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Senescent cells, which show the permanent growth arrest in response to various forms
of stress, accumulate in the body with the progression of age, and are associated with
aging and age-associated diseases. Although the senescent cells are growth arrested,
they still demonstrate high metabolic rate and altered gene expressions, indicating that
senescent cells are still active. We recently showed that the circadian clock properties,
namely phase and period of the cells, are altered with the establishment of replicative
senescence. However, whether cellular senescence triggers the alteration of circadian
clock properties in the cells is still unknown. In this study we show that the oxidative
stress-induced premature senescence induces the alterations of the circadian clock,
similar to the phenotypes of the replicative senescent cells. We found that the oxidative
stress-induced premature senescent cells display the prolonged period and delayed
phases. In addition, the magnitude of these changes intensified over time, indicating
that cellular senescence changes the circadian clock properties. Our current results
corroborate with our previous findings and further confirm that cellular senescence
induces altered circadian clock properties, irrespective of the replicative senescence
or the stress-induced premature senescence.
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INTRODUCTION

Cellular senescence is the state of permanent growth arrest of cells. The senescent cells have been
found to be accumulated in the body with aging, and have been associated with various age-related
diseases, for example, atherosclerosis (Wang and Bennett, 2012; Childs et al., 2018; Cho et al.,
2020), osteoarthritis (Jeon et al., 2017, 2019; Xu et al., 2017), alveolar lung diseases (Hashimoto
et al., 2016; Schafer et al., 2017; Houssaini et al., 2018), and cancer (Parrinello et al., 2005; Bavik
et al., 2006; Liu and Hornsby, 2007; Bhatia et al., 2008; Campisi et al., 2011; Castro-Vega et al.,
2015; Ortiz-Montero et al., 2017). Removal of the senescent cells from the body, either using the
pharmacologic interventions (Chang et al., 2016; Yosef et al., 2016; Baar et al., 2017; Lehmann
et al., 2017; Schafer et al., 2017; Bussian et al., 2018; Zhang et al., 2019) or genetic ablations (Baker
et al., 2011, 2016; Childs et al., 2016; Hashimoto et al., 2016; Bussian et al., 2018), have recently
been reported to lead to the extended healthspan of prematurely and naturally aged mice and
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also attenuated the already existing diseases in mouse models
of disease. Various forms of stress such as excessive cell
proliferation, oncogenic stress and extreme DNA damage induce
cellular senescence. These different forms of stress lead to the
cells having the different types of the cellular senescence, such
as the replicative senescence, oncogene-induced senescence and
the stress-induced premature senescence. Despite the fact that
the various types of the senescent cells are permanently growth
arrested, they still have their individual differential transcriptome
signatures, and secretory phenotype (Maciel-Baron et al., 2016;
Hernandez-Segura et al., 2017; Nakao et al., 2020). Hence it can
be postulated that the presence of the replicative senescent cells,
oncogene-induced senescent cells, and stress-induced premature
senescent cells may affect the physiological systems differentially.
In vivo it is currently impossible to distinguish between the
different types of the senescent cells and the effects they
exert (Hernandez-Segura et al., 2017). Recently, we found that
circadian clock properties are altered with replicative senescence.
However, whether the alteration of the circadian clock is specific
for the replicative senescent cells or is also observed in the other
types of senescence programs is still largely known.

The circadian clock, which is an intrinsic time-keeping system
of almost all living systems on earth, possesses robust and flexible
mechanisms against environmental light/dark condition (Partch
et al., 2014; Bass and Lazar, 2016; Takahashi, 2017; Honma, 2018).
However, it has been found that the circadian clock becomes
less robust and flexible with aging, both at the animal level
(Valentinuzzi et al., 1997) and also at the tissue levels (Nakamura
et al., 2015). Also, at the cellular level, we recently found that
the circadian clock is altered with the establishment of replicative
senescence; the circadian period becomes longer, and the peak
phases are delayed compared with the proliferative cells (Ahmed
et al., 2019). We assume that cellular senescence affects the
circadian clock mechanism, but not vice versa, since we have
reported that the fibroblast cells derived from Bmal1 knockout
mice embryo in which circadian clock is completely disrupted,
show the normal senescence process (Nakahata et al., 2018).
Although in our previous paper, we showed that the circadian
clock is altered with the establishment of replicative senescence,
till date, no evidence has directly demonstrated that cellular
senescence per se affects the circadian clock mechanism. Hence,
in this study, we induce oxidative stress-induced premature
senescence of human primary fibroblasts, to investigate whether
other types of senescence affect the circadian clock and therefore,
confirm that cellular senescence affects the circadian clock,
irrespective of the type of senescence.

MATERIALS AND METHODS

Cell Culture and H2O2 Treatment
Primary human lung fetal fibroblasts (TIG-3) of Japanese origin
were kindly provided by Drs. T. Takumi and T. Akagi. The
cells were cultured in DMEM-4.5 g/L glucose (Nacalai Tesque,
Japan) supplemented with 10% FBS (Sigma) and antibiotics (100
units/mL penicillin, 100 µg/mL streptomycin, Nacalai Tesque,
Japan) at 37◦C and 5% CO2 in a humidified incubator. The

proliferative cells used in this study were established in our
previous report (Ahmed et al., 2019) which consisted of cells in
the passage range of P25-29.

For the induction of oxidative stress-induced premature
senescence H2O2 was used as the stressor. The proliferative
cells were plated on 6-well plates at the seeding density of
8.5 × 104 cells/well on Day-0 (Figure 1A). On Day-1, (i.e., 24 h
after plating) cells were incubated with various concentrations
of H2O2 (Wako, Japan) as indicated, for 2 h, then rinsed
with DMEM twice and incubated for 22 h. Cells treated with
equivalent volumes of dH2O as H2O2 were considered as
controls. This process was repeated on Day-2 and Day-3. Then
cells were cultured until Day-9, splitting on Day-4 and Day-7,
each time with the seeding density at 8.5× 104 cells/well.

Lentivirus Production and TIG-3 Cells
Infection
Lentivirus production was performed as described previously
(Ahmed et al., 2019). For infection of the target TIG-3 cells, cells
in the Passage range of 25–29 in the previous study (Ahmed
et al., 2019) were used. The culture medium was replaced with
the lentivirus suspension supplemented with 8 µg/ml protamine
sulfate (Nacalai Tesque, Japan). 24 h later the cells were washed
with PBS once and cultured 2 more days with fresh medium.
Infected cells were kept in liquid nitrogen until cells were
subjected to experiments.

Senescence-Associated β-Galactosidase
Assay (SA-β-Gal Assay), RNA Extraction,
qPCR, Real-Time Luciferase Monitoring
Assay, and Cosinor Analysis
These methods were described preciously (Ahmed et al., 2019).

Statistics
Values are reported as mean ± SEM. Statistical differences were
determined by a Student’s two-tailed t test. Statistical significance
is displayed as ∗p < 0.05, ∗∗p < 0.01, or ∗∗∗p < 0.001.

RESULTS

Oxidative Stress-Induced Premature
Senescence in TIG-3 Cells
In our previous study, we obtained the proliferative and
replicative senescent TIG-3 cells by serial passaging and
found that senescent TIG-3 cells possess altered circadian
clock properties with prolonged period and delayed phase
(Ahmed et al., 2019). To address whether the senescence
process triggers the alteration of circadian clock properties,
we induced the oxidative stress-induced premature senescence
using the proliferative cells, which consisted of cells in the
Passage range of 25–29 in the previous study (Ahmed et al.,
2019). In order to induce oxidative stress-induced premature
senescence, we chose H2O2, as it is one of the most
widely used stressors and also because it is thought of as
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a natural inducer of oxidative stress (Toussaint et al., 2000).
To optimize the concentration of H2O2, we first exposed the
cells to varying concentrations of H2O2 for 2 h, performing 3
consecutive H2O2 treatments every 24 h (Figure 1A). Senescent
cells are known to exhibit a plethora of features such as
enlarged, flattened morphology, increased senescence-associated
β-galactosidase (SA-β-Gal) activity (Debacq-Chainiaux et al.,
2009; Khaidizar et al., 2017), and increased expressions of cell
cycle inhibitors (p16INK 4a, p19ARF , and p21CIP1) (Stein et al.,
1999; Krishnamurthy et al., 2004; Khaidizar et al., 2017). Hence
on Day-8, the cells were checked for some of the aforementioned

features. Starting at 300 µM, the cells appeared to be larger in
size and flattened and showed significantly higher percentage
of the SA-β-Gal-positive cells compared to the control cells
(Figures 1B,C). Higher concentrations also gave correspondingly
higher percentage of SA-β-Gal-positive cells, however, increasing
number of cell deaths also occurred. As such, we determined
that the optimum concentration that could induce significant SA-
β-Gal activity was 300 µM (49.3% ± 2.9), and this percentage
of SA-β-Gal-positive cells was in the same range to that
found in the replicative senescent cells, as reported previously
(Ahmed et al., 2019).

FIGURE 1 | Confirmation of H2O2-induced premature senescence. (A) Scheme of this study. RNA, SA-β-Gal and rhythm mean RNA extraction, SA-β-Gal assay and
real-time luciferase monitoring assay, respectively (B) Representative pictures of SA-β-Gal positive cells (blue) at Day-9 under control (upper) and 300 µM
H2O2-treated conditions. Scale bars represent 100 µm (micrometer). (C) The percentage of SA-β-Gal positive cells were quantified at different concentrations.
(D) p21CIP1 gene expressions under control or 300 µM H2O2-treated conditions at indicated days were analyzed by qPCR. The expression level of control condition
at Day-5 was set to 1. (E) The percentage of SA-β-Gal positive cells under control or 300 µM H2O2-treated conditions at indicated days were quantified. n.s., not
significant, ∗p < 0.05, ∗∗∗p < 0.001, by Student’s two-tailed t test.
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Next, we sought to characterize the process of the oxidative
stress-induced premature senescence after the exposure of TIG-
3 cells to H2O2. To this end, we checked the two senescence
features, the cell cycle inhibitor p21 mRNA expression level and
SA-β-Gal activity, at two time points i.e., on Day-5 and Day-
8 at 300 µM of H2O2. On Day-5, both p21 mRNA expression
(p = 0.02) and SA-β-Gal positive cells (p = 4.8 × 10−8) in
the H2O2-treated cells were increased compared to the control
cells (Figures 1D,E). As expected, on Day-8 both senescence
features were significantly higher in H2O2-treated cells (p = 0.01
and 5.5 × 10−5 for p21 mRNA expression and SA-β-Gal
positive cells, respectively). Intriguingly, p21 expression levels
were comparable in H2O2-treated cells between Day-5 and Day-8
(p = 0.77, Figure 1D), whereas SA-β-Gal positive cells on Day-
8 was significantly higher than that on Day-5 (p = 1.6 × 10−12,
Figure 1E). These results indicate that the cells start ceasing
proliferation almost immediately after exposure to the stressor
H2O2, however, the development of the oxidative stress-induced
premature senescence process is gradual, the intensity of which
increases with time.

Alteration of Circadian Clock
Characteristics in the Oxidative
Stress-Induced Premature Senescent
TIG-3 Cells
Next we assessed the changes in the circadian clock properties of
the cells, both at Day-5 and Day-9, compared to the control cells.
For this purpose, we used the TIG-3 cells lentivirally infected
with the bmal1 promoter-driven luciferase gene (Brown et al.,
2005). The infected cells were synchronized with dexamethasone
and were subjected to real-time luciferase assay. As shown in
Figure 2A, the circadian oscillation patterns of the control cells
both on Day-5 and Day-9 were very close to each other (see
Supplementary Figure 1 for raw data of oscillation patterns).
Intriguingly, the oscillation pattern of H2O2-treated cells on Day-
5, which have already shown senescent features (Figures 1D,E),
was similar to those of control cells, suggesting that circadian
clock is intact in Day-5 senescent cells. On the contrary, the
oscillation pattern of the H2O2-treated cells on Day-9 was shifted
to the right (Figure 2A), suggesting the alteration of the circadian
clock i.e., a delay in their clock timings. In order to more precisely
check the timings of the cells, the trough times of the cells on Day-
5 and Day-9 were extracted. For the cells on Day-5, the 1st trough
times were 28.87 ± 0.35 h and 29.57 ± 0.39 h for the control
cells and H2O2-treated cells, respectively, with no statistically
significant difference (p = 0.19, Figure 2B). For the cells on Day-
9, the 1st trough times were 29.65 ± 0.17 h and 32.34 ± 0.11 h
for the control cells and H2O2-treated cells, respectively, with
statistically significant difference (p = 1.5 × 10−11). For the 2nd
trough times, the control cells at Day-5 showed 53.15 ± 0.37 h
while the H2O2-treated cells showed 54.78 ± 0.48 h, with
statistically significant difference (p = 0.01). For the Day-9 cells,
the 2nd trough times were 53.94 ± 0.23 h and 59.09 ± 0.60 h,
for the control cells and H2O2-treated cells, respectively, with
statistically significant difference (p = 4.4 × 10−8). We then

compared intra-group trough times of the cells between Day-
5 and Day-9. As expected, there were no differences of 1st and
2nd trough times in the control cells. On the other hand, for 1st
trough times in H2O2-treated cells, the cells at Day-5 showed
29.57 ± 0.39 h while the cells at Day-9 showed 32.34 ± 0.11 h,
with statistically significant difference (p = 1.9 × 10−6). Also, for
2nd trough times in H2O2-treated cells, the cells at Day-5 showed
54.78 ± 0.48 h and the cells at Day-9 showed 59.09 ± 0.60 h,
with statistically significant difference (p = 1.0 × 10−5). These
results indicate that the H2O2-treated cells on Day-9, with the
higher level of the senescent features, consistently displayed
the delayed trough timings, which is in accordance with the
replicative senescent cells reported in our previous study (Ahmed
et al., 2019). Meanwhile, the trough timings of H2O2-treated
cells on Day-5, with the milder level of the senescent features,
were similar to those of control cells, which suggests that the
alteration of circadian clock by H2O2 on Day-5 is much milder
than that on Day-9.

We further checked the period and damping rate of the cells
on Day-5 and Day-9 (Figures 2C,D). Period was calculated as
time difference between 1st and 2nd trough times. For the cells on
Day-5, the period length of the control cells was 24.25 ± 0.17 h
and that of the H2O2-treated cells was 25.21 ± 0.21 h, p = 0.002,
with a period extension of 0.96 h in the H2O2-treated cells.
For the cells at Day-9, the period of the control cells was
24.29 ± 0.19 h while that of the H2O2-treated cells was
26.74± 0.55 h, p = 2.8× 10−4, with a period extension of 2.45 h.
Furthermore, the period of the H2O2-treated cells on Day-9 was
1.53 h longer than that on Day-5, with statistically significant
different (p = 0.011). In case of the damping rate of the circadian
oscillation patterns of the cells, Day-5 cells did not show any
significant difference in their damping rates, for both the control
and H2O2-treated cells (Figure 2D). For the cells of Day-9, the
oscillation pattern of the H2O2-treated cells damped down more
than the control cells, p = 0.015. Also, the damping of the H2O2-
treated cells on Day-9 damped down more than that on Day-5,
p = 0.044. Collectively, the period changes and damping rates
suggest that the H2O2-treated cells on Day-9 display the higher
intensity alterations of the circadian clock properties, although
period changes start with the initiation of the process of oxidative
stress-induced premature senescence.

To confirm the above results, we also analyzed the data
of Figure 2 mathematically using the Cosinor software
(Supplementary Figure 2). For the period, control cells on Day-
5 had the period of 23.70 ± 0.21 h while the H2O2-treated cells
had period of 25.99 ± 0.14 h, p = 2.6 × 10−9; for Day-9 cells,
the period of the control cells was 25.03 ± 0.16 h while that
of the H2O2-treated cells was 26.85 ± 0.19 h, p = 2.5 × 10−7

(Supplementary Figure 2A), both of which are consistent with
the manual extraction of the period data (Figure 2). Again, the
period of H2O2-treated cells on Day-9 was significantly longer
than that on Day-5, p = 0.001. In case of the acrophase, on Day-5,
the control cells had an acrophase of −320.00 ± 5.76 while the
H2O2-treated cells had an acrophase of −317.69 ± 5.00, with
no statistically significant difference (p = 0.77, Supplementary
Figure 2B), indicating that there is no phase delay between the
cells at the beginning of the oxidative senescence development.
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FIGURE 2 | Alteration of circadian clock in H2O2-induced premature senescent cells at Day-9 was observed. (A) Relative oscillation patterns of luciferase of control
and 300 µM H2O2-treated cells at Day-5 and -9 were monitored by using a real-time luciferase monitoring system. Lowest intensity of each sample was set to –1.
(B) Box-whisker plots of trough-times are displayed. Values are mean ± SEM. (C,D) Box-whisker plots of period lengths (C) and damping ratio (D) in cells with
control and H2O2-treated cells at Day-5 and -9 are displayed. Values are mean ± SEM. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001, by Student’s two-tailed t test.
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On Day-9, the control cells had an acrophase of −322.25 ± 2.36,
which was comparable to those of Day-5, while the H2O2-treated
cells had an acrophase of −356.64 ± 1.06, p = 2.0 × 10−11

(Supplementary Figure 2B), indicating phase delay on Day-9 in
accordance with Figure 2B. Also, the acrophase of H2O2-treated
cells on Day-9 was significantly different from that on Day-5,
p = 0.001.

3xH2O2 treatment induced the initiation of cellular
senescence easily, however, it altered all the circadian clock
properties gradually. Therefore, we conclude that the circadian
changes observed in the H2O2-treated cells are a result of the
oxidative stress-induced premature senescence of the cells, not
simply an effect of the H2O2 on the cells per se.

Finally, endogenous circadian gene expressions in H2O2-
induced senescent cells on Day-9 were analyzed. Similar to our
previous results in replicative senescent cells (Ahmed et al.,
2019), PER1, PER2, and CRY1 mRNAs were downregulated in
senescent cells, however, CRY2, REV-ERBa, and BMAL1 mRNAs
were comparable to control non-senescent cells (Figure 3). These
results suggest that not only circadian phenotypes, but also
molecular regulations for circadian clock are similar, irrespective
of the type of cellular senescence.

DISCUSSION

In this study, we revealed that the oxidative stress-induced
premature senescence triggers the alteration of circadian clock
properties, that is, the delayed phase and period extension. Also,
we have recently reported that the period and phase of circadian
clock in the replicative senescent cells was prolonged and delayed
compared to the proliferative cells, respectively (Ahmed et al.,
2019). Based on our findings, we propose that cellular senescence
induces the period extension and delayed phase of circadian
clock properties by similar molecular mechanisms, irrespective

FIGURE 3 | The endogenous circadian clock genes expression level was
downregulated in the senescent cells. PER1, PER2, CRY1, CRY2, REV-ERBa,
and BMAL1 mRNAs in unsynchronized cells were analyzed by qPCR. Each
sample was normalized by 18S rRNA. Expression levels of each gene in
control cells were set to 1. ∗p < 0.05, ∗∗∗p < 0.01, by Student’s two-tailed t
test.

of the replicative senescence or the oxidative stress-induced
premature senescence.

In aged organisms, in addition to the replicative senescent
cells, the stress-induced premature senescent cells occupy a
major portion of the senescent cells (Campisi, 2005; Khapre
et al., 2011). Oxidative stress is one of the strongest contributors
of stress-induced premature senescence and is likely one of
the major mediators of stress-induced premature senescence
in vivo (Chen et al., 1995; Campisi, 2005; Khapre et al., 2011).
Interestingly, several studies from model animals and humans
have demonstrated that aging can also lead to alteration of the
circadian clock (Pittendrigh and Daan, 1974; Witting et al., 1994;
Valentinuzzi et al., 1997; Van Someren, 2000; Davidson et al.,
2008; Sellix et al., 2012; Mattis and Sehgal, 2016). These evidence
suggest that the attenuation of circadian clock functions with
aging is in accordance with the accumulation of the senescent
cells in vivo. Senolytic drugs (Chang et al., 2016; Yosef et al., 2016;
Lehmann et al., 2017) which selectively eliminate senescent cells,
or transgenic mice, such as INK-ATTAC (Baker et al., 2011) and
p16-3MR mice (Demaria et al., 2014), in which senescent cells
can be selectively eliminated in an inducible fashion, will be good
strategies to address this hypothesis.

As already discussed in our previous study (Ahmed et al.,
2019), the altered circadian clock properties have also been
reported by Nakamura et al. (2015) using ex vivo SCN tissue of old
mice. Compared to the consistent results from cellular and tissue
levels, results at the organismal level have been controversial,
some reports demonstrate prolonged period (Valentinuzzi et al.,
1997), but others show shortened period (Pittendrigh and Daan,
1974; Witting et al., 1994). Aging phenotype is the result of
complex intra- and inter-organ communications and individual
contributions of different factors to total aging phenotype are
still unknown. This is probably the reason for the controversial
reports at the organismal level. Further investigations to unravel
individual factors affecting total aging phenotype will be required.

We concluded in this study that 3×H2O2-treated cells on
Day-5 have already entered the senescent phase, because of the
high expression and level of p21 mRNA and SA-b-Gal activity,
respectively (Figures 1D,E), and H2O2-treated cells on Day-
9 were more maturated. Meanwhile the alteration of circadian
clock properties in H2O2-treated cells on Day-5 occurred only
in terms of the period prolongation, and on Day-9 the period
was much longer than that on Day-5. Intriguingly, phase and
damping rate were altered only on Day-9, suggesting that
molecular mechanisms of the period prolongation and delayed-
phase/damping are independent. These results also suggest
that the molecular mechanisms in circadian period regulations
are vulnerable to cellular senescence, while the molecular
mechanisms in circadian phase regulations are more robust than
those in period regulations. Compared to our 3xH2O2 treatment,
acute single H2O2 treatment with high dose has been reported to
alter circadian clock properties; H2O2 treatment resets circadian
clock mediated by the dimerization of BMAL1 and HSF1
(Tamaru et al., 2013), induces phase changes of circadian clock
in mouse embryonic fibroblast (MEF) cells and mouse peripheral
tissues (Tahara et al., 2016), increases the amplitude of circadian
clock by activating NRF2 following Cry1 expression in stable
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Per2:Luc reporter MEF cells (Wible et al., 2018), elicits phase-
dependent PER2 degradation and circadian phase shifts in mouse
fibroblasts (Putker et al., 2018), and shortens the circadian
period by downregulating Rev-erva/b mRNAs via the activation
of PRX2/STAT3 pathway in stable Bmal1:dLuc reporter NIH3T3
cells (Ji et al., 2019). These circadian phenotypes triggered by
acute H2O2 are different from our current results, thereby
indicating that the circadian phenotypes observed in our study
are a result of the oxidative stress-induced premature senescence
of the cells, not simply an effect of the H2O2 on circadian clock
per se.

Li et al. (2020) have recently reported that increased non-
genetic variation in gene expression predominantly drives
circadian period prolongation in clonal cell lines (Li et al.,
2020). Our studies demonstrated that variations in trough times
and periods are larger in replicative/stress-induced premature
senescent cells, compared to those in proliferative/control cells.
Meanwhile, senescent cells are not homogeneous, they are
heterogenous mixture of cells, for example, the percentage of
SA-b-Gal positive cells was not 100% (Figure 1D). These data
support that variation in circadian gene expression among
senescent cells is greater. Furthermore, aging has been associated
with increased stochastic transcriptional noise (Bahar et al., 2006;
Enge et al., 2017; Martinez-Jimenez et al., 2017; Tang et al.,
2019), therefore, increased transcriptional noise in senescent
cells might be one of the causes to induce prolonged circadian
period. Analyses of circadian period in single cells and single-cell
RNA-sequence will provide an answer for this possibility.

Senescent cells are metabolically active, and increase in the
AMP/ATP ratio and decrease in NAD+ amount have been
reported during senescence (James et al., 2015; Khaidizar et al.,
2017). Increase in the AMP/ATP ratio promotes AMP-activated
protein kinase (AMPK), which acts as a sensor of the reduced
energetic state and further activates catabolic pathways while
inhibiting anabolic ones (Hardie, 2003; Garcia and Shaw, 2017).
Meanwhile it has been reported that mTOR, which is an
intracellular nutrient sensor for high cellular energy state and
associated with autophagy, is also upregulated during senescence
(Herranz et al., 2015; Laberge et al., 2015; Nacarelli and
Sell, 2017). Decrease in NAD+ amount attenuates enzymatic
activities of NAD+-dependent enzymes, such as sirtuin family
deacetylase (SIRT1-7) and poly (ADP-ribose) polymerases
(PARPs) (Imai and Guarente, 2014, 2016; Schultz and Sinclair,
2016). Many of aforementioned signaling molecules are reported
to regulate circadian clock properties. AMPK is a rhythmically
expressed kinase and phosphorylates CK1ε, resulting in enhanced
phosphorylation and degradation of PER2 (Um et al., 2007; Sahar
and Sassone-Corsi, 2012) and CRY1 (Lamia et al., 2009; Sahar and
Sassone-Corsi, 2012; Jordan and Lamia, 2013). AMPK activation
by AMPK agonist, AICAR, or glucose deprivation, increased
the circadian period and decreased the amplitude (Lamia et al.,
2009), which are consistent with our finding in senescent cells,
although another AMPK agonist metformin shortened circadian
period (Um et al., 2007). mTOR perturbation, such as RNAi
knockdown or mTOR inhibitors, lengthened circadian period
in fibroblast, SCN, and animal behaviors (Zhang et al., 2009;
Ramanathan et al., 2018), these reports show opposite effects to

our findings. NAD+ shows rhythmic 24 h oscillation and post-
translationally modifies histone H3, BMAL1, PER2 and CLOCK
by SIRT1 and PARP1 (Nakahata et al., 2008; Ramsey et al.,
2009; Asher et al., 2010). Decrease in NAD+ by FK866 treatment
amplified E-box-regulated circadian genes, such as per2 and dbp
mRNAs (Nakahata et al., 2009). Current study demonstrated that
the amplitude of circadian oscillation driven by bmal1-promoter
was damped more in senescent cells (Figure 2D), which is
probably due to the increase in E-box-regulated circadian gene,
rev-erb, the repressor for bmal1 gene regulation. Intriguingly,
it has been demonstrated that H2O2 decreases intracellular
NAD+ in some primary cells, suggesting that senescent cells
in our study also possesses low NAD+ (Furukawa et al., 2007;
Han et al., 2016). Evidences mentioned here imply that altered
signaling pathways during senescence affects circadian clock
properties, however, as far as we know, molecular connections
between cellular senescence and circadian clock remain largely
uncovered. Therefore, further investigations addressing this will
be required to understand, maintain and cure the circadian clock
mechanisms in the elderly.

In summary, our results indicate that cellular senescence alters
the circadian clock, irrespective of the type of cellular senescence.
In aged individuals, disruption of the circadian clock functions
has been associated with many age-related diseases, however, the
underlying cause of this disruption of the circadian clock was
largely unknown. Our novel findings, therefore, open up new
avenues to investigate the underlying mechanisms that lead to the
disruption of the circadian clock function in aged organisms.
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