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Abstract

Background

Dengue is the most rapidly spreading vector-borne disease globally, with a 30-fold increase

in global incidence over the last 50 years. In Bhutan, dengue incidence has been on the rise

since 2004, with numerous outbreaks reported across the country. The aim of this study

was to identify and map areas that are vulnerable to dengue in Bhutan.

Methodology/Principal findings

We conducted a multicriteria decision analysis (MCDA) using a weighted linear combination

(WLC) to obtain a vulnerability map of dengue. Risk factors (criteria) were identified and

assigned with membership values for vulnerability according to the available literature. Sen-

sitivity analysis and validation of the model was conducted to improve the robustness and

predictive ability of the map. Our study revealed marked differences in geographical vulner-

ability to dengue by location and season. Low-lying areas and those located along the south-

ern border were consistently found to be at higher risk of dengue. The vulnerability extended

to higher elevation areas including some areas in the Capital city Thimphu during the sum-

mer season. The higher risk was mostly associated with relatively high population density,

agricultural and built-up landscapes and relatively good road connectivity.

Conclusions

Using MCDA, our study identified vulnerable areas in Bhutan during specific seasons when and

where the transmission of dengue is most likely to occur. This study provides evidence for the

National Vector-borne Disease Control programme to optimize the use of limited public health

resources for surveillance and vector control, to mitigate the public health threat of dengue.

Author summary

Dengue is an important vector-borne viral disease affecting humans. In Bhutan, dengue inci-

dence is on the rise with increased frequency of outbreaks and spread to new areas. Outbreaks

were reported from places as high as above 900m above sea level in recent years. However,
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dengue control activities in Bhutan are usually initiated at the time of outbreaks. This often

leads to a large number of cases and overburden the health system. To address these issues, we

developed dengue risk maps at a fine spatial resolution by combining risk factors that mediate

the transmission of dengue using a weighted linear combination. Vulnerability to dengue was

spatially heterogeneous and varied by season. Dengue is highly vulnerable in low-lying areas

throughout the season. However, the vulnerability extended to higher geographical elevations

including the nation’s capital during the summer season. The study provides a firm evidence-

base to prioritize areas and seasons for dengue control strategies in Bhutan.

Introduction

The global incidence of dengue has increased over the last few decades from over 8.3 million

reported infections in 1990 [1] to approximately 80 million dengue cases in 2015 (representing

a ten-fold increase) [2]. The number of deaths also increased from 12,300 in 2005 to 18,400 in

2015 [3]. Before 1970, only nine countries experienced severe dengue epidemics. Today, more

than 120 countries have endemic dengue virus (DENV) transmission, with severe dengue

resulting in 21,000 deaths annually [4]. There are now estimated 390 million dengue infections

worldwide every year (95% credible interval [CrI] 284–528 million), of which 96 million (95%

CrI 67–136 million) manifest clinically with varying degree of severity [5]. Dengue is the lead-

ing cause of hospitalization and death among children in the South East Asia region [6].

Implementing effective interventions for dengue involves identification of priority areas and

times of the year that are most vulnerable to the disease. However, this presents a challenge in

developing countries without adequate data [7]. Misdiagnosis and asymptomatic infections

impede the detection of cases, resulting in delayed responses [5]. Moreover, surveillance systems

do not provide adequate information for instituting informed dengue control activities, in partic-

ular, due to massive under-reporting [8, 9]. Identifying areas at risk of dengue is of paramount

importance to prioritize resources and provide effective responses to dengue outbreaks [10].

In the 2019 dengue epidemic, dengue cases were reported from 19 of the 20 districts in Bhu-

tan, including many districts that had never previously had dengue. Unfortunately, the current

national surveillance system does not capture information on the source of infection, i.e.

whether it was acquired locally or imported from other districts or countries, and so it is not

known whether all cases of dengue were acquired in the district where they were reported.

This information is crucial to understand the epidemiology of dengue for planning control

activities. Therefore, methods need to be applied to understand whether particular locations

are likely to sustain local dengue transmission.

Recent advances in geographical information systems (GIS) and remote sensing technolo-

gies have been increasingly used to study the spatial relationships between vector-borne dis-

eases and the factors that influence their distribution [11]. These technologies have been

implemented in several ways, including as the basis for spatial decision support tools to

improve resource allocation for disease surveillance and control activities [12] and predicting

high risk locations for these diseases [13]. A GIS-based multi-criteria decision analysis

(MCDA) is one such decision support tool, offering a straightforward approach to conceptual-

izing the complex web of factors and interactions that mediate the transmission of disease

[14]. MCDA integrates multiple factors and weighs their importance by incorporating knowl-

edge and data from diverse sources [15, 16]. This can be operationalised in different ways;

here, we used a Weighted Linear Combination (WLC) algorithm for combining information

to produce a dengue vulnerability map.
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The aim of this study was to generate dengue vulnerability maps for Bhutan for different

seasons. These maps can be used to visualise dengue vulnerability of different areas for priori-

tizing limited public health resources for controlling dengue in Bhutan.

Methods

Ethics statement

Ethical clearance for this study was approved by the Research Ethics Board of Health (REBH),

Ministry of Health, Bhutan (REBH/Approval/2020/033) and the Australian National Univer-

sity (ANU), Australia (2020/297).

Study setting

Bhutan is one of Asia’s smallest nations, situated in the southern slopes of the eastern Himala-

yas between the People’s Republic of China in the North and India in the South, West and

East. The country has a total area of 38,394 square kilometres and lies between 27˚ 30’ N and

90˚ 30’ E [17]. The country is administratively divided into 20 districts or dzongkhags, which

are further divided into 205 sub-districts or gewogs (Fig 1).

Bhutan has a monsoonal climate with four seasons. The spring season starts in March and

ends in May. The summer season, which commences in June and ends in August, is character-

ized by heavy rain and high temperatures. The rain continues into the autumn season, which

stretches from September to November. From December, the winter sets in with frost covering

much of the country, and it lasts until February [18].

Fig 1. District (with name) and sub-district boundaries (in light grey colour) of Bhutan. The capital city (green triangle with dot inside) lies in Thimphu district,

shown here in light blue.

https://doi.org/10.1371/journal.pntd.0009021.g001
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Study design

The MCDA process involves the following stages: 1) Defining the objective, 2) Identifying fac-

tors and constraints using different information sources (e.g. expert opinion, a literature

search and analysis of historical data), 3) Defining the relationship between the factors and the

vulnerability of a location for dengue, 4) Transforming or standardizing the values of the fac-

tors on a relative scale to allow comparison between each criterion, 5) Weighting the criteria

on the basis of their relative importance to vulnerability, 6) Combining and aggregating all the

layers/criteria to produce a final weighted estimate of vulnerability in each location and, 7)

Conducting sensitivity analysis and validating the results.

Objective

The objective of MCDA was to identify and prioritize areas for dengue control. Dengue con-

trol activities such as vector control in Bhutan are initiated only during outbreaks and when

the health system is already disrupted. During an outbreak, healthcare facilities are over-

crowded with limited space to care for patients, and staffing is insufficient to meet the patient

load. To avoid such delays and provide prompt intervention measures, identification of areas

at risk of dengue is important. Areas that are vulnerable for dengue might then be sites for sen-

tinel or other targeted surveillance approaches, and protocols and systems can be developed in

advance for mobilization of resources when and where they are required.

Data sources

To validate the model, we used dengue cases between 2016–2019 from the National Early Warn-

ing, Alert, Response and Surveillance (NEWARS) database housed within the Ministry of Health

of Bhutan. NEWARS is an integrated online disease surveillance system of all nationally notifiable

diseases including dengue [19]. Dengue cases are defined as any patients presenting fever with

any two of the following symptoms: headache, retro-orbital pain, rash, muscle/joint pain, positive

tourniquet test and any warning signs of severe dengue, which include abdominal pain, persistent

vomiting, mucosal bleeding, fluid accumulation, liver enlargement and elevated haematocrit

value. These cases were further confirmed by rapid diagnostic test for dengue virus non-struc-

tural protein 1 (NS1), anti-dengue IgM and IgG antibodies. Only confirmed cases were reported

into the NEWARS. Average annual dengue incidence in the districts varies between less than

three cases to more than 21 cases per 10,000 inhabitants (S1 Fig). Dengue is seasonal with maxi-

mum dengue incidence reported during summer than other seasons (S1 Table).

Past studies have demonstrated multiple factors that influence the occurrence of dengue

(S2 Table). We included temperature, rainfall, land use, population density, distance from the

road network and the open water bodies/major rivers, upon which we base the vulnerability

assessment.

Maximum temperature and rainfall variables were obtained from Worldclim (www.

worldclim.org). These raster layers were developed at a spatial resolution of 30 seconds (~1

km2) between 1970 and 2000 [20]. In this study, seasonal averages were generated for both

rainfall and temperature for the following time periods: a) December, January and February

for the winter season; b) March, April and May for the spring season; c) June, July and August

for the summer season; and, d) September, October and November for the autumn season. As

elevation has been already used as a covariate in Worldclim data production, it was not used in

the model construction [21].

Population density was obtained from the Worldpop (www.worldpop.org) global high-res-

olution population denominators project, which provides gridded population counts at 100 m

spatial resolution (3-arc seconds) [22].
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Land use data were obtained as a vector layer from the Ministry of Agriculture and For-

estry, Royal Government of Bhutan. This was the latest data available for land use in the coun-

try. This layer has 20 categories, including many specific land cover types. The layer was re-

categorized into three categories based on relevance to the vulnerability of dengue transmis-

sion: built-up (areas occupied by humans), agricultural land and others (natural environment.

This vector layer was converted into a raster layer using the conversion tool in ArcGIS.

Similarly, the road network data was obtained from the Ministry of Work and Human Set-

tlement as a vector layer. Euclidean distance to the nearest road was computed throughout

Bhutan using the distance tool in ArcGIS. Finally, we considered the distance to the open

water bodies/major rivers, obtained from the National Land Commission, Bhutan. Euclidean

distance to the nearest open water was computed following similar steps as the road network.

As data obtained from different sources were at diverse spatial scales, they had to be con-

verted into uniform scales. All rasters were uniformly standardized at a pixel dimension of

0.0083 decimal degrees (which equals approximately 1km at the equator) covering the entire

geographical extent of Bhutan. The land use and water bodies layers were reprojected from

Geographic Coordinate System (GCS) Drukref_03 Transverse Mercator to the World Geo-

detic System (WGS) 1984 for spatial analysis. Raster maps were produced for all risk factors

using this standardized spatial resolution and the same pixel size (Figs 2 and 3).

Standardization of criteria (Risk factors) using membership functions

There exist different ways of standardizing or normalizing criteria such as Boolean constraints,

linear transformation, value/utility functions and membership functions (MF). Rescaling

Fig 2. Patterns of land use types, distance from the road network (~1 decimal degrees = 111,000meters) and population density (number of people per pixel) in

Bhutan.

https://doi.org/10.1371/journal.pntd.0009021.g002
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factors into a standardized continuous scale allowed them to be compared and combined. In

this study, fuzzy logic MF was used to determine the relationship between each factor and den-

gue vulnerability. Fuzzy set membership is the probability of an element belonging to a class

(here, vulnerable/not vulnerable) in which boundaries between classes are not distinct. Using

this approach can improve the accuracy of the output as the membership score represents a

zone of gradual transition rather than a hard transition. The graded values ranged from 0 (i.e.

complete non-membership or non-vulnerable in a fuzzy set) to 1 (i.e. complete membership

or highly vulnerable in a fuzzy set).

Temperature

Climatic conditions, including temperature and rainfall, play a major role in the local spread of

dengue infection by directly affecting the life cycle, feeding activity, biting rates and incubation

period of the disease [23]. Vector populations increase through processes such as the laying of

eggs, egg hatching and growth of larva and pupa, all of which are favoured by higher tempera-

tures. Higher temperatures reduce the extrinsic incubation period of DENV in Aedes mosqui-

toes and promote viral transmission [24, 25]. Furthermore, higher temperatures increase the

speed of blood meal digestion and thus boost the feeding habits of mosquitoes [26]. The longev-

ity of Aedes mosquitoes increases with an increase in temperature, with the optimum survival

temperature ranging from 27–30˚C, while temperature below 17˚C and above 34˚C are associ-

ated with low mosquito activity and thus lower transmission [25, 27]. Thus we input a symmet-

ric relationship between vulnerability and temperature, with vulnerability rising from 17˚C

(below which the environment is not vulnerable), peaking at 27–30˚C, and falling to 34˚C

(above which the environment is also not vulnerable) (Table 1).

Rainfall

Increased rainfall facilitates vector population growth by providing water required for mos-

quito breeding [28]. The impact of rainfall on vector density and consequent dengue infection

varies across different geographical regions. Cheong et. al had reported the highest dengue

Fig 3. Patterns of seasonal average rainfall (left panel maps) and average maximum temperature (right panel maps) in Bhutan.

Seasonal average data was computed by averaging three months for each season: Winter (December-February), Spring (March-May),

Summer (June-August) and Autumn (September-November).

https://doi.org/10.1371/journal.pntd.0009021.g003

Table 1. Parameters defining membership functions for dengue vulnerability in Bhutan.

Risk factors Function shape Not vulnerable Maximum

vulnerability

Rationale

Temperature (˚C) Symmetric <17 & >34 27–30 Optimum surviving temperature for vector ranges from 27–30˚C, while

temperature <17˚C & >34˚C are associated with low mosquito activity & lower

transmission

Monthly rainfall (mm) Monotonic

increasing (Linear)

<10 mm >167 mm Total monthly rainfall of 167mm is suitable for stable dengue transmission

Population density

(per pixel)

Monotonic

increasing (Linear)

< 1 >16 Populations >1 person per pixel are required for dengue transmission &

vulnerability increases linearly to a maximum at 16 people per pixel

Distance from the road

network (m)

Monotonic

decreasing (Linear)

>5000m <500m Most dengue cases occur within 500m of a road, whilst dengue rarely occurs

>5000m from the road network

Land use types Categorical data Natural

environment

Built-up areas Built-up areas are associated with highest dengue incidence followed by

agricultural land. Natural environments such as forest, snow and barren land are

not associated with dengue

Distance from the

water bodies

Monotonic

decreasing (Linear)

>20,000m <500m Most dengue cases occur within 500m of water bodies, whilst dengue rarely

occurs >20,000m from water bodies

https://doi.org/10.1371/journal.pntd.0009021.t001
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incidence at a bi-weekly total rainfall between 215–302 mm in Malaysia [29]. In Taiwan, the

relative risk of dengue was found to be significantly correlated with precipitation up to a maxi-

mum of 350mm/day at 70 days lag [30], while the peak dengue risk had been reported at a

monthly cumulative rainfall of 720mm in China [31]. Countries in the World Health Organi-

zation South-East Asia Region (WHO-SEAR) including Bhutan are considered to have stable

Ae. aegypti populations in geographical locations that receive an annual rainfall of greater than

2000mm [7]. Based on this relationship, dengue incidence varies seasonally (following a Sig-

moidal function) with maximum incidence evident the month following a monthly cumulative

rainfall of 167mm. Vulnerability in the current study was, therefore, assumed to increase

monotonically with monthly rainfall above 10mm [32] (Table 1).

Population density

High population density and uncontrolled urbanization have created ideal conditions for

increased transmission of dengue [33]. Dengue incidence is assumed to increase linearly with

increasing population density. Areas with population density <1 person per square km were

standardized to zero, while areas with the maximum population density (i.e., 16) were stan-

dardized to one. A simple linear increasing function was used to describe this relationship

between vulnerability and population density (Table 1).

Land use

Ae. aegypti are commonly found around human dwellings, where female mosquitoes fre-

quently and almost exclusively bite human hosts [26]. Therefore, this mosquito is predomi-

nantly found in high-density urban areas, and is rarely found in vegetated and forested land

[34]. An abundance of Ae. aegypti is also associated with a high coverage of agricultural land

use such as crops and paddy fields in some areas [35, 36]. Fragmentation of natural habitats

can increase the local temperature and increase human-mosquito interactions, favouring the

transmission of dengue [37]. On the continuous scale from 0 to 1, built-up areas were consid-

ered highly vulnerable and rated as “1”, agricultural lands were rated as “0.50”, while all others

areas were considered not vulnerable to dengue and rated as “0”.

Distance from the road network

Using the road network as a measure of urbanization, studies have reported a positive relation-

ship between the distribution of dengue epidemics and density of the road network. Well-

developed road networks facilitate the movement of people and increase the probability of

dengue transmission [38]. The density of the road network is also a proxy measure of the den-

sity of the human population. Cases have been found to concentrate within 500m of the road

network and nearly all cases occur within a distance of 5000m [39]. Accordingly, maximum

vulnerability for dengue was assumed to occur at a distance of up to 500m from the road net-

work, then monotonically decrease to a maximum distance of 5000m, after which the location

was deemed not to be vulnerable (Table 1).

Distance from open water bodies/major rivers

Distribution of mosquitoes and dengue incidence varies in response to the distribution of

open water bodies and rivers. Studies in the past have shown greater dengue incidence [40, 41]

as well as higher prevalence of dengue seropositive residents in areas adjacent open water bod-

ies [42]. Standing water formed as a consequence of rivers can act as breeding sites for mosqui-

toes and enhance the transmission of dengue [43]. As for the road network, maximum
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vulnerability was assumed to occur at a distance of up to 500m from open water, and then

monotonically decrease to a maximum distance of 20,000m.

Applying decision rules

We used the analytical hierarchy process (AHP) developed by Saaty to generate weights for

each factor using a pairwise comparison matrix [15]. With this method, the relative impor-

tance of each factor was determined through pair-wise comparison by creating a ratio-matrix

using a numerical scale. Each comparison determines which factor is more important and to

what extent on a nine-point scale ranging from extremely less important through equal impor-

tance to extremely more important [15].

Pairs of factors were compared based on the number of studies that reported significant associa-

tions with dengue incidence/outbreaks. To this end, a literature search was conducted to extract rel-

evant publications in the PubMed database. We used the following combination of search terms:

("dengue virus" OR dengue OR "severe dengue") AND (temperature or precipitation or rainfall or

“land use/land cover” road or water or river or "population density") AND (Asia). To retrieve recent

articles, the search was restricted for the time period between 2010 and 2020. Factors that had been

reported more frequently were considered to be more important and rated higher in a pairwise

comparison. A detailed description can be found in S2 Table. The principal eigen vector obtained

from the pairwise matrix was then used to calculate best-fit of weight for each factor [44]. To calcu-

late weights, a normalized comparison matrix was computed from the pairwise comparison matrix

by dividing all elements of each column by their respective column sum. Then the algebraic average

of the six columns of risk factors was computed to generate an approximate weight-vector. The

weights were normalized so that its additive value was equal to one.

To measure the inconsistency associated with the pairwise comparison matrix, a consis-

tency index (CI) was calculated as follows:

CI ¼
lmax � p
ðp � 1ÞRI

where, λmax is the biggest eigenvalue that can be obtained once we have its associated eigenvec-

tor, p is the number of columns of the matrix (i.e., risk factors) and RI is a random index (its

value depend on the size p). If CI<0.10, then ratio indicates a reasonable or acceptable level of

consistency, while CI�0.10 indicates inconsistent judgements [45].

The Pearson correlation coefficient (r) was calculated for each pair of factors. If r> 0.4,

weights of both factors were reduced by 10%, while other weights increased proportionally to

result in the total weight of one [46].

Weights assigned to the factors were considered statistically acceptable with the CI of 0.013,

which is below the threshold level of 0.10 (Table 2). These weights were further adjusted based

on the results of the correlation analysis (S3 Table).

Combination of criteria using weighted linear combination

Weighted linear combination (WLC) was used to aggregate all standardized raster layers. A

low vulnerability score in one factor is compensated by a high vulnerability score in another

factor. WLC has the following expression [47]:

Si ¼
Xn

j¼1

wjxij

Where, Si represents the final score, wj represents the weight of the criterion j, and xij
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represents the standardized score of the jth criterion for the ith pixel. Standardization of risk

factors and WLC were operationalized in the TerrSet Geospatial Monitoring and Modelling

software (in short TerrSet) (Clark Labs, Worcester, MA).

Sensitivity analysis

Sensitivity analysis was conducted by changing the MF (i.e., the structure or the shape) and

weights of the risk factors. To determine the change in MF of the risk factors, following sensitiv-

ity analysis were conducted: a) All linear monotonic relationship were converted into sigmoidal

relationship, b) Symmetric relationship of temperature was converted into a monotonic linear

relationship and c) Rainfall was converted to a symmetric relationship from a monotonic rela-

tionship [32]. In order to assess the sensitivity of the weights, two new weights are applied to

each factor by adding and subtracting 25% from the original weights [46]. We also used equal

weights of 0.167 for all risk factors. Each of the newly constructed weights was individually

incorporated into the model, while holding other factor weights constant. For each combination

of weights obtained, a vulnerability map was created. Vulnerability estimates were extracted

from both the original and new maps at the sub-district level using the zonal statistics tool in

ArcGIS and the mean change in vulnerability was calculated. Average changes in vulnerability

scores for each change in input values were assessed to determine the robustness of the model.

Map validation

The predictive ability of the MCDA was quantified using a Receiver Operating Characteristic

Curve (ROC) constructed in the R software. Predicted values were obtained by averaging the

dengue vulnerability scores of all four seasons at the sub-district level. National surveillance

data from NEWARS were used to identify sub-districts that have reported dengue over the

past five years. These sub-district-level observations were then compared with predicted vul-

nerability derived from the MCDA. The area under the curve (AUC) of the ROC was used to

validate the predictive ability of the MCDA map. Note, using this approach, estimates of both

sensitivity and specificity are dependent on all vulnerable areas of the country having experi-

enced dengue cases during the past five years and all areas reporting dengue having had local

transmission. Both are associated with considerable uncertainty.

Results

Vulnerability maps for dengue

Dengue vulnerability varied by different time periods, as displayed by four different vulnerabil-

ity maps covering the country of Bhutan (Fig 4). The Winter season had the lowest vulnerabil-

ity for dengue up to a maximum vulnerability score of 0.6. With the onset of spring, our model

Table 2. Pairwise comparison of matrix of criteria (risk factors) and weights in analytical hierarchy process with respect to dengue vulnerability.

Risk factors Temperature Rainfall Land use Population Density Road network Water bodies Adjusted weights

Temperature 1 0.290

Rainfall 1/2 1 0.269

Land use 1/3 1/2 1 0.136

Population density 1/4 1/3 1/2 1 0.133

Road network 1/6 1/5 1/3 1/3 1 0.071

Water bodies 1/6 1/5 1/3 1/3 1/2 1 0.101

RI = 1.24, λmax = 6.084, CI = 0.013.

https://doi.org/10.1371/journal.pntd.0009021.t002
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projected an increase in vulnerability with extension of higher vulnerability to many geograph-

ical regions. Areas with high vulnerability (vulnerability score >0.80) were predominantly

concentrated in low-lying elevations and included Chukha, Samtse, Sarpang, Dagana, Pema-

gatshel and Samdrup Jongkhar districts.

Summer had the highest vulnerability for dengue, with further expansion of vulnerable

areas. Areas of vulnerability even extended to the nation’s capital, where the vulnerability

score was>0.80 in three sub-districts, namely Kawang, Chang and Mewang (Fig 5). Other

places with high vulnerability in summer included Wangdiphodrang, Punakha, Tsirang, Paro,

Trongsa, Mongar, Trashiyangtse, Lhuentse, and Trashigang districts. In autumn, areas vulner-

able for dengue started to decrease, mainly due to declining temperatures.

Sensitivity analysis

Assuming a sigmoidal relationship between risk factors and dengue vulnerability resulted in a

mean change of vulnerability estimates of 0.0067, 0.0057, 0.0018 and 0.0054 for spring, sum-

mer, autumn and winter seasons respectively. Increasing or decreasing the weights of the fac-

tors by 25% whilst holding all other weights constant resulted in a mean change in

vulnerability estimates from as low as 0.0006 to 0.0335. Changing the MF of rainfall from

monotonic to symmetric structure resulted in the highest overall average change in vulnerabil-

ity estimates of 0.0767 (Table 3).

Validation

The predictive performance (AUC) of the MCDA model at the sub-district level was 0.66 (95%

CI: 0.57, 0.76), 0.64 (95%CI: 0.54, 0.73), 0.65 (95%CI: 0.55, 0.75), and 0.72 (95%CI: 0.64, 0.79)

Fig 4. Dengue vulnerability map of Bhutan for winter, spring, summer and autumn seasons. Winter had vulnerability index upto 0.60, while all other seasons have

>0.80. The geographical coverage of vulnerability index>0.80 was observed maximum in summer.

https://doi.org/10.1371/journal.pntd.0009021.g004
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for spring, summer autumn and winter seasons, respectively. The overall average performance

of the model was AUC = 0.66 (95% CI: 0.57, 0.75).

Discussion

We implemented a knowledge-driven MCDA model using WLC to develop vulnerability

maps for dengue, by season, in Bhutan. Areas with high vulnerability were predominantly

located along the southern international boundary with India and in the river valleys project-

ing into the interior of the country. In agreement with the prediction map, dengue outbreaks

in the past were predominantly reported from the southern border region. These areas are

generally characterized by lower elevations, built-ups areas, high population densities and

Fig 5. Dengue vulnerability at Thimphu sub-districts. Vulnerability index>0.80 were observed in Kawang (1), Mewang (2) and Chang (3) sub-districts during

summer.

https://doi.org/10.1371/journal.pntd.0009021.g005
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favourable climatic conditions for dengue transmission. People living in these areas can freely

cross the international border in both directions, increasing their exposure to dengue virus

infection. Other regions also reported an increasing incidence of dengue in places where there

is free cross-border movement of people [48].

Vulnerability was entirely restricted to lower-elevation areas during the winter season,

whereas many additional areas had enhanced risk in the other seasons, even including some

higher-elevation areas. Areas found to be vulnerable during the summer season included the

Thimphu (where capital city is located), Wangdiphodrang, Punakha, Tsirang, Paro, Trongsa,

Mongar, Trashiyangtse, Lhuentse, and Trashigang districts. These are built-up areas, sur-

rounded by agricultural land, with better road facilities and a high population density. High

dengue incidence in built-up areas might be related to human activities such as using water

tanks, plastic bottles, discarded tyres, ornamental ponds, metal drums, flower pots, buckets,

trays and pots, which increases breeding habitats for immature mosquitoes [49]. Similarly, set-

tlements with more gasoline stations and workshops, rice paddies and marshy or swampy land

have been shown to have more dengue vectors [36]. As predicted by the model, a remote vil-

lage in Trashiyangtse district reported its first-ever dengue outbreak in 2019. This area is

located at an elevation of 915m above sea level, that few in the community expected to be vul-

nerable to dengue (Entomologist, Vector-borne Disease Control Programme, oral communi-

cation, 2nd March 2020). The method developed here could be extended to explore the effects

of future global warming given that there are no actual data currently in existence that can

enable an empirical analysis.

MCDA is still growing in public health applications, although it is widely practised in other

disciplines [50, 51]. Using national surveillance data, validation of our model produced an

average ROC-AUCs of 0.67. This shows that our model for generating vulnerability maps is

reasonably reliable without the need for additional data to refine the parameters. Sensitivity

analysis revealed higher mean differences in vulnerability estimates in all the vulnerability

maps when varying the shape of the MF as compared to varying the weights. This indicates the

Table 3. Average change in vulnerability scores generated by subtracting scores of the original map and the newly created maps.

Weights/Structural variation Spring Summer Autumn Winter Overall change

Temperature (variation in weight) " 25% 0.0021 0.0013 0.0040 0.0048 0.0030

# 25% 0.0059 0.0110 0.0045 0.0024 0.0060

Rainfall " 25% 0.0098 0.0205 0.0109 0.0083 0.0124

# 25% 0.0197 0.0335 0.0127 0.0065 0.0181

Land use " 25% 0.0157 0.0211 0.0117 0.0051 0.0134

# 25% 0.0088 0.0134 0.0125 0.0024 0.0093

Pop. Density " 25% 0.0164 0.0219 0.0125 0.0058 0.0142

# 25% 0.0092 0.0136 0.0129 0.0031 0.0097

Road " 25% 0.0049 0.0081 0.0009 0.0019 0.0040

# 25% 0.0028 0.0006 0.0010 0.0049 0.0023

Water " 25% 0.0056 0.0013 0.0097 0.0144 0.0078

# 25% 0.0135 0.0103 0.0098 0.0174 0.0128

Equal weights 0.0344 0.0939 0.0320 0.0671 0.0568

Linear to sigmoidal 0.0067 0.0057 0.0018 0.0054 0.0049

Rainfall symmetric 0.0109 0.2312 0.0232 0.0415 0.0767

Temperature monotonic 0.0496 0.0649 0.0529 0.0101 0.0444

� Calculated by taking arithmetic mean of all four seasons.

https://doi.org/10.1371/journal.pntd.0009021.t003
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importance of defining the shape of the relationship between the risk factors and the vulnera-

bility outcome [46]. Given that greater certainty exists around the shape of relationships than

the values of the specific weightings, this increases our confidence in the model.

This study is subjected to several limitations. Factors such as literacy rate, poverty index,

sanitation and hygiene could not be mapped as they were only available at coarse resolution

(i.e. the district level) [52]. Up-to-date meteorological data were not available at higher resolu-

tion, and the classification of the road network into different types such as national highway or

secondary road was not available. Dengue cases from the NEWARS were used to validate the

model. However, those not captured by the surveillance systems who were asymptomatic or

mild cases and did not seek care in public health facilities were not accounted for. Additionally,

validating the vulnerability maps against data on locations where dengue had occurred doesn’t

account for areas that are vulnerable for dengue but where the disease has not yet reached, or

for areas where dengue was reported but no local transmission had actually occurred (i.e., all

cases were imported).

Overall, our study revealed peak season and areas of vulnerability to dengue at specific loca-

tions for prioritizing intervention strategies. The findings have implications for the develop-

ment of surveillance and early warning systems for dengue, allowing identification of high-risk

areas to mitigate public health effects of dengue in the country.
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