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Abstract

The continued evolution of antibiotic resistance has increased the urgency for new antibiotic

development, leading to exploration of non-traditional sources. In particular, snake venom

has garnered attention for its potent antibacterial properties. Numerous studies describing

snake venom proteomic composition as well as antibiotic efficacy have created an opportu-

nity to synthesize relationships between venom proteomes and their antibacterial proper-

ties. Using literature reported values from peer-reviewed studies, our study generated

models to predict efficacy given venom protein family composition, snake taxonomic family,

bacterial Gram stain, bacterial morphology, and bacterial respiration strategy. We then

applied our predictive models to untested snake species with known venom proteomic com-

positions. Overall, our results provide potential protein families that serve as accurate pre-

dictors of efficacy as well as promising organisms in terms of antibacterial properties of

venom. The results from this study suggest potential future research trajectories for antibac-

terial properties in snake venom by offering hypotheses for a variety of taxa.

Introduction

The intensifying threat of antibiotic resistance to human health has led to a burgeoning of

studies concerning new antibiotics. Before 1990 (including the golden years of antibiotic dis-

covery, 1940s-1960s), 13% of antibiotic literature was concerned with resistance (based on

analysis of publications in PubMed with the keywords ’antibiotic’ and ’resistance’). Following

1990, literature pertaining to antibiotic resistance expanded more than two-fold (31%),

highlighting the growing problem of resistance and necessitating the hunt for novel com-

pounds [1,2]. One source of potential therapeutic value, venom, gained the attention of many

researchers due to its high level of cellular toxicity [3]. Research on snake venoms in particular

has uncovered numerous antimicrobial agents which include but are not limited to: L-amino

acid oxidases (LAAOs), phospholipase A2s (PLA2s), hyaluronidases (HYAs), and snake venom

metalloproteinases (svMPs) [4,5].
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Crude venoms and their constituents have previously been determined to be effective

against bacteria. For example, venom extracted from Ophiophagus hannah was shown to hin-

der Pseudomonas aeruginosa, Salmonella enteritidis, Escherichia coli, and Staphylococcus
aureus growth [6,7], including resistant strains such as Methicillin-resistant S. aureus (MRSA).

Numerous studies focused on the antibacterial properties of snake venom with over 58% of

those studies reporting effective results [8]. Furthermore, individual components of snake

venom have been isolated and tested for their antibacterial properties with the two most com-

monly studied protein families being PLA2 and LAAO [4].

Although venoms are generally associated with antibacterial effectiveness, venoms from dif-

ferent snake species display markedly different effectiveness towards various bacteria. For

example, crude venom from Crotalus atrox is effective against E. coli, whereas crude venom

from Crotalus durissus is not [9]. This difference may be attributed to variance in venom com-

position such as the high concentrations of svMPs in C. atrox [10] and low concentrations in

C. durissus [11]. Although venom composition may be similar between taxa, certain protein

families may be limited to a select group of snakes, such as 3-finger toxins (3FTXs) mainly lim-

ited to the Elapidae. Furthermore, the overall composition of the venom may differ in terms of

the proportion of its constituents, such as svMPs in C. atrox (49.7%; [10]) and C. durissus
(4.8%; [11]).

Although effective components within venom have been isolated and tested for antibacte-

rial efficacy [3,12,13], syntheses concerning the overall relationship between venom composi-

tion and antibacterial effectiveness are lacking. Anecdotal evidence indicates differences in

snake venom effectiveness exist at the family level, with Viperidae crude venom being more

effective against certain bacterial classes (i.e., Gram-negative) than the Elapidae [8]. Further-

more, antibacterial testing of snake venom currently lacks quantitative direction to guide

future studies concerning which venoms may have the highest probability of efficacy. The pur-

pose of this study is two-fold: 1) to generate predictive models using snake species with known

venom proteomic composition and antibacterial effectiveness, and 2) to apply well performing

models in instances where snake venom protein composition is known but antibacterial effec-

tiveness is unknown.

Methods

Our methodology can be described in four main steps. First, we created a database of snake

venom protein compositions and associated antibacterial effectiveness from previously pub-

lished works. Second, we generated statistical models using only snake species that had both

described venom proteomes as well as data regarding the venom’s antibacterial efficacy. Third,

models were cross-validated using model fit and accuracy as performance criteria. Finally, we

used well performing, fitted models to predict antibacterial effectiveness for species with

known venom protein composition and unknown antibacterial effectiveness.

2.1. Description of the data

An exhaustive literature search concerning venom proteomic analyses was completed by using

keywords including “snake”, “venom”, “proteome”, “composition”, and “protein” (as well as

their derivatives) to search online journal repositories including EBSCOHost, Google Scholar,

and PubMed. Recognizing that differences in database search algorithms may have excluded

some studies from our purview, bibliographies within each relevant and related article were

also examined. Articles that appeared in these bibliographies but absent from our original

search were also included for analysis. This process continued until no unique articles were

identified. Only studies that included original, complete proteomic percentages of venom
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components were used, culminating 172 subjects regardless of age, sex, and/or population (see

supplemental references). Snake species, snake family, and percent of each protein family were

recorded. Protein families of less than 0.1% of the total proteome were not recorded as they

were reported as<0.1% in the original works and exact values were not reported. Individual

protein families included 3FTXs, 5’nucleotidases (5’NUCs), bradykinin potentiating peptides

(BPPs), cysteine rich secretory proteins (CRISPs), C-type lectins (CTLs), disintegrins (DISs),

HYAs, LAAOs, PLA2s, snake venom growth factors (svGFs), svMPs, snake venom peptides

(svPEPs), snake venom serine proteinases (svSPs), vespryn/ohanins (VESP/OHAs), waglerins

(WAGs), and waprin/kunitz type inhibitors (WAP/KUNs). Individual protein families appear-

ing less than five times in the completed database were omitted to reduce variation from less

frequently reported protein families. Furthermore, small organic molecules that may be pres-

ent in the venom were omitted because of the absence of their reports in proteomic studies

and the limited amount of data presently available on their presence and role in venoms.

To incorporate antibacterial effectiveness data, previous works concerning antibacterial

properties of snake venom (gathered using the same methods as described above except using

keywords “snake”, “venom”, “antibacterial”, “antimicrobial”, and “bacterial efficacy”) were

compiled for the bacteria tested, where venoms were either effective or not effective. Published

works were assessed, detailing 924 antibacterial efficacy tests of crude venom regardless of con-

centration utilized (see supplemental references). Additional bacterial metadata included

Gram stain, respiration strategy (i.e., aerobic, anaerobic, and facultative anaerobic), and mor-

phology. Due to differences in data presentation and methodologies, efficacy was reported

based on the original authors’ interpretation of the data. After comparing snake species present

in both venom composition and bacterial efficacy data sets, 28 snake species (n = 505 across

snake families) had both described venom protein composition data as well as efficacy data.

These 28 species were then used for model selection and validation. When aggregating venom

compositions and antibacterial efficacies, intraspecific proteomic compositions were averaged,

though we are cognizant that intraspecific variation does occur. To assess that interspecific

variation in venom proteomes was greater than intraspecific variation, we performed a PER-

MANOVA with venom composition as a response to snake species. Because models were ulti-

mately built for the Elapidae and Viperidae species, we performed PERMANOVAs solely on

Elapidae (p = 0.002; S1 Fig) and Viperidae (p = 0.001; S2 Fig). The remaining data, which

included unknown antibacterial activity were then used for predicted efficacies following

model selection.

2.2. Model generation and cross-validation

Using the 28 snake species for which we had complete venom proteomes and antibacterial

effectiveness data, we applied an exhaustive model selection technique with logistic regression

models that predicted antibacterial effectiveness as a function of arcsine-square root trans-

formed proportional protein composition [14]. While venom protein data were neither uni-

variate nor multivariate normally distributed (assessed by Kolmogorov-Smirnov for univariate

and Mardia and Henze-Zinkler for multivariate), logistic regressions have shown robustness

to departures from normality [15]

Certain protein families were systematically eliminated prior to model selection by compar-

ing interspecific variance of protein family proportion. A protein family with a low interspe-

cific variance (i.e., < 0.01 or 1% of the proteome) was a priori deemed as a poor predictor of

antibacterial effectiveness as many instances in which a protein family only constituted less

than 1% of the entire proteome were not reported in original works. Similarly, we also

removed protein families with low variance to mean ratios (i.e., < 5% of the interspecific
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mean) as certain proteins, although varying greater than 1% of the proteome, may marginally

change proteomic compositions relative to their average proportions. For example, while ser-

ine proteinases had an interspecific variance of 0.017 for Viperidae, they also had a mean inter-

specific proportion of 0.36. Consequently, serine proteinase variation is likely minute in

comparison to the protein families’ typical proportion, and its inclusion in model selection

may only add additional noise to the model selection process. Finally, protein families that

strongly covaried (i.e., Pearson’s Correlation p< 0.01) were removed from model selection,

such that all protein family predictors were independent [16].

Following exhaustive model generation, models were first assessed using Akaike Informa-

tion Criteria (AICc) values [17], where the best performing models were defined as those

within 2 AICc points [18]. Second, pseudo-R2 [19] was then calculated for each model in order

to assess goodness of fit. As a third measure of model performance, we calculated the area

under the curve (AUC) of the receiver operator characteristics (ROC) curve [20]. The ROC

curve graphs the variance in the rate of an event occurring with the rate of a falsely predicted

event. An AUC of 0.5 indicates a false prediction rate increases 1:1 with the rate of a correct

prediction. AUCs greater than 0.5 imply a model performing better than random (sensu [21]).

To test significance of AUC values, effectiveness responses were permuted with fixed venom

compositions, and then AUC was recalculated. This process was repeated 1,000 times in order

to create a randomized distribution of AUC. The original AUC value was then compared to

the distribution of permuted AUCs. The proportion of AUCs greater than or equal to the orig-

inal AUC by chance is considered the p-value of a particular model. Among all possible models

generated, the model with the lowest AICc, highest pseudo-R2, and highest AUC was deemed

the best performing model. Model coefficients are summarized in S1 Table.

Models fitted from known antibacterial efficacies were assessed based on a confusion

matrix scheme, which details True Positives, True Negatives, False Positives, and False Nega-

tives. True results are defined as results that are congruent with model predictions. False

results are defined as those when model predictions and reality are not congruent. Model accu-

racy is defined as the ratio of the sum of True Positives and True Negatives to the Total Out-

comes [22].

Given the above criteria for model selection and validation, we ranked relative model per-

formance as “good” or “poor”. A “good” model had a high accuracy (i.e., > 70%) and a signifi-

cant p-value (p< 0.05). A “poor” model had neither high accuracy nor a significant p-value. A

model accuracy threshold of 70% was selected to account for variation in model performance

that may result from small sample sizes as opposed to actually being inaccurate [23,24]. While

a threshold of 70% is less than thresholds for studies employing large datasets [25], our accu-

racy threshold enables models with small sample sizes to not be excluded from providing

potentially insightful predictions for antibiotic efficacy of certain species.

For all “good” models, we performed a holdout cross-validation technique to assure that

models were not overfit to the data used to develop the model. Holdout cross-validation is a

technique in which randomly selected data are removed from model generation, also called

the “training set” [22]. Data not included in the “training set” were included in a “test set”.

Models were regenerated using the “training set”, and then model accuracy was recalculated

using the “test set”. We created training sets with 80% of the total data and test sets with the

remaining 20%. This process was iterated 1,000 times so as to create a distribution of accura-

cies. The original accuracy was then compared to the distribution of accuracies. If the original

accuracy was not in the top 5% (i.e., p> 0.05) of accuracies reported from the holdout cross-

validation, we considered the model to not be overfit.

Models were subset based on snake family (i.e., Viperidae and Elapidae), bacterial Gram

stain, bacterial respiration strategy, and bacterial morphology because differences in venom
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composition based on relatedness of snake families were expected a priori. Models with data

subset by solely Gram stain, morphology, respiration strategy, and snake family were

attempted, but failed to produce robust accuracies; therefore, combinatory groups based off

these classifications were created.

2.3. Prediction of antibacterial effectiveness for unknown species

For all “good” models that were not deemed as overfit to our data, we predicted antibacterial

effectiveness for snake species with unknown antibacterial activity. Snake species’ venom with

greater than 50% predicted probability of effectiveness were considered as having antibacterial

potential. The majority of species were from Elapidae and Viperidae families. We also pre-

dicted antibacterial effectiveness for three Colubridae species, for which the data were only

applied to well performing Elapidae and Viperidae models. Predictions were not made using

models that were deemed “poor” as these models may lead to erroneous conclusions. How-

ever, readers are encouraged to add in newly acquired data and test these models using the

supplied R-scripts.

2.4. Supplemental methods and data information

All models were generated and validated within the R environment for statistical computing

[26]. An accompanying technical document as well as raw data, aggregated data, and R scripts

are available to assist in future implementation of these methods [27]. The raw data file con-

tains original citations for each data point collected. The technical document is an R mark-

down script, written in a vignette style, which provides additional details about the R code

used in this study. As future studies provide additional information about venom composition

and antibacterial effectiveness, the script can be iterated by interested users to update the

model.

Results

3.1. Elapidae venom

3.1.1. Gram-positive facultative anaerobic bacillus bacteria. These analyses utilized

PLA2, svMP, and WAP/KUN values (n = 30; 13 unique species). Following exhaustive model

selection, our results suggest the best predictive model was an intercept-only model based off

AICc (S3A Fig). Model 2 also offered a marginally better pseudo-R2 as well as AUC (S3A Fig).

Successive models were less competitive to the null model with respect to AICc, but were not

as rigorous as Model 2 with respect to pseudo-R2 and AUC. For these reasons, we identified

Model 2 as the best predictive model (S2A Fig). Because Model 2’s AUC and pseudo-R2 mar-

ginally contrasted with the null model, Model 2’s accuracy to discriminate efficacy was only

66.67%. Post-hoc AUC permutations of efficacies indicate a non-significant model (S3C Fig;

p = 0.279). This is most likely because the model produces high rates of false negatives, where

nine of the ten true positives were classified as negative (S2B Fig). Together, these results sug-

gest that the model does not effectively discriminate antibiotic efficacy, and we consider this

model as performing poorly.

3.1.2. Gram-positive facultative anaerobic coccus bacteria. These analyses (n = 26; 12

unique species) implemented PLA2, svMP, and WAP/KUN. Our results demonstrate that the

best predictive model was Model 1 (Fig 1A). Because of this model’s high accuracy of 88.5%,

the only misclassifications consisted of false positives (three of 26 samples; Fig 1B). Together,

these results indicate that Model 1 effectively discriminates antibiotic efficacy, and we consider
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this model to be performing well. Post-hoc holdout analysis additionally suggested that the

model may not be overfit to our data subset (Fig 1C; p = 0.15).

3.1.3. Gram-negative aerobic bacillus bacteria. This set (n = 32; 12 unique species)

incorporated PLA2, svMP, and WAP/KUN. Our model selection methods demonstrated that

the null model was the best predictive model by AICc (S4A Fig), whereas Model 2 was more

robust with respect to pseudo-R2 and AUC (S4A Fig). Because two of our three criteria support

Model 2 as the better model, we performed successive analyses using Model 2. Our post-hoc

permutations demonstrated Model 2 had an accuracy of 56.7% and produced an especially

high false negative rate, where 12 of 14 effective venoms were predicted as ineffective (S4B

Fig). These combined results suggest that Model 2 does not effectively discriminate antibiotic

efficacies and is, therefore, a poorly performing model (S4C Fig; p = 0.44).

3.1.4. Gram-negative facultative anaerobic bacillus bacteria. Protein families for this

subset (n = 43; 13 unique species) included PLA2, svMP, and WAP/KUN (S1 Table). Model 1

was most competitive based off AICc (Fig 2A). However, Model 2 had more rigorous pseudo-

R2 and AUC values (Fig 2A). Model 2 was overall highly significant (Fig 2C; p< 0.01) with an

accuracy of 76.7% (Fig 2B). Together, our results indicate that Model 2 discriminates antibiotic

efficacy, and we consider this model as performing well. Post-hoc accuracy analysis suggested

the data may not be overfit to the data subset (p = 0.32).

Fig 1. (a) Table of performances for the best five models that predict antibacterial efficacy using PLA2s, svMPs, and WAP/KUNs for Elapidae snakes against Gram-

positive, facultative anaerobic, coccus bacteria. The variable β0 indicates the intercept value for the model. Models defined as ‘effectiveness ~ β0’ are intercept models.

Model 1, the best performing model, is in bold. (b) Receiver operator characteristic (ROC) curve for best performing model (Model 1). The area under the curve (AUC)

of the ROC informs goodness of fit, where a value greater than 0.5 indicates the model performs better than random. In this instance, the AUC of the best performing

model is 0.95. (c) Histogram of recalculated AUC values from permuted data. The red vertical line indicates the position of the observed AUC value from the non-

permuted data. The number of AUC values greater than the original value is the exact p-value for the best performing model (Model 1). In this case, the p-value of the

best performing model is<0.01.

https://doi.org/10.1371/journal.pone.0226807.g001
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3.2. Viperidae venom

3.2.1. Gram-positive facultative anaerobic bacillus bacteria. Final protein families for

this subgroup (n = 30; 15 unique species) included PLA2, svMP, WAP/KUN, and BPP. Model

selection produced equally performing models for the top 5 models, where AICc, pseudo-R2,

and AUC were all equal (Fig 3A). For this reason, we recognized Model 1 as the best model

(Fig 3C; p< 0.01), which had an accuracy of 93.3% (Fig 3B). False negatives were the only mis-

classifications produced by the model. Given this model’s high accuracy and overall effective

discrimination of antibiotic efficacy, we consider this model to be performing well, recogniz-

ing the potential for Models 2 and 3 to also be equally accurate and valid models. Post-hoc

accuracy analysis suggested that the data may not be overfit to our data subset (p = 0.23)

3.2.2. Gram-positive facultative anaerobic coccus bacteria. For this subgroup (n = 34;

15 unique species), our final predictive protein families included PLA2, BPP, and DIS. Model

selection demonstrated the null model as the highest performing model by AICc alone (S5A

Fig). Model 2, however, outperformed the null model with respect to pseudo-R2 and AUC

(S5A Fig). Post-hoc permutations for Model 2 revealed this model as not significant (S5C Fig;

p = 0.258), despite a high accuracy of 76.5% (S5B Fig). Given the non-significant AUC value,

we consider this model to perform poorly.

Fig 2. (a) Table of performances for the best five models that predict antibacterial efficacy using PLA2s, svMPs, and WAP/KUNs for Elapidae snakes against Gram-

negative, facultative anaerobic, bacillus bacteria. The variable β0 indicates the intercept value for the model. Models defined as ‘effectiveness ~ β0’ are intercept models.

Model 2, the best performing model, is in bold. (b) Receiver operator characteristic (ROC) curve for best performing model (Model 2). The area under the curve (AUC)

of the ROC informs goodness of fit, where a value greater than 0.5 indicates the model performs better than random. In this instance, the AUC of the best performing

model is 0.87. (c) Histogram of recalculated AUC values from permuted data. The red vertical line indicates the position of the observed AUC value from the non-

permuted data. The number of AUC values greater than the original value is the exact p-value for the best performing model (Model 2). In this case, the p-value of the

best performing model is<0.01.

https://doi.org/10.1371/journal.pone.0226807.g002
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3.2.3. Gram-positive anaerobic bacillus bacteria. For this subset (n = 14; 4 unique spe-

cies), svMP and CTL were utilized for model selection. The null model was the best perform-

ing model by solely AICc (Fig 4A). The second best model, however, has a similar AICc with

higher pseudo-R2 and AUC (Fig 4A). Model 2 also had a high accuracy rate (Fig 4B; 71.4%)

and AUC permutation was significant (Fig 4C; p = 0.026). Together, these results demonstrate

that Model 2 effectively discriminates antibiotic efficacy, and we consider this model to be per-

forming well. Post-hoc accuracy analysis suggested that this data subset may be overfit to our

data subset (p = 0.04).

3.2.4. Gram-negative facultative anaerobic bacillus bacteria. This data subset (n = 47;

15 unique species) implemented PLA2 and WAP/KUN. Following model selection, Model 1

was the most competitive model by AICc, pseudo-R2, and AUC (S6A Fig). Although Model 1

was significant (S6C Fig; p = 0.026), it produced a high rate of false positives, resulting in low

accuracy (S6B Fig; 63.8%). For these reasons, this model is considered a poorly performing

model.

3.2.5. Gram-negative aerobic bacillus bacteria. For this Viperid subset (n = 32; 14

unique species), predictive protein families for model selection include PLA2, svMP, WAP/

KUN, and BPP. Despite Model 1 having the most competitive AICc following model selection,

Model 2 was employed as the best model because of its superior pseudo-R2 as well as AUC

Fig 3. (a) Table of performances for the best five models that predict antibacterial efficacy using PLA2s, svMPs, BPPs, and WAP/KUNs for Viperidae snakes against

Gram-positive, facultative anaerobic, bacillus bacteria. The variable β0 indicates the intercept value for the model. Models defined as ‘effectiveness ~ β0’ are intercept

models. Model 1, the best performing model, is in bold. (b) Receiver operator characteristic (ROC) curve for best performing model (Model 1). The area under the curve

(AUC) of the ROC informs goodness of fit, where a value greater than 0.5 indicates the model performs better than random. In this instance, the AUC of the best

performing model is 0.95. (c) Histogram of recalculated AUC values from permuted data. The red vertical line indicates the position of the observed AUC value from

the non-permuted data. The number of AUC values greater than the original value is the exact p-value for the best performing model (Model 1). In this case, the p-value

of the best performing model is<0.01.

https://doi.org/10.1371/journal.pone.0226807.g003
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values (Fig 5A). Model 2 is also highly significant (Fig 5C; p< 0.01) and has a high accuracy of

90.6% (Fig 5B). Despite its high accuracy, Model 2 does tend to produce a high rate of false

positives with three of the seven ineffective venoms predicted as effective. Despite its high rate

of false positives, we consider Model 2 a well performing model due to its high accuracy and

high significance. Post-hoc accuracy analysis suggested that the model was not overfit to our

data subset (p = 0.39).

3.3. Predicting efficacies for unexplored species

By applying our best performing and cross-validated models, we identified 6 Elapidae species

with unknown efficacy as potentially effective against Gram-positive facultative anaerobic coc-

cus bacteria as well as 6 Elapidae species that may be effective against Gram-negative facultative

anaerobic bacillus bacteria (S1 Table). Likewise, we identified 15 Viperidae species that may be

effective against Gram-positive facultative anaerobic bacillus bacteria, 34 against Gram-negative

aerobic bacillus bacteria, and 32 against Gram-positive anaerobic bacillus bacteria (S2 Table).

Although meeting our criteria for high model performance, the model for Viperidae against

Gram-positive anaerobic bacillus bacteria should be considered with skepticism, as holdout

cross-validation have shown this model’s accuracy to be highly sensitive to strong variance.

When well performing models were applied to Viperidae models, only Dispholidus typus
was predicted as effective against Gram-negative facultative anaerobic bacillus as well as

Gram-positive anaerobic bacillus bacteria (S3 Table). In contrast, the Elapidae models

Fig 4. (a) Table of performances for the best five models that predict antibacterial efficacy using svMPs and CTLs for Viperidae snakes against Gram-positive,

anaerobic, bacillus bacteria. The variable β0 indicates the intercept value for the model. Models defined as ‘effectiveness ~ β0’ are intercept models. Model 2, the best

performing model, is in bold. (b) Receiver operator characteristic (ROC) curve for best performing model (Model 2). The area under the curve (AUC) of the ROC

informs goodness of fit, where a value greater than 0.5 indicates the model performs better than random. In this instance, the AUC of the best performing model is 0.79.

(c) Histogram of recalculated AUC values from permuted data. The red vertical line indicates the position of the observed AUC value from the non-permuted data. The

number of AUC values greater than the original value is the exact p-value for the best performing model (Model 2). In this case, the p-value of the best performing

model is 0.03.

https://doi.org/10.1371/journal.pone.0226807.g004
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predicted all three Colubridae species as potentially effective against Gram-positive facultative

anaerobic coccus as well as Gram-negative, facultative anaerobic, bacillus bacteria. Both Elapi-

dae models had notable high accuracies with false positive rates of only 13% for each model.

Likewise Viperidae models produced low false negative rates, ranging from 0–6.7%, giving

credibility that the predicted negative efficacies are legitimate. Additionally, Viperidae models

had false positive rates up to 32%. Together these false result rates suggest that predicted Colu-

brid efficacies are likely accurate and further supports the hypothesis that Colubrid venoms

may yield positive results in antibacterial efficacy tests.

Discussion

4.1. Model performance

Our results suggest that proteomic compositions are accurate predictors of snake venom’s

antibacterial effectiveness, depending on snake family and bacterial classes. Models

Fig 5. (a) Table of performances for the best five models that predict antibacterial efficacy using PLA2s, svMPs, BPPs, and WAP/KUNs for Viperidae snakes against

Gram-negative, aerobic, bacillus bacteria. The variable β0 indicates the intercept value for the model. Models defined as ‘effectiveness ~ β0’ are intercept models. Model

2, the best performing model, is in bold. (b) Receiver operator characteristic (ROC) curve for best performing model (Model 2). The area under the curve (AUC) of the

ROC informs goodness of fit, where a value greater than 0.5 indicates the model performs better than random. In this instance, the AUC of the best performing model is

0.93. (c) Histogram of recalculated AUC values from permuted data. The red vertical line indicates the position of the observed AUC value from the non-permuted data.

The number of AUC values greater than the original value is the exact p-value for the best performing model (Model 2). In this case, the p-value of the best performing

model is<0.01.

https://doi.org/10.1371/journal.pone.0226807.g005
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demonstrated greater accuracy in discriminating effectiveness when bacteria were grouped by

Gram stain, morphology, and respiration strategy before being compared, which likely relates

to the fact that the exact mechanisms guiding antibacterial effectiveness are complex. Despite

these complexities and the underlying assumption that various proteoforms of an individual

protein family have similar cytotoxic effects [28,29,30], our analyses generated several well per-

forming statistical models and evidence opportunities for future research of snake venom’s anti-

bacterial properties. The Elapidae models were accurate at predicting effectiveness against

Gram-positive facultative anaerobic coccus bacteria as well as Gram-negative facultative anaero-

bic bacillus bacteria. Viperidae models accurately predicted effectiveness against Gram-positive

facultative anaerobic bacillus, Gram-positive anaerobic bacillus, and Gram-negative aerobic

bacillus bacteria. Previous studies have demonstrated the effectiveness of venom against all clas-

ses of bacteria for both the Elapidae [3,9,31] and the Viperidae [3,9,32,33], suggesting that crude

venoms as well as isolated venom components are overall effective antibacterials.

Although some models performed well, false positives and false negatives did occur. For

example, in tests against Gram-positive facultative anaerobic coccus bacteria, false positives

were generated for Naja haje, Naja melanoleuca, and Naja naja. These false positives may be

the result of absent or low values of WAP/KUN type inhibitors and high values of PLA2.

Although the false positive may have been generated due to the high PLA2 content, the venom

might be ineffective due to the absence of a WAP/KUN synergistic effect. Additionally, there

are instances of false negatives in which an active component may be present but not in high

enough concentrations such as Daboia russelli against Gram-negative facultative anaerobic

bacillus bacteria. This false negative may have been generated due to a moderately low value of

PLA2 [29] despite its known antibacterial activity [28,34,35]. Together, our results highlight

that antibacterial effectiveness is a complex process with numerous potential requirements for

individual protein families as well as their interactions.

4.2. Predictions vs mechanisms

Aside from their predictive value, it is crucial to consider the underlying antibacterial mecha-

nisms of protein components individually as well as their functional interactions. Although

specific proteins within a protein family may differ between venoms, they exhibit similar cyto-

toxic activities [28,36–38]. For all Elapidae, our analyses suggest PLA2, svMP, and WAP/KUN

as the best predictors for antibacterial effectiveness. These protein families are all known to

destabilize bacterial membranes [28,39]. Although PLA2, svMP, and WAP/KUN were the best

predictive protein families, the biologically relevant activity of other venom components is

worth noting. For example, 3FTXs can disrupt membrane integrity by interacting with the lip-

ids in S. aureus and other Gram-positive bacteria [40–43]. Despite its apparent antibacterial

capacities, 3FTX was a poor predictor of antibacterial effectiveness because its concentrations

were correlated with other proteins and marginally varied between species.

For the Viperidae, antibacterial activity may be related to high level expression of a single

component (i.e. PLA2) or compensation from other venom constituents (e.g. LAAO and

svMP). Antibacterial effectiveness was associated with PLA2 concentration, a protein family

with demonstrated activity against the lipid membranes of bacteria [28]. However, the absence

or decreased expression of PLA2 in some species may be supplemented by other venom com-

ponents that also exert antibacterial activity on the cell wall, such as LAAO [44] and svMP

[45]. Irrespective of the relative abundance of each of these components, it is clear that their

expression and direct activity against bacterial membranes is predictive of their antibacterial

effectiveness. Moreover, understanding antibacterial activity is dependent upon gaining

insights into the interplay between venom components.
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4.3. Future perspectives

Our models suggest that certain snake families may be better at targeting a given bacterial class

over the others. The strength of these models is that they provide data driven a priori hypothe-

ses to be tested by highlighting snakes and bacterial classes of interest based on predicted effi-

cacy. There are numerous species of Elapidae for which venom composition exists but have

not been tested for effectiveness as an antibacterial agent (S2 Table). These species include but

are not limited to: Calliophis bivirgata [46], Hydrophis schistosus [47], Micrurus dumerilii [48],

Micrurus mosquitensis [49] and Naja atra [50]. As with the Elapidae, there are several species

of Viperidae with venom composition data but no efficacy data (S3 Table). These species

include but are not limited to: Bothriechis aurifer [51], Crotalus tigris [52], Hypnale hypnale
[53], Porthidium nasutum [54], and Sistrurus catenatus [55,56].

Aside from the Viperidae and Elapidae, Colubridae venom offers a unique opportunity to

study conserved venom constituents as well as neofunctionalized protein families with the

potential for exploring antibacterial activity [4,57]. Previous studies have shown that bioactive

constituents of venom evolved early within the Colubroidea (clade containing viperids, ela-

pids, and colubrids) and many protein families found within the highly toxic elapids and viper-

ids may also be found in the colubrids [58,59]. Despite previous researchers highlighting the

potential for colubrids as novel sources of antibacterial components [5,60], research concern-

ing this group of snakes is limited. To date, only three studies have reported the complete pro-

teome of colubrid species [61–63] and empirical evidence of antibacterial efficacy is based on

three different species [3,64] which have resulted in inconclusive results. Inputting colubrid

species with known venom proteomes into the well performing viperid models suggests that,

although two of the three would be ineffective against Gram-negative facultative anaerobic

bacillus, Gram-negative aerobic bacillus, and Gram-positive anaerobic bacillus bacteria (S4

Table), one, Dispholidus typus would be effective against Gram-negative facultative anaerobic

bacillus bacteria (although it may be a false positive due to high PLA2 concentration).

Additional work concerning Colubridae venom composition and antibacterial efficacy are

needed to refine our models, and such a shortage of available data presents multiple avenues

for subsequent investigations. Furthermore, the continuous addition of antibacterial efficacy

and venom proteome data, including individual proteoforms, will provide opportunities for

the model to expand and become more inclusive. Additional data may provide more robust

accuracies in individual models instead of using combinatory groupings as utilized in this

study. Lastly, the addition of non-protein constituents including small organic molecules may

enhance the accuracy of predictions to further elucidate potential mechanisms of action and

predictive power.

Supporting information

S1 Fig. PERMANOVA table for Elapidae venom as predicted by snake species as well as

boxplot of venom protein composition for each species. Because of potential for intraspecific

variation in snake venom proteomic composition to exceed interspecific variation, we per-

formed a PERMANOVA, with all protein families as a multivariate response of snake species.

For the Elapidae species, visual inspection of associated boxplots as well as PERMANOVA

results (p = 0.002) confirm that indeed variation between species is greater than within species.

(TIF)

S2 Fig. PERMANOVA table for Viperidae venom as predicted by snake species as well as

boxplot of venom protein composition for each species. Because of potential for intraspecific

variation in snake venom proteomic composition to exceed interspecific variation, we
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performed a PERMANOVA, with all protein families as a multivariate response of snake spe-

cies. For the Viperidae species, visual inspection of associated boxplots as well as PERMA-

NOVA results (p = 0.001) confirm that indeed variation between species is greater than within

species.

(TIF)

S3 Fig. (a) Table of performances for the best five models that predict antibacterial efficacy

using PLA2s, svMPs, and WAP/KUNs for Elapidae snakes against Gram-positive, facultative

anaerobic, bacillus bacteria. The variable β0 indicates the intercept value for the model. Models

defined as ‘effectiveness ~ β0’ are intercept models. Model 2, the best performing model, is in

bold. (b) Receiver operator characteristic (ROC) curve for best performing model (Model 2).

The area under the curve (AUC) of the ROC informs goodness of fit, where a value greater

than 0.5 indicates the model performs better than random. In this instance, the AUC of the

best performing model is 0.62. (c) Histogram of recalculated AUC values from permuted data.

The red vertical line indicates the position of the observed AUC value from the non-permuted

data. The number of AUC values greater than the original value is the exact p-value for the

best performing model (Model 2). In this case, the p-value of the best performing model is

0.27.

(TIF)

S4 Fig. (a) Table of performances for the best five models that predict antibacterial efficacy

using PLA2s, svMPs, and WAP/KUNs for Elapidae snakes against Gram-negative, aerobic,

bacillus bacteria. The variable β0 indicates the intercept value for the model. Models defined as

‘effectiveness ~ β0’ are intercept models. Model 2, the best performing model, is in bold. (b)

Receiver operator characteristic (ROC) curve for best performing model (Model 2). The area

under the curve (AUC) of the ROC informs goodness of fit, where a value greater than 0.5

indicates the model performs better than random. In this instance, the AUC of the best per-

forming model is 0.58. (c) Histogram of recalculated AUC values from permuted data. The red

vertical line indicates the position of the observed AUC value from the non-permuted data.

The number of AUC values greater than the original value is the exact p-value for the best per-

forming model (Model 2). In this case, the p-value of the best performing model is 0.44.

(TIF)

S5 Fig. (a) Table of performances for the best five models that predict antibacterial efficacy

using PLA2s, svMPs, BPPs, and WAP/KUNs for Viperidae snakes against Gram-positive, fac-

ultative anaerobic, coccus bacteria. The variable β0 indicates the intercept value for the model.

Models defined as ‘effectiveness ~ β0’ are intercept models. Model 2, the best performing

model, is in bold. (b) Receiver operator characteristic (ROC) curve for best performing model

(Model 2). The area under the curve (AUC) of the ROC informs goodness of fit, where a value

greater than 0.5 indicates the model performs better than random. In this instance, the AUC

of the best performing model is 0.63. (c) Histogram of recalculated AUC values from permuted

data. The red vertical line indicates the position of the observed AUC value from the non-per-

muted data. The number of AUC values greater than the original value is the exact p-value for

the best performing model (Model 2). In this case, the p-value of the best performing model is

0.26.

(TIF)

S6 Fig. (a) Table of performances for the best five models that predict antibacterial efficacy

using svMPs and WAP/KUNs for Viperidae snakes against Gram-negative, anaerobic, bacillus

bacteria. The variable β0 indicates the intercept value for the model. Models defined as effec-

tiveness ~ ‘β0’ are intercept models. Model 2, the best performing model, is in bold. (b)
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Receiver operator characteristic (ROC) curve for best performing model (Model 2). The area

under the curve (AUC) of the ROC informs goodness of fit, where a value greater than 0.5

indicates the model performs better than random. In this instance, the AUC of the best per-

forming model is 0.61. (c) Histogram of recalculated AUC values from permuted data. The red

vertical line indicates the position of the observed AUC value from the non-permuted data.

The number of AUC values greater than the original value is the exact p-value for the best per-

forming model (Model 2). In this case, the p-value of the best performing model is <0.01.

(TIF)

S1 File. Technical documentation for reproducing analysis. This html document details the

R code used for this analysis. All analyses can be performed using the data provided on the

Open Science Framework page for this project (28). Users wishing to recreate our analyses

with their own data will need to name all column headers such that they are internally consis-

ten with the R script as well as any data used from Meyer et al. (28).

(HTML)

S2 File. Supplemental references for revision 2.

(DOCX)

S1 Table. Coefficients and standard errors for best fitted logistic models.

(XLSX)

S2 Table. Elapidae species with known venom proteomes and their predicted antibacterial

activity. Bolded species indicate predicted effectiveness against the bacterial class.

(XLSX)

S3 Table. Viperidae species with known venom proteomes and their predicted antibacte-

rial activity. Bolded species indicate predicted effectiveness against the bacterial class.

(XLSX)

S4 Table. Colubridae species with known venom proteomes and their predicted antibacte-

rial activity. Antibacterial activity predictions were made using both the Elapidae and Viperi-

dae models.

(XLSX)
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Micrurus alleni and Micrurus mosquitensis from the Caribbean region of Costa Rica reveals two diver-

gent compositional patterns in New World elapids. Toxicon. 2015; 107: 217–233. https://doi.org/10.

1016/j.toxicon.2015.08.016 PMID: 26325292

50. Shan LL, Gao JF, Zhang YX, Shen SS, He Y, Wang J, et al. Proteomic characterization and comparison

of venoms from two elapid snakes (Bungarus multicinctus and Naja atra) from China. J Proteomics.

2016; 138: 83–94. https://doi.org/10.1016/j.jprot.2016.02.028 PMID: 26924299

51. Pla D, Sanz L, Sasa M, Acevedo ME, Dwyer Q, Durban J, et al. Proteomic analysis of venom variability

and ontogeny across the arboreal palm-pitvipers (genus Bothriechis). J Proteomics. 2017; 152: 1–12.

https://doi.org/10.1016/j.jprot.2016.10.006 PMID: 27777178
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