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SUMMARY

Neural responses in the visual cortex are variable,
and there is now an abundance of data character-
izing how the magnitude and structure of this vari-
ability depends on the stimulus. Current theories of
cortical computation fail to account for these data;
they either ignore variability altogether or only model
its unstructured Poisson-like aspects. We develop a
theory in which the cortex performs probabilistic
inference such that population activity patterns
represent statistical samples from the inferred
probability distribution. Our main prediction is that
perceptual uncertainty is directly encoded by the
variability, rather than the average, of cortical re-
sponses. Through direct comparisons to previously
published data as well as original data analyses, we
show that a sampling-based probabilistic represen-
tation accounts for the structure of noise, signal,
and spontaneous response variability and correla-
tions in the primary visual cortex. These results
suggest a novel role for neural variability in cortical
dynamics and computations.

INTRODUCTION

Neural responses in sensory cortices are notoriously variable:

the same stimulus can evoke a different response on each pre-

sentation (Henry et al., 1973; Tomko and Crapper, 1974). While

there have been great advances in characterizing the detailed

patterns and statistical structure of cortical variability (Ecker

et al., 2014; Goris et al., 2014; Kohn and Smith, 2005; Lin

et al., 2015), its computational relevance has received far less

attention. Indeed, the consequences of cortical variability have

almost exclusively been studied from the perspective of neural

coding, where variability is considered as pure noise or nuisance

(Carandini, 2004; Moreno-Bote et al., 2014; Shadlen and News-

ome, 1998; Tolhurst et al., 1983). Conversely, computational the-

ories of cortical representations (Adelson and Bergen, 1985; Kar-
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klin and Lewicki, 2009; Olshausen and Field, 1996; Schwartz and

Simoncelli, 2001) and dynamics (Churchland et al., 2012; Henne-

quin et al., 2014b; Mante et al., 2013; Rigotti et al., 2013; Rubin

et al., 2015) focused only on trial-average responses, either

ignoring variability altogether or considering only a simple

scaling of variability with average responses (Ma et al., 2006).

Here, we argue that the rich structure of neural variability

in sensory cortices reveals a key aspect of cortical computa-

tions: the representation of perceptual uncertainty. The need to

represent uncertainty is the logical consequence of formalizing

perception as unconscious inference (Helmholtz, 1962). For

example, our retinal activations can have several different inter-

pretations in terms of the composition and arrangement of

objects in the environment, each being valid with a different

probability. Thus, the uncertainty inherent in perceptual infer-

ence can be formalized as a probability distribution over possible

perceptual interpretations of our input (Knill and Richards,

1996). The question is, then, how do neural activities represent

probability distributions (Fiser et al., 2010)? We propose that

probability distributions are directly represented by the variability

of cortical responses.

To study the implications of representing uncertainty through

neural variability, we developed amodel of population responses

in the primary visual cortex (V1) with three main assumptions.

First, we posit that neural activity patterns represent statistical

samples from a probability distribution over visual features of a

scene (Fiser et al., 2010; Hoyer and Hyvarinen, 2003; Lee and

Mumford, 2003). Second, we specifically propose that individual

samples in the model are represented by the membrane poten-

tials (or, equivalently, the instantaneous firing rates) of neurons.

Third, as the autocorrelations of membrane potentials for any

static stimulus typically decay on a relatively short (�20ms) time-

scale (Azouz and Gray, 1999), membrane-potential values (and

consequently firing rates) separated on this timescale are

considered statistically independent and therefore are modeled

as independent stochastic samples from the underlying proba-

bility distribution. This naturally gives rise to within- as well as

across-trial variability in the model.

This proposed representational scheme has two main im-

plications. First, the set of responses (i.e., membrane-potential

values) at any time in a population of neurons in V1 represents

a combination of visual features as a possible interpretation of
blished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Schematic of the Model

(A) The generative model describing the statistical structure of image patches (x). Images arise as a linear combination of Gabor-filter basis functions with in-

tensities y= fy1;.; yng;whose contribution to the image is jointly scaled by a ‘‘contrast’’ variable, z, plus Gaussian white noise (see Experimental Procedures for

details).

(B) Probabilistic inference and the generation of membrane potentials and spike counts. The progression of four steps in the model is shown in the middle of the

panel, advancing from the bottom toward the top. The activations of two example cells in red and purple (see the corresponding basis functions in A) are illustrated

in two different trials using the same stimulus, x (left and right sides in B). Basis function activations, y, are inferred by inverting the generative process shown in (A).

(legend continued on next page)
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the input. Second, the within-trial variability of responses is such

that the relative frequency with which any population pattern is

visited is equal to the probability that the corresponding combi-

nation of features is a valid interpretation of the visual scene.

Thus, neural response variability is directly linked

to uncertainty about the stimulus: the wider the inferred range

of possible feature combinations is, the wider the distribution

of responses will become. In contrast to earlier proposals

for how uncertainty may be represented in cortical activities

(Deneve, 2008; Ma et al., 2006; Rao, 2004; Zemel et al.,

1998), this establishes the mean and variability of responses

as independent information channels, respectively encoding

the mean and the associated uncertainty of the probability dis-

tribution over visual features. Importantly, these predictions

about within-trial variability can also be tested in variability

measured across trials that use the same stimulus and thus

elicit the same probability distribution from which responses

are sampled.

To test our model, we systematically compared the neural

variability that our model predicted in response to various visual

stimuli with the across-trial variability recorded in V1 in response

to the same set of stimuli. As the parameters of our model were

fundamentally determined by the statistical properties of visual

scenes, rather than the properties of V1 circuits, this approach

allowed a strong test of the model. Specifically, we show that

the sampling-based representation of our model accounts

for several key properties of response variability in V1. First,

response variability not directly related to the stimulus can be

so high that it dominates evoked responses (Arieli et al., 1996;

Fiser et al., 2004; Vogels et al., 1989). Second, just as mean re-

sponses show systematic changes with particular attributes of

the stimulus (as characterized by tuning curves), so does the

variability of responses. In particular, experimental manipula-

tions of image contrast or aperture (known to control perceptual

uncertainty; Weiss et al., 2002) modulate the magnitude of vari-

ability largely independently from changes in mean responses

(Churchland et al., 2010); conversely, changes in the orientation

of the stimulus (which do not influence uncertainty) mainly affect

the trial average of responses, and affect their relative variability

much less. Third, response variability exhibits systematic pat-

terns not only in its overall magnitude but also in its fine structure:

signal correlations bear a specific relationship to noise (Ecker

et al., 2010) and spontaneous correlations. Fourth, more gener-
Due to noise and ambiguity in the model, y cannot be inferred from the image w

distribution, Pðy j xÞ. Membrane-potential values, u, represent stochastic samp

pendent samples drawn every �20 ms, corresponding to typical autocorrelation

potentials are plotted after smoothing with a 7-ms Gaussian kernel here. See al

membrane potentials by a rectifying non-linearity (Carandini, 2004; inset). Spike c

the duration of a trial: a spike is fired whenever the cumulative firing rate reaches a

rasters, with the final spike counts shown at the right end of each raster). Note th

remains unchanged across trials using the same stimulus, the actual time course o

due to stochastic sampling from the same underlying distribution.

(C) Statistics of the joint activity of a pair of neurons. The two sides show thememb

plotted against each other, revealing the higher-order statistics of the joint distrib

potential trajectories shown in (B) (color shade indicates elapsed time), and das
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colored circles correspond to the spike counts obtained from the two trials show
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ally, the structure of response variability during evoked activity

closely resembles variability during spontaneous activity (Arieli

et al., 1996; Berkes et al., 2011a; El Boustani et al., 2009; Fiser

et al., 2004). In order to test and evaluate these implications of

the model quantitatively, we compared model results directly

to previously published experimental results whenever possible.

To confirm the specific new predictions of the model about the

structure and stimulus-dependent modulation of spike-count

variability, we further performed novel analyses of a published

dataset of V1 recordings from awake macaques (Ecker et al.,

2010). These results suggest a new perspective on the functional

role of variability in cortical dynamics and distinguish between

previous conflicting proposals about how uncertainty is repre-

sented in the cortex.

RESULTS

From Natural Image Statistics to Neural
Representations
We extended a well-known family of representational models of

V1, in which the visual cortex maintains an internal model of how

images are generated by underlying visual features (Figure 1A;

see also Figure S1, Experimental Procedures, and Supplemental

Experimental Procedures). According to this internal model, an

image patch is generated by a multiplicative interaction between

two terms (plus noise):

image= z3
�X

i

activationi 3basisi

�
+ noise: (Equation 1)

The first term, z, which we assumed for simplicity to be a single

scalar, determines the global contrast level of the image patch.

The second term is a linear combination of basis functions,

and simple cell activations represent the coefficients with which

each of these basis functions contribute to the image (Olshausen

and Field, 1996; Schwartz and Simoncelli, 2001). In addition, the

internal model also defines the prior probability distribution of

basis function activations, PðactivationsÞ, which expresses the

frequency with which any combination of activations is expected

to occur across different images. The role of V1 is then to invert

this generative process and infer the level of activation for each

feature in an image (Karklin and Lewicki, 2009; Olshausen and

Field, 1996; Rao and Ballard, 1999; Schwartz and Simoncelli,
ith certainty; hence, the result of Bayesian inference is a posterior probability

les from Pðy j xÞ through a weak non-linear transformation (inset), with inde-

timescales of V1 neurons (Azouz and Gray, 1999) (For illustration, membrane

so Experimental Procedures). Instantaneous firing rates, r, are obtained from

ounts are obtained by deterministically integrating firing rates across time over

n integer value (open circles on cumulative firing-rate traces and ticks in spike

at while the distribution of neural responses (mean, variance, and covariance)

f membrane potentials and the spike counts can vary substantially across trials

rane-potential trajectories of the pair of neurons in the two trials presented in (B)

ution (e.g., non-zero correlations). Colored lines correspond to the membrane-

hed gray ellipses show the covariance underlying the stochastic trajectories

ame two cells across a large set of trials (circles) for the same stimulus. The two

n at the two sides and presented in (B). Small jitter was added to integer spike
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Figure 2. Key Features of Response Variability in Model Membrane Potentials

(A) Three example images (identified by the color of their frame) are shown at increasing contrast levels from left to right. Increasing the contrast shifts the posterior

over the inferred contrast level, z, away from zero (gray distribution curves, from light to dark).

(B) Joint membrane-potential distributions of two example neurons (images at the end of axes show corresponding basis functions) for the three sample images in

(A) at low contrast (colored diamonds, means; colored ellipses, covariances for the three images). Colors correspond to image frames in (A) compared to the prior

distribution (black cross, mean; dashed black ellipse, covariance). The prior and the three posteriors strongly overlap; therefore, samples drawn from these

distributions (gray circles, prior; red dots, posterior for image with red frame; gray dots, average posterior across 100 different images) and their means (crosses

and diamonds) are indistinguishable. Inset on top shows the prior mean (black cross) and posterior means for the three natural image patches presented in (A)

(colored diamonds).

(C and D) Shown as in (B), but for two higher contrast levels. The posteriors for the three images increasingly deviate from the prior and each other: their mean

moves further away from zero while their covariances (noise covariances) shrink and remain similar. Signal covariance (yellow dotted ellipse in D) is aligned with

the covariance of the prior (black dashed ellipse). Individual posteriors tile the subspace covered by the spontaneous covariance, such that samples drawn from

the average posterior (gray dots), but not those drawn from any individual posterior (red dots), still overlap with those from the prior (gray circles). Insets on top

show prior mean (black cross) and posterior means for the three images in (A) (red, green, and blue diamonds) as well as for 100 other natural image patches

(yellow diamonds). In contrast to the decrease in noise covariances, signal covariances (covariances of posterior means across stimuli) increase with increasing

contrast levels.
2001; Figure 1B, bottom; Experimental Procedures). The result

of inference is a posterior distribution, Pðactivations j imageÞ, ex-
pressing the probability that any particular combination of fea-

tures may underlie the current input.

Despite behavioral evidence for the representation of uncer-

tainty (Ernst and Banks, 2002; Weiss et al., 2002), most previous

representational models assumed that neural activities represent

a single combination of features for each input (Karklin and

Lewicki, 2009; Olshausen and Field, 1996; Rao and Ballard,

1999; Schwartz and Simoncelli, 2001), such as the one with the

maximum posterior probability. These models were thus unable

to capture the uncertainty expressed by the extent of the poste-

rior. In contrast, our model maintained a representation of uncer-

tainty by neural activities encoding randomly sampled feature

combinations under the posterior. That is, the relative occurrence

frequency of any neural activity pattern was equal to the inferred

probability that the feature combination represented by it may

have generated the input image. More specifically, we assumed

that samples from the posterior were represented by the fluctu-

ating membrane potentials of V1 cells through a weak compress-

ing non-linearity, andwe derived the instantaneous firing rate of a

cell as a rectified-nonlinear function of its membrane potential

(Carandini, 2004; Figure 1B, top;Supplemental Experimental Pro-
cedures). Thus, we took themembrane-potential values in a pop-

ulation of cells at anymoment in time to represent a single sample

from the multidimensional posterior, so that subsequent mem-

brane potential values represented a sequence of samples (Fig-

ure 1C). This allowed us to make predictions about the form of

the resultingdistributionof neural activities inV1without assuming

a specific form for the underlying neural circuit dynamics.

Key Features of Neural Response Variability in the
Model
Interpreting neural population activity patterns as samples from

the posterior distribution of the internal model determined by

Equation 1 establishes a direct link between the parameters

of the posterior and the statistics of population responses. For

example, the mean and the covariance of the posterior given a

particular input image respectively correspond to the average

and covariance of the neural responses evoked by that image.

Thus, understanding the basic properties of the posterior distri-

bution, and their dependence on the stimulus, provides key

insights about the stimulus-dependent changes of cortical

variability predicted by our model, which can be most directly

demonstrated in the membrane-potential responses of a pair

of model neurons (Figure 2).
Neuron 92, 530–543, October 19, 2016 533
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Figure 3. Stimulus Onset Quenches Neural Variability

(A and B) Periodic membrane-potential oscillations induced in an example neuron by a drifting sinusoid grating stimulus with preferred (A) and non-preferred

(orthogonal to preferred) orientation (B) appearing after a blank image. Variability of responses is shown by their standard deviation (flanking gray area) for the

model (top), and by individual trajectories in example trials (thin black lines) for the experimental data (bottom). Thick black (top) and gray (bottom) lines show

across-trial average. Arrows mark stimulus onset.

(C and D) Population analysis of the effect of stimulus onset on the variance of membrane potentials (C) and the Fano factor of spike counts (D). Arrows mark

stimulus onset; thick black lines and flanking thin lines show population average and SE.

(E) Direct comparison of spike-count Fano factors during spontaneous activity in response to a blank stimulus and evoked activity in response to high-contrast

stimuli.

Bars show population average, error bars indicate 95% bootstrap confidence intervals, *p < 0.05. In each panel, the top plot shows the model results, and the

bottom plot presents experimental data. Experimental data in (A)–(D) were reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience

(Churchland et al., 2010, intracellular recordings in anesthetized cat). (E) presents an analysis of data from Ecker et al. (2010) (extracellular unit recordings in

awake macaque). Fano factors in (D) and (E) were computed after mean matching (see Supplemental Experimental Procedures).
The variability of the average response of each cell across

different stimuli is predicted by the dependence of the posterior

mean on the image. As the basis functions in our model are ori-

ented Gabor filters that are assumed to combine linearly in the

image (Equation 1), the posterior mean of the activation of

each basis function is largely determined by its linear overlap

with the stimulus (Experimental Procedures; Equation 5). Thus,

as in earlier models (Olshausen and Field, 1996), the trial-

average response for simple oriented stimuli (such as commonly

used full-field gratings) depends monotonically on the similarity

of the ‘‘preferred orientation’’ of a cell (the orientation of its basis

function) and the orientation of the stimulus, resulting in orienta-

tion-dependent tuning curves (Figure S2).

Changes in image contrast lead to corresponding changes

in the inferred level of contrast, z (Figure 2A). A low-contrast

image provides less evidence about the exact content of the

image, so inferences rely predominantly on prior expectations,

PðactivationsÞ. In the extreme case of a blank stimulus, z ap-

proaches zero (Figure 2A, light gray), so inferences about the

basis function activations that neurons represent are uncon-

strained by the image (Equation 1 is constant with respect to

the activations), and thus the posterior becomes entirely deter-

mined by the prior (Berkes et al., 2011a; Fiser et al., 2010). In

other words, spontaneous activity, as a special case of evoked

activity recorded in response to a blank stimulus, represents

samples from the prior (Figure 2B).

For higher contrast levels, the inferred level of z also grows

(Figure 2A, dark gray and black), so that the input image increas-

ingly constrains the posterior of basis-function activations,

which thus increasingly deviates from the prior (Figures 2C and

2D). This deviation has two major aspects. First, the mean of

the posterior becomes different from the prior mean, and will

be specific to the particular image that gave rise to it. This implies
534 Neuron 92, 530–543, October 19, 2016
that signal variability, the variability of the mean response across

different stimuli, grows with contrast (Figures 2B–2D, insets on

top). Second, the observation of a high-contrast image reduces

uncertainty (on average) about basis function activations relative

to the prior. Thus, the (co)variance of individual posteriors will be

smaller than that of the prior, implying that noise (co)variances,

the across-trial variability of neural responses to the same

stimulus, must decrease with increasing contrast (e.g., red

covariance ellipses across Figures 2B–2D; see also Figures 3,

4A, 4B, and 5C). As opposed to themean of the posterior (cf. Fig-

ure S2), its covariance does not show a strong dependence on

the detailed content of the stimulus beyond its overall contrast

(red versus green versus blue covariance ellipses within Figures

2B–2D; see also Figures 4C–4E). This is intuitive; for example,

changing the orientation of a grating, as opposed to its contrast,

does not influence our uncertainty about it.

As long as the internal model is well-adapted to the statistics

of stimuli, it can be shown that its prior, PðactivationsÞ
(Figures 2B–2D, gray circles), must match the average posterior,

hPðactivations j imageÞiPðimageÞ, averaged across the distribution

of stimuli, PðimageÞ, to which it has been adapted (Gelman et al.,

2013; Figures 2B–2D, gray dots). As for high-contrast images,

noise variability in responses is low, but signal variability is high

(see above; compare the size of the yellow covariance ellipse

to that of the red-green-blue covariance ellipses in Figure 2D);

most of the response variability is due to signal variability; and

thus, spontaneous correlations (see above; reflecting the prior)

are predicted to largely follow signal correlations (compare black

dashed and yellow dotted covariance ellipses in Figure 2D; see

also Figure 6A). As a consequence, we were also able to show

in our model (Supplemental Experimental Procedures) that noise

correlations will also be similar to signal correlations (compare

the shape of the yellow covariance ellipse to red-green-blue
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Figure 4. Stimulus Dependence of Neural Response Variability

(A) Across-trial SD of peak response amplitudes of a population of cells (circles) for low-contrast gratings plotted against the SD for high-contrast gratings at the

preferred (blue) and non-preferred (red) stimulus orientation.

(B) Spike-count Fano factors (mean matched) for low- and high-contrast stimuli.

(C) Dependence of membrane potential SD on grating orientation at high (solid black line) and low (solid gray line) contrast. For reference, membrane potential SD

during spontaneous activity recorded in response to a blank stimulus is also shown (dashed gray line).

(D and E) Mean and variance (black and blue lines in D) and Fano factor (E) of spike counts as a function of stimulus orientation relative to the preferred orientation

of the cell.

(B)–(E) show population averages (bars or lines), with error bars showing 95%bootstrap confidence intervals (B) and SE (C)–(E), *p < 0.05. Experimental data in (A)

and (C) were reproduced from Finn et al. (2007) with permission fromCell Press (intracellular recordings in anesthetized cat), and (B), (D), and (E) present analyses

of data from Ecker et al. (2010) (extracellular unit recordings in awake macaque).
covariance ellipses in Figure 2D; see also Figure 6B). More

generally, the matching of the average posterior to the prior pre-

dicts a match between the distribution of spontaneous activities

and the average distribution of evoked activities (compare the

scatter of empty and filled circles in Figures 2C and 2D; see

also Figure 7) (Berkes et al., 2011a).

In the following, we test each of these key features of our

model in neural data. For this, most parameters of the model

were set according to the statistics of natural image patches,

without regard to neural data, leaving only four free parameters

to determine how sampled feature values under the posterior

were mapped to membrane potentials and firing rates in V1 neu-

rons (Experimental Procedures). Out of these four parameters,

we determined one based on previous literature and tuned

only three to fit specific experimental data recorded in V1. The

experimental data to be reproduced were selected by a set of

predetermined criteria regarding both the type of neural data re-

corded and the stimulus manipulations used in the experiments

(Supplemental Experimental Procedures). Importantly, although

these data included multiple species and conditions, we took a

conservative approach and used a single setting of parameters

across all our simulations (Table S1). For a fair comparison,

in each case model responses were analyzed using the same

statistical methods as those used for the analysis of the corre-

sponding experimental dataset (Supplemental Experimental

Procedures).
Mean Responses, Tuning Curves, and Contrast
Invariance
In order to establish the validity of our model at a basic level, we

first validated the model by reproducing some fundamental

aspects of the mean responses of V1 simple cells. For this, we

followed the method by which tuning curves are measured

experimentally and computed average responses in the model

for full-field grating stimuli with different orientations. As ex-

pected, our model neurons possessed clear orientation tuning

for both membrane potentials and firing rates as found experi-

mentally (Figures S2A and S2B). Importantly, despite the failure

of previous attempts to reconcile sampling-based probabilistic

representations with contrast invariant tuning curves (Pouget

et al., 2013), firing-rate tuning curves in the model also showed

contrast invariance (Skottun et al., 1987); i.e., only their ampli-

tude scaled with contrast, but their width remained roughly con-

stant (Supplemental Experimental Procedures; Figures S2B–

S2E). This meant that, unlike models in which neuronal activity

is proportional to probabilities (Pouget et al., 2013), our model

did not suffer from the unrealistic property of tuning curves

becoming exceedingly narrow at high-contrast levels, as high

certainty was encoded by small noise variability instead (Fig-

ure 2). Moreover, our model also reproduced various character-

istic non-classical receptive field (nCRF) effects, such as cross-

orientation suppression and surround suppression (Bonds,

1989; Cavanaugh, 2001; Schwartz and Simoncelli, 2001; Sup-

plemental Experimental Procedures; Figures S2F–S2H).
Neuron 92, 530–543, October 19, 2016 535
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Figure 5. The Effect of Aperture on Response Reliability, Sparseness, and Signal Correlations

(A) The response of a representative neuron to repeated presentation of an image sequence constrained to the classical receptive field (CRF, black) or combined

non-classical receptive field (nCRF) and CRF stimulation (CRF + nCRF, red). Model plots from top to bottom show distribution of inferred contrast levels, z, across

frames of the stimulus movie (histograms); the SD (shaded area) and mean of the membrane potential (dotted lines, error bars to the right show signal variability);

and the trial-average firing rate (solid lines) of a representative neuron across time. Experimental data show trial-average firing rate.

(B) Reliability of membrane-potential responses with CRF-only and combined nCRF + CRF stimulation. Inset (top) shows changes in the reliability for individual

neurons.

(C) Lifetime sparseness of firing rates with CRF-only and combined nCRF + CRF stimulation. Insets show changes in sparseness for individual neurons.

(D) Distribution of separation angles between themean response vectors of cell pairs with overlapping CRFs for CRF-only and combined nCRF +CRF stimulation.

Arrows mark average separation angles. A higher separation angle means lower signal correlation.

(B) and (C) show population averages (bars or lines) with error bars showing SE, *p < 0.05. Experimental data in (A)–(C) were reproduced from Haider et al. (2010)

with permission from Cell Press (intracellular recordings in anesthetized cat), and those in (D) were reprinted from Vinje and Gallant (2000) with permission from

AAAS (extracellular recording from awake macaque).
Response Variability and Stimulus Onset
The decrease in noise variability with contrast (Figure 2) in our

model predicts that a high-contrast image following a blank

period should lead to decreasing variability in V1 membrane-po-

tential responses, and that this effect should hold regardless of

whether or not the stimulus is aligned with the preferred orienta-

tion of a cell (Figures 3A–3C, top). Moreover, these changes

in membrane-potential variability should carry over to changes

in spike-count Fano factors even with the effects of changes in

mean firing rates being factored out (Churchland et al., 2010;

Figures 3D and 3E, top, two-sample t test, n = 90, p < 10�4,

t[178] = �5.4; Figure S3D; see also Supplemental Experimental

Procedures). Such quenching of variability at stimulus onset is

a general feature of cortical responses reported under a wide va-

riety of experimental conditions (Churchland et al., 2010); in

particular, it has been observed in recordings from V1 simple

cells of anesthetized cats (Figures 3A–3C, bottom) and monkeys

(Figure 3D, bottom). Furthermore, our analysis of recordings

from awake macaques (Ecker et al., 2010) shows that this effect

is also present in the awake V1 (Figure 3E, bottom, two-sample

t test, n = 800, p < 10�4, t[1,598] = 37.3).

Contrast and Orientation Dependence of Noise
Variability
Behavioral studies indicate that stimulus contrast directly affects

subjective uncertainty (Weiss et al., 2002). This is consistent

with the inverse scaling of posterior (co)variances with contrast
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in the model, which in turn predicts a similar scaling of noise

(co)variances in V1 responses (Figures 2B–2D). Indeed, our

model generated systematically higher membrane-potential

variances for low- versus high-contrast stimuli (Figure 4A, top;

paired t test, n = 61, t[60] = �6.02, p < 10�4, and t[60] = �6.28,

p < 10�4 for stimuli with preferred and non-preferred orienta-

tions, respectively). Once again, this difference between the var-

iances at high and low contrast was present for preferred as well

as non-preferred stimuli (Figure 4A, top). The same pattern of

results had been obtained experimentally from V1-simple cells

of anesthetized cats (Finn et al., 2007; Figure 4A, bottom).

The decrease in model membrane-potential variability was also

reflected in a decrease in spike-count Fano factors (mean

matched, see Supplemental Experimental Procedures; Fig-

ure 4B, top; two-sample t test, n = 102, t[200] = �4.32, p <

10�4). Our analysis of data recorded in awake-monkey V1 also

showed a similar decrease in (mean matched) Fano factors

with increasing contrast (Figure 4B; bottom; two-sample t test,

n = 800, t[1,598] = 37.3, p < 10�4), confirming that it could not

be attributed to the confounding effects of anesthesia, in which

slow, synchronized activity fluctuation can have a major impact

on measures of variability (Ecker et al., 2014; Goris et al., 2014;

see also Supplemental Experimental Procedures and Fig-

ure S4A). Moreover, at the same time that noise variability

decreased with contrast in themodel, signal variability increased

(Figures 2 and S2)—in agreement with experimental data

showing a general scaling of average membrane-potential and
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Figure 7. Match between Spontaneous and Average Evoked Activity

Multi-Unit Distributions Depends on Correlations and the Stimulus

Ensemble Used

(A) Kullback-Leibler (KL) divergence between aEA for natural image patches

(aEAnatural) and SA (light gray bar), and between aEAnatural and a shuffled

version of SA, preserving individual firing rates but destroying all correlations

across electrodes (SAshuffled, hatched bar). For reference, baseline KL diver-

gence between two halves of SA data is also shown (dashed line).

(B) KL divergence between aEA and SA under three different stimulus condi-

tions: natural image patches (aEAnatural, light gray bar, same as in (A); random

block noise images (aEAnoise, dark gray bar); and grating stimuli with various

phases, orientations, and frequencies (aEAgrating, black bar). In all panels, bars

show averages across animals and error bars show SE, *p < 0.05. Bottom

panels present analyses of experimental data from Berkes et al. (2011a) with

permission from AAAS (extracellular multi-unit recordings in awake ferrets).

A B

Figure 6. Relationship between Signal, Noise, and Spontaneous

Correlations

(A) Dependence of correlations during spontaneous activity, rspont, on spike-

count signal correlations, rsign.

(B) Dependence of noise correlations during evoked activity, rnoise, on signal

correlations. Bars show averages across cell pairs with signal correlations

below or above the rsign = 0.5 threshold, as shown on the x axis; error bars

show SE, *p < 0.05. Insets show the distribution of noise correlations; dashed

line shows the mean of the distribution. Bottom panels present analyses of

data from Ecker et al. (2010) (extracellular unit recordings in awake macaque).
firing-rate responses with contrast (Finn et al., 2007; Skottun

et al., 1987), and in disagreement with a potentially simpler linear

mechanism according to which both signal and noise variability

would originate from the same form of contrast-dependent

variability in the input (Moreno-Bote et al., 2014).

As opposed to contrast, the orientation of a stimulus primarily

affects the mean estimate of how much the feature represented

by a neuron contributes to the stimulus (reflected in the tuning

curves of mean responses, Figure S2), and only much more

moderately affects the uncertainty associated with this estimate

(Figure 2, see also Supplemental Experimental Procedures).

Confirming this observation, the membrane-potential variances

in our model showed only mild modulation by stimulus orienta-

tion (Figure 4C, top). These results agreed with intracellular mea-

surements showing a similar pattern of change in V1 simple cells

of cats, with a small peak in the membrane-potential variance at

the preferred stimulus orientations of neurons (Finn et al., 2007;

Figure 4C, bottom).

The rectifying non-linearity that maps membrane potentials

to firing rates in our model converted orientation-dependent

changes in the mean membrane potential to changes in both

the mean and the variance of spike counts (Figure 4D). However,

as sampling resulted in the variance of membrane potentials re-

maining constant this time (as opposed to when contrast was

changed, Figure 3), changes in spike-count variance were only

as large as those in mean spike counts, such that the Fano factor

of the spike-count distribution remained constant over the

whole range of orientations (Figure 4E, top, one-way ANOVA

p = 0.98, F[11,108] = 0.30). These predictions of the model

have been confirmed by our analysis of awake-monkey record-

ings in V1 (Figures 4D and 4E, bottom, one-way ANOVA p = 0.47,

F[71,012] = 0.55).
The Effect of Aperture on Response Variability,
Sparseness, and Correlations
Although the generative process underlying our model specifies

a relatively simple, largely linear mechanism for how natural im-

age patches are generated as a combination of basic visual fea-

tures (Equation 1; Figure 1A), inverting this process to infer the

features from an image typically results in a complex posterior

distribution that depends non-linearly on the image pixels. This

complexity arises due to the so-called ‘‘explaining away’’ effect

(Pearl, 1988), a common consequence of probabilistic inference,

by which even distant pixel values that are unaffected by a visual

feature under the generative process can indirectly influence the

inferred value of that feature under the posterior. For example, in

our model, all pixels in the image contribute to the inferred value

of global contrast, z, which in turn influences the activity of all

neurons (Figures 1 and 2), so even those portions of the image

which are not part of the visual feature (basis function) repre-

sented by a neuron can change its activity.

As a result of explaining away, just as trial-average responses

(tuning curves) were modified by suitable extra-classical
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receptive field (eCRF) stimuli (see above and Figure S2), so too

were the higher-order statistical moments of responses subject

to such eCRF effects in our model. In particular, presenting the

same natural movie sequence stimulus under a larger aperture

that included both the classical receptive field (CRF) and the sur-

round nCRF of a cell increased the effective contrast content of

the input image (total variation in pixel values over the image),

and thus led to a higher inferred value of z (Figure 5A, histo-

grams). In other words, changes in aperture had effects on

model inferences which were fundamentally analogous to

changes in contrast (cf. Figure 2). In particular, just as when

increasing contrast, an increase in inferred z resulted in higher

signal variance and lower noise variance in membrane potentials

(Figure 5A, dotted lines and shaded areas; cf. Figure 2) and thus

more reliable membrane-potential responses (Figure 5B, top,

one-sample t test, n = 54, t[53], 9.18, p < 10�4). In turn, these

opposite changes in signal and noise variability of membrane po-

tentials meant that a larger fraction of the membrane-potential

distribution of a cell lay respectively above or below the

threshold for its preferred and non-preferred stimuli (frames of

the movie). This increased the number of stimuli that evoked

no firing in a cell while also increasing the firing rate for those

stimuli that did evoke firing in it, and hence led to sparser spiking

responses (Figures 5A, top solid line, and 5C, top, one-sample t

test, n = 54, t[53] = �20.1, p < 10�4). As the response of each

neuron became sparser, these responses also became more

de-correlated from each other, as reflected by the higher sepa-

ration angles between the response vectors of neuron pairs

with overlapping CRFs (Figure 5D, top, one-sample t test,

n = 1,431, t[1,430] = �43.4, p < 10�4). These results reproduced

experimental data recorded in the anesthetized cat (Figures

5A–5C, bottom; Haider et al., 2010) and the awake monkey (Fig-

ure 5D, bottom; Vinje and Gallant, 2000) under similar stimulus

manipulations. We found that the same mechanism also ac-

counted for why phase scrambling of natural images, which

decreased the overall local-contrast content of an image, led

to less sparse responses in V1 in other experiments (Froudarakis

et al., 2014; data not shown).

Next, we wanted to test whether the stimulus dependence

(i.e., contrast and aperture dependence) of the variability of neu-

ral responses reproduced by our model (Figures 3–5) conveyed

significant information about the stimulus beyond that informa-

tion conveyed by mean responses. For this, we measured how

well the stimulus could be decoded by taking into account or

ignoring these stimulus-dependent variability modulations. We

found that the decoding performance of an optimal decoder

(which took all aspects of response distributions into account)

was often substantially higher than that of a linear decoder

(which assumed no changes in spike-count Fano factors;

Figure S5; Supplemental Experimental Procedures). Thus, in

contrast to other proposed population coding schemes for

uncertainty (Ma et al., 2006), the sampling-based population

code of our model was not linearly decodable in general.

Relationship between Signal, Spontaneous, and Noise
Correlations
In the foregoing sections, we have demonstrated that the char-

acteristics of the mean and the variance of individual model
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neuron responses in a sampling-based representation closely

matched those found experimentally. In order to characterize

the joint variability in the response distribution more completely,

we also investigated the fine structure of correlations.

Our theory provided a principled link between various forms of

response covariances and correlations during stimulus-evoked

and spontaneous activity. In particular, it predicted a match be-

tween signal and spontaneous correlations as well as between

signal and noise correlations (Figures 2 and S4C; see also Sup-

plemental Experimental Procedures). Although these similarities

were most cleanly predicted for membrane potentials, directly

representing samples from the posterior distribution, they also

carried over to firing rates and consequently to spike counts. In

particular, we found a positive relationship between signal and

spontaneous correlations of spike counts in the model (Fig-

ure 6A, top, two-sample t test, n = [27,232; 1,209], t[28,439] =

�19.5, p < 10�4), which was confirmed by our analysis of

awake-monkey V1 recordings (Ecker et al., 2010; Figure 6A, bot-

tom, two-sample t test, n = [1,474; 189], t[1,661] = �2.73,

p = 0.0063). A similar relationship between spontaneous and

signal correlations has also been noted in the anesthetized-cat

V1, but it could not be captured by previous models (Lin et al.,

2015). Spike-count noise correlations also had a positive rela-

tionship with signal correlations in the model (Figure 6B, top,

two-sample t test n = [27,457; 1,223], t[28,678] = �12.0,

p < 10�4), in line with the general finding that noise and signal

correlations tend to be positively related in a variety of cortical

areas (Cohen and Maunsell, 2009; Gu et al., 2011) including

the awake-macaque V1 (Ecker et al., 2010; Figure 6B,

bottom, two-sample t test, n = [1,486; 172], t[1,656] = �2.20,

p = 0.028). As our model neurons had a diverse set of receptive

fields without a strong overrepresentation of any particular

feature, the distribution of signal correlations was centered

very close to zero (mean 0.015). As a corollary of the similarity

of signal and noise correlations, the distribution of noise correla-

tions also had a mean close to zero (Figure 6B, top inset mean

0.0074), in line with experimental findings in awake animals

(Ecker et al., 2010; Figure 6B, bottom inset, mean 0.011).
Spontaneous and Evoked Response Distributions
In the previous sections, we have shown how a sampling-based

representation accounted for differences in both neural vari-

ability and correlations between spontaneous and stimulus-

evoked activities as responses recorded at zero and full contrast.

However, sampling also implied specific similarities between

spontaneous and stimulus-evoked activities (Figure 2D, bottom).

In particular, it implied that the distribution of spontaneous activ-

ity (SA) must match the average distribution of evoked activities

(aEAs). Importantly, this match was only expected to hold for

stimuli to which the model has been adapted, i.e., for natural im-

ages but not for artificial images. Indeed, computing the dissim-

ilarity between SA and the respective aEAs for natural images

(aEAnatural), block noise patterns (aEAnoise), and drifting gratings

(aEAgrating) confirmed these relationships in our model (Figures

7 and S6). More specifically, the divergence between aEAnatural

and SA was not different from a baseline divergence computed

between the two halves of SA representing the minimal



divergence one could expect to see in the data (which was

greater than zero due to finite sample size effects) (Figure 7A,

top).

To test for the role of correlations for this match between

aEAnatural and SA, we independently shuffled the spike trains

recorded on each electrode during spontaneous activity, thus

preserving individual firing rates but destroying all correlations

across electrodes (Berkes et al., 2011a; Fiser et al., 2013;

SAshuffled). This resulted in a divergence between aEAnatural and

SAshuffled that was significantly greater than baseline (Figure 7A,

top, m-test, see also Berkes et al., 2011a, n = 20, m = 1.95e21,

p < 10�4) suggesting that the correlational structure of these ac-

tivities, which we analyzed in the previous section, was crucial

for the match between them. Extracellular recordings of multi-

unit firing patterns in the V1 of awake adult ferrets (Berkes

et al., 2011a) showed the same effect but with a greater magni-

tude (Figure 7A, bottom), possibly due to coordinated fluctua-

tions in overall population activity during both SA and aEA (Fiser

et al., 2013) that our model did not capture. Furthermore, the

divergence between aEAnatural and SA in the model was signifi-

cantly smaller than the divergence between aEAnoise or aEAgrating

and SA (Figure 7B, top, m-test, see also Berkes et al., 2011a,

n = 20, m = 9.15e42, p < 10�4, and m = 2.97e55, p < 10�4,

respectively). This pattern of results was also observed in our

ferret dataset: responses evoked by a natural movie ensemble

showed less dissimilarity in distribution from spontaneous firing

patterns than those evoked by grating stimuli or block noise

(Berkes et al., 2011a; Figure 7B, bottom).
DISCUSSION

We presented a theory of the neural representation of uncer-

tainty in the visual cortex that provides an account of a broad

range of findings regarding neural variability in V1 which had pre-

viously lacked a unifying interpretation. Importantly, the model

presented here is normative—it not only aims to capture the phe-

nomenology of V1 activity but also proposes a rational, compu-

tational principle to explain why V1 should behave the way it

does. In particular, the key principle of our model is that

membrane-potential values (and hence firing rates) across a

population of V1 neurons at subsequent moments in time are

interpreted as samples drawn from a posterior distribution over

visual features. This means that the variability of neural re-

sponses directly represents uncertainty about the visual image,

such that higher uncertainty is reflected in increased noise

variability of neural activity. This theory provided an intuitive

explanation for why increasing contrast or aperture quenches

variability in V1, and why stimulus orientation has little effect on

it. The model also predicted the similarity of spontaneous and

evoked activities and thus accounted for the finding that sponta-

neous, signal, and noise correlations tend to be correlated

across cell pairs. To support these predictions, we presented

analytical derivations and numerical simulations of the model

as well as evidence from experimental recordings, including

novel data analyses.
Distinguishing Different Probabilistic Representations
Our results provide a way to distinguish between previous con-

flicting proposals about the neural underpinning of probabilistic

representations in the cortex (Fiser et al., 2010). These proposals

broadly fall into two classes. In one class, both the mean of

a probability distribution and the associated uncertainty are rep-

resented by time-average neural responses. In this class of

models, changes in response variability are directly linked to

changes in average responses and thus do not serve as an inde-

pendent information channel (Deneve, 2008; Ma et al., 2006;

Rao, 2004; Zemel et al., 1998). In the second class, which is

based on sampling, the average and variability of responses

encode different and complementary aspects of a probability

distribution: average responses encode the mean, while vari-

ability and co-variability encode higher-order moments, such

as variances and covariances, of the distribution (Fiser et al.,

2010; Hoyer and Hyvarinen, 2003; Lee and Mumford, 2003).

Therefore, the main empirically testable difference between

sampling-based and most other types of probabilistic represen-

tations, such as probabilistic population codes (Ma et al., 2006),

is that variability is controlled independently of mean responses

in the former, while in the latter the mean and variance are

coupled by a fixed constant of proportionality. Nevertheless,

despite the fundamental differences in, e.g., how the mean and

variability of responses are coupled in these two classes of

models, no prior work attempted to link either of them directly

to the rich structure of neural variability in sensory cortices.

We have shown here that a sampling-based representation

correctly predicted that particular stimulus manipulations result

in systematic, mean-independent modulations of variability in

V1. Further analysis also revealed that these modulations of vari-

ability in the model, though they sometimes appeared to be sub-

tle, in fact conveyed substantial amounts of information about

the stimulus and thus could be expected to be functionally rele-

vant for downstream computations (Supplemental Experimental

Procedures; Figure S5). Crucially, models that couple response

means and variances cannot capture these effects (Ma et al.,

2006). Moreover, sampling also provided a parsimonious ac-

count of the similarity of noise, signal, and spontaneous correla-

tions, as well as the similarity between evoked and spontaneous

activities, which do not naturally emerge without additional as-

sumptions in alternative models of probabilistic representations

(Deneve, 2008; Ma et al., 2006; Rao, 2004; Zemel et al., 1998).

Key Model Assumptions
Our results were obtained by representing the result of inference

over variables encoding basis function activations (Equation 1),

and not those that encode contrast (z in Equation 1). This choice

can be justified in two ways, both of which have precedents in

previous representational models of V1 (Berkes et al., 2009; Kar-

klin and Lewicki, 2009; Schwartz and Simoncelli, 2001). First,

although such contrast variables are part of the generativemodel

of natural images we considered, this does not imply that they

also need to be explicitly included in the ‘‘recognition’’ model

that the cortex uses to invert the generative model. Instead,

they may be implicitly integrated out during inference. Note

that even the posterior over basis function activations shows

strong contrast dependence (both in its mean and covariance);
Neuron 92, 530–543, October 19, 2016 539



therefore, without an explicit representation of the contrast var-

iable, contrast can be decoded from population activity should

this decoding be necessary. Second, statistical arguments sug-

gest that the number of contrast-like variables needs to be far

lower than the number of those representing basis function acti-

vations, and so the experimental recordings which we use to test

the theory are likely to be largely probing the latter. Nevertheless,

were contrast-like variables represented explicitly in V1 and

identifiable in experimental recordings (perhaps in inhibitory in-

terneurons), we predict that their activity during spontaneous ac-

tivity should not reflect the prior and, consequently, also should

not match their average evoked-activity distribution.

In line with previous approaches (Karklin and Lewicki, 2009;

Olshausen and Field, 1996; Schwartz and Simoncelli, 2001),

our model took the posterior to be static compared to the time-

scale of inference, although under natural conditions, the poste-

rior distribution itself may be changing due to both bottom-up

and top-down effects. Bottom-up-driven changes in the poste-

rior occur because the visual stimulus is changing, while top-

down factors include changes in attention, cortical state (Goris

et al., 2014; Harris and Thiele, 2011), and interactions with other

sensory modalities (Driver and Noesselt, 2008). Thus, our results

apply to standard visual electrophysiological experiments in

which these factors are either well-controlled, by using the

same stimulus and ensuring a homogeneous attentional state

across multiple trials (Ecker et al., 2010), or averaged out, by

pooling data over long time windows (Berkes et al., 2011a; Fiser

et al., 2004). Furthermore, because the synchronized cortical

state is characterized by large-amplitude fluctuations in mem-

brane potentials and overall activity of cortical neurons, which

are generally hard to control, our predictions are most directly

testable in the desynchronized state characteristic of cortical

populations processing the attended stimulus (Harris and Thiele,

2011; see also Supplemental Experimental Procedures and

Figure S4).

Sampling and Neural Circuit Mechanisms
While our theory defines a neural representational scheme, it

remains agnostic as to the neural circuit dynamics that give

rise to such representations. As such, it accounts for the station-

ary distribution of neural network dynamics (as the posterior

distribution that needs to be sampled) which is most readily test-

able in variability at slow timescales, e.g., across trials. However,

anchoring the representation computationally in this way

also provides useful constraints for mechanistic models that

explicitly examine the underlying cellular- and network-level dy-

namics and thus make predictions about correlations at shorter

timescales.

In particular, our model requires that the dynamically evolving

membrane-potential or firing-rate traces of neurons represent

sequences of stochastic samples from a posterior distribution.

There have indeed been several neural circuit models proposed

recently in which single neuron properties together with feedfor-

ward and recurrent connections shape either intrinsic or extrinsic

noise in a network, such that for any particular input its dynamics

produce samples from a computationally appropriate posterior

distribution of activities (Buesing et al., 2011; Hennequin

et al., 2014a; Savin et al., 2014). Such network models establish
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important proofs of the principle that neural circuit dynamics can

give rise to sampling-based representations, and will be useful

for making predictions about correlations on faster, within-trial

timescales.

While the same stationary distribution can be attained bymany

different sampling algorithms, these will be different in their tran-

sient behaviors (so-called ‘‘burn-in’’) and non-equilibrium prop-

erties (i.e., whether and how they violate detailed balance), and

so data about autocorrelations, including characteristic oscilla-

tions, fast timescale cross-correlations, and transients (Azouz

and Gray, 1999; Ray and Maunsell, 2010), should reveal hall-

marks of the specific sampling dynamics employed by the cortex

(Hennequin et al., 2014a). For example, our preliminary results

indicate that the stimulus-onset-related transients and the

contrast-dependent oscillation frequency of V1 responses may

be accounted for by a specific class of sampling-based neural

circuit dynamics that is both computationally efficient and

neurally plausible (Aitchison and Lengyel, 2014), in that it accom-

modates separate classes of excitatory and inhibitory neurons

which most previous approaches eschewed (Buesing et al.,

2011; Savin et al., 2014).

Sampling in Hierarchical Systems
Sampling-based representations lend themselves particularly

naturally to self-consistent computations across multiple layers

of a processing hierarchy ranging from low-level to high-level vi-

sual features, such as those found along the visual pathway (Lee

and Mumford, 2003; Salakhutdinov and Hinton, 2012). Relating

sampling in such hierarchically organized systems to neural vari-

ability along the cortical hierarchy should be able to capture

various top-down effects in sensory processing that our simpli-

fied, non-hierarchical model could not address (Cohen and

Maunsell, 2009; Kohn et al., 2009; Roelfsema et al., 2004).

Indeed, recent results indicate that such a hierarchical sampling

model can account for a variety of top-down task-related effects

in visual cortical areas (Haefner et al., 2016). Moreover, our der-

ivations for such a hierarchical extension not only reproduce all

the main results of our simpler model, but they also predict

that even images with equal contrast can evoke different

amounts of response variability at both high and low levels of

the hierarchy, depending on whether they afford higher-order

percepts (Supplemental Experimental Procedures; Table S2).

This is in line with recent experimental data comparing the

sparseness and reliability of V1 responses to natural and

phase-scrambled images (Froudarakis et al., 2014).

Note that hierarchical inference also obviates the need for an

explicit, direct decoding of the posterior distribution from the

samples, e.g., in the form of a histogram, as decision variables

can be simultaneously inferred (and sampled from) together

with lower-level variables. Moreover, both decision making and

learning only require posteriors indirectly, through integrals of a

cost function (Dayan and Abbott, 2005), thus implicitly implying

a ‘‘smoothing’’ of samples. This smoothing mitigates the effects

of the idiosyncratic ‘‘spiky’’ or ‘‘spaghetti-like’’ shape of sam-

pling-based representations (e.g., in Figure 1C). More generally,

non-linear effects in hierarchical inference can also explain howa

relatively modest (less than a factor of 2) reduction in variance at

the level of V1 following stimulus onset (Figure 3) can be



compatible with a drastic, orders-of-magnitude change in

perceptual confidence (Supplemental Experimental Procedures;

Figures S3E and S3F).

Sampling through Time
As inferences in our model are represented by sequentially

generated samples at the rate of one new statistically indepen-

dent sample every few tens (for membrane potentials) or hun-

dreds of milliseconds (for spike counts), we expect this to limit

the resolution of the representation of uncertainty. (Although, by

using over-complete representations, in which many neurons

effectively code for the same variable, even one sample of a pop-

ulation activity pattern may represent multiple samples of the

relevant variables, such that the effective rate of sampling can

be faster than expected from neural time constants; see, e.g.,

Savin and Deneve, 2014, and also Supplemental Experimental

Procedures.) Indeed, such a gradual buildup of the representa-

tion of uncertainty over time within individual trials has been

recently described (Lengyel et al., 2015). Moreover, it has been

suggested that human-level performance in a range of behavioral

tasks is indeed achievable by collecting a limited number of sam-

ples from a probability distribution given either static (P. Berkes

et al., 2011b, COSYNE, conference; Vul et al., 2009) or dynamic

stimuli (Levy et al., 2009). It has alsobeenshown that specificpat-

terns of perceptual variability in bi-stable percepts canbedirectly

accounted for by sampling-based dynamics (Moreno-Bote et al.,

2011). Our work complements these behavioral results by identi-

fying the neural signatures of a sampling-based representation in

V1, and demonstrates that the structure of neural variability and

covariability provides useful clues for understanding the underly-

ing probabilistic computations and representations utilized by

the cortex.

EXPERIMENTAL PROCEDURES

The Gaussian Scale Mixture Model

We used a Gaussian scale mixture (GSM) model (Wainwright and Simoncelli,

2000) to define a generative model of image patches (Figure 1A). Each patch

was represented by a vector of pixel values x and assumed to be generated

by a scaled, linear combination of features plus additive Gaussian white noise

(see also Equation 1),

Pðx j y; zÞ=N �
x; z A y; s2

x I
�
; (Equation 2)

where y describes the activation of features inA for that image, z is an indepen-

dent variable scaling the output of these features, and s2x is the variance of

observation noise independently affecting the intensity of every pixel of the im-

age. The multiplicative interaction between z and the basis functions captures

two important aspects of natural images: first, that the effective contribution of

each basis function (its activation level, y, multiplied by z) is sparsely distrib-

uted, and second, that the magnitude of basis-function contributions within

the same local image patch tends to be correlated (Schwartz and Simoncelli,

2001).

The prior of activations was a multivariate normal distribution with a mean of

zero and covariance matrix C,

PðyÞ=Nðy;0;CÞ; (Equation 3)

and the prior distribution of the scale variable, PðzÞ, was a Gamma distribution

with parameters k and q.

The posterior distribution over feature activations could be obtained in a

closed form for the scale variable z and, conditioning on z, also for the feature

activations y,
Pðz j xÞfPðzÞN �
x; 0; z2ACAT + s2

x I
�

(Equation 4)

and

Pðy j z; xÞ=Nðy;mðz; xÞ;SðzÞÞ; (Equation 5)

where the posterior mean and covariance of feature activations is

SðzÞ=
�
C�1 +

z2

s2
x

ATA

��1

and mðz; xÞ= z

s2
x

SðzÞAT x:

As it was not necessary to represent the posterior distribution of z

explicitly, we marginalized over this variable in order to express Pðy j xÞ=R
dz Pðz j xÞPðy j z; xÞ.
Membrane potentials (dimensionless), u, were taken to represent a weakly

non-linear function of visual feature activations y (Figure 1B, bottom):

ui = signðyiÞjyi j a: (Equation 6)

Firing rates were generated by first sampling membrane-potential values

and then transforming them using a standard, rectified non-linearity (Caran-

dini, 2004) (Figure 1B, middle):

ri =mðui � uthreshÞb+ : (Equation 7)

For sampling consecutive firing-rate values, we approximated autocorrela-

tion timescales by regarding the firing rate of a cell to be constant within each

20ms time bin and independently sampling across bins. Spike counts, n, were

generated simply by integrating instantaneous firing rates over time, starting

from a random value distributed uniformly between zero and one (Figure 1B,

top). Spike counts were computed over trial durations that matched those

used in the corresponding experiments.

See Supplemental Experimental Procedures for a justification of model

choices and more details of the model, including the setting of parameters,

criteria used to select relevant experimental data to test themodel, and proced-

ures for analyzing neural responses in themodel and in experimental data.Code

for the model is available at https://github.com/gergoorban/sampling_in_gsm.
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