Eagle’s medium

(DMEM; PAN Biotech, Germany) supplemented with 5% Fetal Bovine Serum (FBS; PAN Bio-

tech), Gentamicin and Penicillin-Streptomycin (Sigma, USA). The anti-nsP2 monoclonal anti-

body used in the experiments was developed by us [31]. Cofilin monoclonal antibody was

purchased from Cell Signaling Technologies (Cell Signaling Inc, USA). The pMK2 polyclonal

antibody and MK3 monoclonal antibody were purchased from Santacruz Biotechnology

(USA). The p-Cofilin antibody and GAPDH antibody were procured from Sigma Aldrich

(USA) and Abgenex India Pvt. Ltd. (India) respectively. The anti-mouse and anti-rabbit HRP-

conjugated secondary antibodies were purchased from Promega (USA). Alexa Fluor 488 and

Alexa Fluor 594 antibodies were purchased from Invitrogen (USA). The MK2a inhibitor,

CMPD1 was purchased from Calbiochem (Germany).

Virus infection

The Vero cells were infected with PS/IS strains of CHIKV respectively according to the experi-

mental requirements as reported earlier [30]. Thereafter, CHIKV infected cells were incubated

for 15–18 hours post infection (hpi) following which cells and supernatants were harvested

from mock, infected and drug treated samples for downstream processing.

RNA isolation and Microarray hybridization

In the present study, the global gene expression analyses were carried out using the Agilent

Rhesus GeneChip ST arrays. Sample preparation was performed according to the manufactur-

er’s instruction (Agilent, USA). Briefly, RNA was extracted from mock and virus infected Vero

cells using the RNeasy mini kit (Qiagen, Germany). Next, RNA quality was assessed by Agilent

Bioanalyzer and cDNA was prepared using oligo dT primer incorporating a T7 promoter. The

amplified, biotinylated and fragmented sense-strand DNA targets were generated from the
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extracted RNA and hybridized to the gene chip containing over 22,500 probe sets at 65˚C for

17h at 10 rpm. After hybridization, the chips were stained, washed and scanned using a Gene

Chip Array scanner.[32]

Microarray analysis

Raw data sets were extracted after scanning the TIFF files. These raw data sets were analyzed

separately using the GeneSpring GX12.0 software (Agilent Technologies, USA) followed by

differential gene expression and cluster analysis. Differential gene expression analyses were

performed by using standard fold change cut off > = 2.0 and> = 10.0 against IS (8hpi) vs

Mock (8hpi), PS (8hpi) Vs Mock (8hpi), PS (18hpi) Vs Mock (18hpi), IS (8hpi) vs PS (8hpi)

and IS (8hpi) vs PS (18hpi). The hierarchical clustering was performed using the Genesis soft-

ware[33]. Functional annotation of differentially expressed genes was carried out using the

PANTHER gene ontology analysis software [34].

RNA extraction and qRT-PCR

Equal volumes of serum isolated from all groups of mice samples were taken for viral RNA iso-

lation using the QiaAmpViral RNA isolation kit (Qiagen, USA) as per the manufacturer’s

instructions. RT reaction was performed with 1 μg RNA using the First Strand cDNA Synthe-

sis kit (Fermentas, USA) as per manufacturer’s instructions. Equal volume of cDNA was used

for PCR amplification of E1 gene of CHIKV using specific primers [35]. The viral copy num-

ber was estimated from the Ct values obtained for CHIKV E1 gene from each sample.

siRNA transfection

Monolayers of HEK 293T cells with 70% confluency (1×106 cells/well) in 6-well plates were

transfected separately or in combination with 60pmols of siRNA corresponding to MK2

mRNA sequence [(5’-3’) CCAUCACCGAGUUUAUGAAdTdT] and MK3 mRNA sequence

[(5’-3’) GAGAAGCUGCAGAGAUAAUdTdT] or with siRNA negative control. Transfection

was performed using Lipofectamine-2000 (Invitrogen, USA) according to the manufacturer

instructions. In brief, HEK cells were transfected using Lipofectamine 2000 according to dif-

ferent siRNA quantity in Opti-MEM medium (Thermo scientific, USA). The transfected cells

were infected with either CHIKV strains PS or IS with MOI 0.1 at 24 hours post transfection

(hpt). Eighteen hours post infection, the cells were harvested to measure the nsP2 and MK2/3

protein levels by Western blot analysis.

SDS-PAGE and Western blot analysis

Protein expression was examined by Western blot analysis as described earlier [30,36].

CHIKV nsP2 and E2 proteins were detected with monoclonal antibodies [37] and re-probed

with GAPDH antibody to confirm the equal loading of samples. The pMK2, MK3, Cofilin and

pCofilin antibodies were used as recommended by the manufacturer. The Western blots were

scanned using the Quantity One Software (Bio Rad, USA).

Plaque assay

The CHIKV-infected cell culture supernatants were collected at 18 hpi and subjected to plaque

assay according to the procedure mentioned earlier [38].
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Immunofluorescence staining

Immunofluorescence staining was carried out using the procedures described earlier [31].

Vero cells were grown on glass coverslips placed in 35mm dishes and infected with CHIKV

(MOI 0.1) as described above. At 18 hpi, coverslips were stained with primary antibodies fol-

lowed by staining with secondary antibody (AF 594-conjugated anti-mouse antibody) for 45

mins. The phalloidin staining was carried out using the Cytopainter F actin labeling kit as per

manufacturer’s protocol (Abcam, UK). The coverslips were stained with DAPI for 90 sec and

mounted with 15–20 μl Antifade (Invitrogen, USA) to reduce photo-bleaching. Fluorescence

microscopic images were acquired using the Leica TCS SP5 confocal microscope (Leica Micro-

systems, Germany) with 63X objective and analyzed using the Leica Application Suite

Advanced Fluorescence (LASAF) V.1.8.1 software.

Immunohistochemistry analysis

For histopathological examinations, tissue samples were dehydrated, embedded in paraffin

wax, and thereafter serial paraffin sections (5μm) were obtained [39]. Briefly, the sections were

immersed in two consecutive xylene washes for de-paraffinization and were subsequently

hydrated with five consecutive ethanol washes in descending order of concentration: 100%,

90%, 70%, and deionized water. The paraffin sections were then stained with hematoxylin-

eosin (H&E), and histopathological changes were visualized using a light microscope (Zeiss

Vert.A1, Germany).

Cellular cytotoxicity assay

Cellular cytotoxicity assay was performed as described earlier [40]. Vero cells were seeded

onto 96-well plates at a density of 3000 cells/well, treated with different concentrations of

CMPD1 for 24 hrs at 37˚C with 5% CO2. DMSO-treated samples served as control. After incu-

bation, 10μl of MTT reagent (Sigma Aldrich, USA) was added to the wells followed by incuba-

tion at 37˚C for 3hrs and processed further. Absorbance of the suspension was measured at

570nm using ELISA plate reader (BioRad, USA). Cellular cytotoxicity was determined in

duplicates and each experiment was repeated thrice independently.

CMPD1 treatment

Vero cells with 90% confluency were grown in 35mm or 60mm cell culture dishes (according

to the experimental requirements) and infected with PS or IS strains of CHIKV as described

above at MOI 0.1. After infection, cells were treated with either DMSO or different concentra-

tions of CMPD1 as per the protocol mentioned earlier [41]. The cells were observed for detec-

tion of cytopathic effect (CPE) under 10X objective of bright field microscope. Infected cells

and supernatants were then collected at 15-18hpi depending on the experiment.

Time of addition experiment

Vero cells were infected with CHIKV as described above and CMPD1 (50μM) was added at

1hr interval up to 11hrs to the infected cells in different dishes. Thereafter, cell culture super-

natants of all the samples were harvested at 15hpi and plaque assay was carried out for estimat-

ing viral titer.

Transmission electron Microscopy (TEM) imaging

Ultra-structure of CHIKV particles were analyzed by TEM as mentioned before [42] In brief,

mock, CHIKV-infected and drug treated cells were harvested at 22 hpi and fixed in 2%
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glutaraldehyde in 0.1 M cacodylate buffer at 4˚C for overnight, followed by washing and post-

fixation with 1% osmium tetroxide at RT. Next, the fixed cells were again washed, dehydrated

serially in ethanol, placed in a mixture of (11) propylene oxide/Epon resin and left overnight

in pure resin for impregnation of the samples prior to embedding in Epon resin, which was

allowed to polymerize for 48 hours at 60˚C [43]. The hardened blocks were then cut into ultra-

thin sections (70 nm thick) using a Leica EM UC7 ultramicrotome. The sections were collected

on copper-grids, double-stained with 2% uranyl acetate and 1% lead citrate to enhance con-

trast, washed, dried and stored for subsequent TEM imaging.

CHIKV infection in mice

Around 10–14 days old male C57BL/6 mice (n = 5) were injected subcutaneously with

1x106 particles of IS in DMEM. At 3hpi, mice were fed with CMPD1 at a concentration of

5mg/kg of body weight and continually fed at every 24hr-interval up to3 days. All mice were

sacrificed on the fourth day; blood samples were harvested from mock, infected and drug-

treated samples and used for downstream processing. For survival curve analysis, CHIKV-

infected mice were fed with CMPD1 and observed every day, for CHIKV-induced disease

manifestations up to 8 days post infection (dpi). All infected mice were scored on a scale of

0 to 6 based on CHIKV induced disease symptoms such as(0- No symptoms, 1- lethargic,

2- ruffled fur, 3- restricted movement/limping, 4- one hind limb paralysis, 5 –both hind limb

paralysis and 6- Morbid/dead).

Proteome profiling

In order to assess the levels of different cytokines in mock, CHIKV-infected and CHIKV-

infected+drug treated mice samples, proteome profiling was performed using the Mouse XL

cytokine array kit (R & D systems, USA) as per manufacturer’s instructions. The array blots

were incubated with serum samples at 4˚C overnight on a gel rocker, followed by incubation

with HRP-conjugated secondary antibody. Blots were developed using the chemiluminescent

HRP substrate and scanned by the Image Lab software (Bio-Rad, USA). The relative differ-

ences in expression patterns of selected cytokines among the different groups of samples were

assessed using the GraphPad Prism 8.0 software.

Bioavailability Prediction

The bioavailability of CMPD1 was predicted through SWISS ADME tool available in the web-

site (www.swissadme.ch). The SMILE structure of CMPD1 was submitted to the tool for analy-

sis and prediction.

Statistical analysis

Statistical analysis of the experimental data was performed by using the GraphPad Prism 8.0

Software and presented as mean±SD of three independent experiments. The One-way

ANOVA with Dunnet post-hoc test was used to compare the differences between the groups.

In all the tests, p value < 0.05 was considered to be statistically significant.

Results

Differential host gene expressions for PS and IS strains of CHIKV in Vero

cells

Earlier, it was observed that CPE developed by IS was more prominent at 8 hpi as compared to

PS which showed similar CPE around 18 hpi [30]. To understand the host gene expression
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profiles for the two CHIKV strains, Vero cells were harvested at 8 hpi for IS and 18 hpi for PS

for microarray analysis to compare the host factor modulation in the same phase of replication

between the strains. Microarray data revealed the differential expression of 20227 genes, of

which 12221 genes were differentially expressed after applying fold change cut off�2.0. Fur-

ther, 684 genes from the 12221 were differentially expressed with fold change�10.0. The clus-

ter analysis of differentially expressed genes was carried out using the GENESPRING GX 12.0

software, as shown in Fig 1A. Annotation of the total genes into different protein classes was

carried out using the Panther software. It was observed that majority of the genes belonged to

the nucleic acid binding molecules, signaling molecules, transcription factors among others, as

represented in Fig 1B. A pie-chart was constructed using the Panther software to annotate

these genes into different biological processes, and it was observed that majority of the modu-

lated genes belonged to the pathways involved in different cellular processes (Fig 1C). More-

over, 720 genes were differently regulated by IS alone as depicted by the Venn diagram

constructed through the Gene Venn software (Fig 1D and 1E). Out of these 720 genes, few

selected genes were functionally annotated into different host cellular pathways as shown as

Table A in S1 Data. MK3 was present among the 720 genes that were differently expressed in

IS infected cells at 8 hpi in comparison to PS (8 and 18 hpi). Thus, the importance of MK3 and

its isozyme partner MK2 was deliberated during CHIKV infection in this study. Together, the

data indicate that CHIKV utilizes different host cell pathways for efficient replication inside

the host cell and there are differential host gene expression patterns for various strains of

CHIKV.

MK2 and MK3 gene silencing abrogates CHIKV progeny release without

affecting viral protein synthesis

To elucidate the importance of MK2 and MK3 in CHIKV infection, gene silencing through

siRNA approach was employed. Since the transfection efficiency of Vero cell is poor, HEK

293T cell line was used for this experiment. HEK293T cells were transfected with 60 pmol of

MK2 and/or MK3 siRNAs and incubated for 24 hrs at 37˚C.

Next, the siRNA transfected cells were infected with CHIKV [(PS/IS), MOI 0.1] and cells as

well as supernatants were harvested at 18 hpi for further analysis. No remarkable change in

nsP2 expression was observed after genetic knock down of either MK2 or MK3. Surprisingly,

the expression of CHIKV-nsP2 was increased marginally when both MK2 and MK3 were

silenced together as compared to control as shown in Fig 2A and 2B (left and right panels

respectively).

Next, plaque assay was performed to assess the effect of MK2 and/or MK3 down-regulation

in viral progeny formation. Interestingly, it was observed that the viral titers were reduced by

58% for PS strain and 53% for IS strain as shown in Fig 2C and 2D. Therefore, it can be sug-

gested that MK2 and MK3 altogether affects CHIKV progeny release without affecting viral

protein synthesis.

CMPD1, an MK2a inhibitor abrogates CHIKV infection in vitro
The MAPK-activated protein kinases MAPKAPK3 (MK3) and MAPKAPK2 (MK2) are the

substrates of P38 MAPK that form a pair of structurally and functionally closely related

enzymes. Being highly homologous enzymes (around 70% at the amino acid sequence), their

substrate spectrums are indistinguishable [44]. MK2 expression levels usually exceeds MK3

level in cells, however, in absence of functional MK2, MK3 compensates.

To investigate the role of MK2 pathway in CHIKV infection, Vero cells were treated with a

non-ATP competitive MK2 inhibitor, CMPD1, which selectively inhibits P38-mediated MK2
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Fig 1. Differential host gene expressions for PS and IS strains of CHIKV in Vero cells. (A) Hierarchical clustering showing the overall expression

patterns of the modulated host genes by PS/IS strains of CHIKV during infection in mammalian cells. (B) Pie-chart depicting the distribution of the

host genes in CHIKV-infected samples into different protein classes. (C) Pie-chart depicting the distribution of the modulated host genes into

different cellular processes. (D and E) Venn diagram showing both commonly and differentially regulated host genes in CHIKV (PS/IS) infected

Vero cells.

https://doi.org/10.1371/journal.ppat.1009667.g001
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activation [45]. In order to determine the cytotoxicity of CMPD1, Vero cells were treated with

different concentrations of the drug (25 to100μM) for 24 h and MTT assay was performed. It

was observed that 98%, 95% and 85% cells were viable with 25, 50 and 100μM concentrations

of the drug, respectively, as shown in Fig 3A. Next, dose kinetics assay was performed to deter-

mine the anti-CHIKV efficacy of CMPD1 by infecting Vero cells with two different strains of

CHIKV with MOI 0.1 and treated with 25, 50 and 100μM concentrations of CMPD1. The cell

culture supernatants were harvested at 18 hpi and plaque assay was carried out to estimate the

virus titers. Around 90% decrease in virus titer was observed with higher concentrations of

Fig 2. MK2 and MK3 gene silencing abrogates CHIKV progeny release without affecting viral protein synthesis. (A and B) After 24 hrs

post transfection with 60 pmol of MK2/3 siRNA (either separately/in combination), cells were super-infected (PS/IS MOI 0.1) and

harvested at 18 hpi. Western blot showing the expression levels of different proteins (Left panel). Bar diagrams showing relative band

intensities of different proteins (Right panel). GAPDH was used as control. (C and D) Bar diagram showing the viral titres after siRNA

treatment for PS and IS strains, (n = 3; p<0.05).

https://doi.org/10.1371/journal.ppat.1009667.g002
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Fig 3. CMPD1, an MK2a inhibitor abrogates CHIKV infection in vitro. (A) Vero cells were treated with different concentrations

of CMPD1 (25, 50, 75 and 100 μM) for 24 h and MTT assay was performed. (B and C) Vero cells infected with CHIKV PS/IS at

MOI 0.1 and drug treated. Bar graph showing viral titers in the presence of CMPD1 (25, 50 and 100 μM). (D) Dose response curve

showing the IC50 of CMPD1 against CHIKV. (E) Bar graph showing the viral titers estimated through plaque assay from the

supernatants obtained from the time of addition experiment for CMPD1 (50μM) post CHIKV infection. (F and G) Bar graph

showing intracellular and extracellular virus titers for samples harvested at 18hpi. DMSO was used as control. All the graphs depict

the values of mean ± SD (�p< 0.05) of three independent experiments.

https://doi.org/10.1371/journal.ppat.1009667.g003
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CMPD1 in comparison to DMSO control for both the strains (Fig 3B and 3C). Additionally,

similar experiment was carried out in HEK cell line using 5 and 10μM of CMPD1 and it was

found that around 80% decrease in viral titer was obtained at the higher dose of CMPD1(Fig A

in S1 Data) confirming the importance of MK2 for CHIKV in human cell line. Since, effect of

CMPD1 was same for both the strains, IS strain (more virulent of the two strains used in this

study) was used for further experiments.

To estimate the IC50 value of CMPD1, Vero cells were infected with CHIKV as mentioned

above and different concentrations of CMPD1 (10–80μM) were added to the cells post-infec-

tion. The supernatants were harvested at 18 hpi and plaque assay was performed. The plaque

numbers were converted into log 10 of PFU/mL and the IC50 of CMPD1 was found to be

21.18μM (Fig 3D).

Next, to assess the possible mechanism of action of CMPD1 on CHIKV replication, time of

addition experiment was performed. Vero cells were infected with IS strain with MOI 0.1 and

50 μM of CMPD1 was added at 1hr interval from 0–11 hpi. DMSO was used as a control.

Next, the supernatants were harvested at 15 hpi and plaque assay was performed. As shown in

Fig 3E, it was observed that around 55% of the infectious virus particle release was abrogated

in the presence of 50 μM of CMPD1, even after the addition of the drug at 11 hpi. This indi-

cates that CMPD1 inhibits later phase of CHIKV life cycle like packaging or release.

For that infected and drug treated supernatants were collected at 18 hpi for estimating the

extracellular viral titer through plaque assay. For estimating the intracellular virus titer, cells

were washed twice with 1X PBS and harvested. The pelleted cells were resuspended in fresh

serum free medium and freeze-thawed thrice to release virus particles trapped inside the cells.

Then the intracellular virus titer was estimated., The extracellular virus titer was around 70%

less in CMPD1 treated samples in comparison to control but the intracellular virus titer was

around 60% more for CMPD1 treated samples as shown in Fig 3F and 3G. In order to

strengthen the above findings, TEM imaging was carried out for CHIKV infected and CMPD1

treated cells harvested at 18 hpi and it was observed that more number of virus particles are

seen trapped inside the CMPD1 treated infected cells in comparison to the untreated control

as shown as Fig B in S1 Data.

Taken together, the data suggest that CMPD1 did not inhibit the formation/packaging of

newly synthesized virus particles inside the host cell, however, it affects the release of CHIKV

viral progeny from the host cell.

CMPD1 blocks the actin polymerization process modulated by CHIKV for

its progeny release

It is well known that both the isozymes, MK2 and MK3 are exclusively phosphorylated by P38

MAPK [46]. It is also known that LIM kinase 1 (LIMK1), a downstream substrate of MK2

induces actin polymerization by phosphorylating and inactivating cofilin, an actin-depolymer-

izing factor [47,48]. Therefore, to understand the effect of CMPD1 on downstream substrates

of MK2, the cells were infected with IS at MOI 0.1 and treated with 50 μM CMPD1. Infected

cells were observed for the development of CPE at 18 hpi and clear reduction in CPE was

observed after CMPD1 treatment (Fig 4A). The cells were harvested at 18 hpi and cell lysates

were processed for Western blot analysis. It was noticed that the levels of pMK2 and MK3

were downregulated after drug treatment with no change in CHIKV nsP2 expression as shown

in Fig 4B and 4C. Similarly, the expression of Cofilin and p-Cofilin were decreased in the pres-

ence of CMPD1. The expression of pMK3 could not be tested due to unavailability of a com-

mercial antibody. Altogether, the data suggest that MK2 phosphorylation plays an important

role in viral progeny release by modulating the actin polymerization process.
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Fig 4. CMPD1 blocks the actin polymerization process modulated by CHIKV for its progeny release. Vero cells were infected with the IS strain (0.1 MOI),

50μM of CMPD1 was added to the cells and incubated for 18 hpi. (A) Bright field images (20X magnification) showing the cytopathic effect after CHIKV

infection with or without CMPD1 treatment (50μM). (B) Western blot analysis showing the expressions of nsP2, pMK2, MK3, Cofilin and p-Cofilin proteins.

GAPDH served as the loading control. (C) Bar graphs showing the relative fold change in viral and host proteins expression with respect to DMSO control. (D)

Confocal microscopy images showing the levels of E2 and phalloidin during CHIKV infection.

https://doi.org/10.1371/journal.ppat.1009667.g004
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In order to confirm the involvement of actin fibers in CHIKV progeny release, infected and

drug treated cells were fixed at 18 hpi. Thereafter, phalloidin staining was carried out to stain

actin fibers in cells as it has been reported that fluorescent dye-labeled phalloidin stains only

the actin fibers, but not the monomers [49]. Phalloidin staining was found to be more promi-

nent in infected cells without CMPD1 treatment and was more diffusely stained in CMPD1

treated cells. Furthermore, the expression pattern of CHIKV E2 protein was unchanged in

both the samples as shown in Fig 4D. Taken together, the results depict that CHIKV utilizes

the actin polymerization process for its progeny release through activation of MK2/MK3; how-

ever CMPD1 abrogates the whole process by inhibiting MK2/3 activation.

CMPD1 inhibits CHIKV infection in vivo
In order to assess the bio-availability of a drug/inhibitor, computer models have been used as a

valid alternative to experimental procedures for prediction of ADME (Absorption, Distribu-

tion, Metabolism and Excretion) parameters [50]. The SwissADME Web tool (www.

swissadme.ch) is one such tool which enables the computation of key physicochemical, phar-

macokinetic, drug- like and related parameters for one or multiple molecules [51]. It was

found that CMPD1 has high GI (Gastro Intestinal) absorption with a bioavailability score of

0.55 as shown as Table B in S1 Data.

In order to assess the in vivo antiviral effect of CMPD1, 10–14 days old male C57BL/6 mice

(n = 5 per group) were infected with the IS strain and serum as well as tissue samples were har-

vested as per the protocol mentioned above. Viral RNA was isolated from the pooled serum

samples (from respective group) and RT-PCR was carried out to amplify E1 gene of CHIKV. It

was observed that the viral copy number was reduced remarkably (90%) in CMPD1 treated

CHIKV infected mice in comparison to control (Fig 5A). Next, to compare the extent of tissue

inflammation, muscle tissue sections (from the site of injection) of the sacrificed mice at 4dpi

were stained using Haematoxylene and Eosin and it was found that the infiltration of immune

cells were less in CMPD1 treated tissue in comparison to control (Fig 5B). Furthermore, to

determine the levels of different cytokines/chemokines in CMPD1 treated mice, proteome

profiling was carried out with the pooled serum samples as described above. It was noticed

that the expressions of few selective inflammatory cytokines/chemokines, like CXCL13,

RAGE, FGF and MMP9 were significantly reduced in CMPD1 treated mice sera, (Fig 5C and

5D). Interestingly, HGF was upregulated in CMPD1 treated mice. To assess the protective

action of CMPD1, survival curve analysis was performed. For that, CHIKV infected mice (5

per group) were fed with CMPD1 (5mg/kg) orally at 3hrs post CHIKV infection and then for

3 consecutive days at an interval of 24 hrs. The disease scoring was performed based on the

symptoms described in the methods section and shown as Table C in S1 Data., There was

100% mortality of the untreated CHIKV infected mice after 8 days post infection (Fig 5E). In

contrast, no mortality was observed for the CMPD1 treated CHIKV infected mice even after 8

days post infection. The data suggest that CMPD1 inhibits CHIKV infection in vivo.

Discussion

Due to lack of therapeutics and vaccine, a number of studies have been initiated to understand

the function of viral proteins and the mechanisms of virus-mediated manipulation of host

machineries for successful infection [52–54]. Microarray analysis was carried out for mock

and CHIKV-infected Vero cells to determine how host proteins are modulated during CHIKV

infection in mammalian cells and two genes MK2 and MK3 belonging to P38MAPK pathway

were selected for further analysis.
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Fig 5. CMPD1 inhibits CHIKV infection in mice. (A) Bar graph showing the viral copy numbers in CHIKV infected and CMPD1 treated mouse serum samples.

(B) H and E staining of mouse tissue samples with CHIKV infection and in presence/absence of CMPD1(C) Array blot showing the expression of different

cytokines after CHIKV infection in presence and absence of CMPD1. (D) Bar graph showing the relative band intensities of selected cytokines in mock, CHIKV

infected and CMPD1 treated samples. (E) Survival curve showing the effect of CMPD1 in CHIKV infected mice.

https://doi.org/10.1371/journal.ppat.1009667.g005
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Gene silencing of MK2 and MK3 abrogated around 58% CHIKV progeny release from the

host cell and a MK2 activation inhibitor (CMPD1) treatment demonstrated 68% inhibition of

viral infection suggesting a major role of MAPKAPKs during late CHIKV infection in vitro.

Further, it was observed that the inhibition in viral infection is primarily due to the abrogation

of lamellipodium formation through modulation of factors involved in the actin cytoskeleton

remodeling pathway. Moreover, CHIKV-infected C57BL/6 mice demonstrated reduction in

the viral copy number, lessened disease score and better survivability after CMPD1 treatment.

In addition, reduction in expression of key pro-inflammatory mediators such as CXCL13,

RAGE, FGF, MMP9 and increase in HGF (a CHIKV infection recovery marker) was observed

indicating the effectiveness of the drug against CHIKV.

Role of MK2 and MK3 have been implicated in several other viruses. In DENV, it was

found that SB203580 (a P38MAPK inhibitor) treatment significantly reduced the phosphoryla-

tion of MAPKAPK2 and other substrates such as HSP27 and ATF2 in mice. In the case of

Murine Cytomegalovirus (MCMV), MK2 has been reported to regulate cytokine responses

towards acute infection, via IFNARI-mediated pathways during infection [55]. For Kaposi

Sarcoma Herpes Virus (KSHV), it was observed that the viral Kaposin B (KapB) protein binds

and activates MK2, thereby selectively blocking decay of AU-rich mRNAs (ARE-mRNAs) that

encode pro-inflammatory cytokines and angiogenic factors during latent KSHV infections

[56]. Furthermore, it was noticed that during Rous Sarcoma Virus (RSV) infection, pP38 is

sequestered inside cytoplasmic inclusion bodies (IBs) resulting in substantial reduction in

accumulation of MK2 and suppressing cellular responses to virus infection. Additionally,

CMPD1 treatment reduced viral protein expression suggesting the importance of pMK2 in

RSV protein translation [41]. In case of Influenza A, it was observed that MK2 and MK3 are

activated on virus infection enabling the virus to escape the antiviral action of PKR [57].

Recently, it has been shown that CCR5-tropic HIV induces significant reprogramming of host

CD4+ T cell protein production and induces MK2 expression upon viral binding to the cell

surface that are critical for HIV replication [58]. However, reports pertaining to the involve-

ment of MK2 and MK3 in alphavirus infection are not available. Hence, this investigation is

one of the first to highlight the importance of MK2 and MK3 in CHIKV.

According to the results, it can be suggested that both MK2 and MK3 play important roles

in CHIKV progeny release during CHIKV infection. After CHIKV infection, MK2 is phos-

phorylated which in turn phosphorylates LIMK1. The LIMK1 then inactivates Cofilin by phos-

phorylating it. This results in accumulation of more p-Cofilin inside the cell. As a result,

Cofilin is unable to cleave the actin filaments into monomers. This leads to polymerization of

actin filaments and subsequent lamellipodia formation which results in effective CHIKV prog-

eny release (Fig 6A). However, CMPD1 treatment abrogates MK2/3 phosphorylation as a

result of which LIMK is not able to inactivate Cofilin. Active Cofilin then cleaves actin poly-

mers to monomers, thereby preventing lamellipodium formation and subsequent viral prog-

eny release (Fig 6B). Furthermore, in vivo studies demonstrate that CMPD1 treated mice do

not develop complications post CHIKV infection. This can be speculated by the reduction in

the expression of some virus induced inflammatory chemokines and cytokines like CXCL13,

RAGE and FGF in CMPD1 treated mice sera [59–61]. Additionally, the expression of MMP9,

a host factor involved in the degradation of extracellular matrix thereby promoting viral spread

to neighbouring tissues was also reduced in drug-treated samples indicating abrogation of

viral transmission during CMPD1 treatment[62]. In contrast, the expression of HGF (a known

marker for CHIKV recovery during acute infection) was upregulated during CMPD1 treat-

ment thereby showing the effectiveness of CMPD1 against CHIKV in mice [63]. Nevertheless,

it would be interesting to understand the detailed mechanism and role of these factors during

CHIKV infection in future.
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Thus, the current study highlights the importance of MK2/3 (substrates of the p38MAPK

pathway) as novel host factors involved in CHIKV infection and CMPD1 can be pursued as a

potential lead for developing anti-CHIKV molecule to modulate disease manifestations.
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