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Cervical cancer is one of the most deadly and common forms of cancer among women if no action is taken to prevent it, yet
it is preventable through a simple screening test, the so-called PAP-smear. This is the most effective cancer prevention measure
developed so far. But the visual examination of the smears is time consuming and expensive and there have been numerous attempts
at automating the analysis ever since the test was introduced more than 60 years ago. The first commercial systems for automated
analysis of the cell samples appeared around the turn of the millennium but they have had limited impact on the screening costs. In
this paper we examine the key issues that need to be addressed when an automated analysis system is developed and discuss how
these challenges have been met over the years. The lessons learned may be useful in the efforts to create a cost-effective screening
system that could make affordable screening for cervical cancer available for all women globally, thus preventing most of the quarter
million annual unnecessary deaths still caused by this disease.

1. Cervical Cancer Screening

Cancer of the cervix uteri is the second most common cancer
among women worldwide, with more than half a million
new cases each year and about half as many deaths. The
variation in incidence rate between countries is striking. In
many countries it is the most common cancer among women
while in some countries it is down at 10th place. About 86%
of the cases occur in developing countries. In Africa the age-
standardized incidence rate is 25 per 100,000 per year; in
some countries on that continent it is more than double that
rate. In India the rate is 27 while it is 5.7 in USA and 3.7 in
Finland [1]. We thus see more than a factor of ten variations
in cervical cancer incidence rates between the lowest and
highest countries.

While a part of this variation may be attributed to general
variations in living conditions and the spread of the Human
Papillomavirus, HPV, in the population the major part is
attributed to the success of screening using the Papanicolaou
test (PAP-test). If detected early, cervical cancer is curable

and the 5-year survival rate is as high as 92% [2]. The idea
behind the PAP-test is that cellular changes that may develop
into cancer are detected at such an early stage that they can
be removed through a simple operation, thus preventing the
cancer. Evidence for the importance of the PAP-test can be
found in statistics from many countries where the PAP-test
is used in systematic, comprehensive screening programs.
In Sweden, for example, the overall incidence of cervical
cancer declined by 67% over a 40-year period, from 20
cases per 100000 in 1965 to 6.6 cases per 100000 women
in 2005. Detailed studies of the cancer statistics confirm this
(3, 4].

1.1. The PAP-Smear. The original PAP-smear is produced in
a very simple and straightforward way; a brush or spatula
is used to gently scrape cellular material from the squamo-
columnar junction in the cervix and this is smeared onto
a glass slide of about 25 x 50 mm. The cells are stained,
fixated, and then visually examined under a microscope. The
test was first suggested by Papanicolaou in 1928 but it took
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almost 15 years before it was generally accepted by the medical
community [5, 6]. A monograph in 1943 [7] gave a detailed
account of how the screening should be conducted and this
procedure has since been widely adopted, leading to the
remarkable reduction in cervical cancer incidence mentioned
in the previous paragraphs.

The screening is conducted by cytotechnologists, cyto-
techs for short, who through a light microscope examine the
cell sample for signs of malignancy. Through this procedure
they can not only find proof of invasive cancer but also detect
certain cancer precursors, allowing for early and effective
treatment. The cytotechs are laboratory technologists who
go through a specialized training, typically of about one
year. When they find something that looks suspicious for
malignancy on a specimen it is reported. In many labs the
finding is then confirmed by a cytopathologist, a medical
doctor specializing in cellular pathology, who makes the final
decision whether it is a (pre-)malignant lesion or not and thus
takes the medical responsibility for the diagnosis. A detected
high grade premalignant lesion typically leads to the woman
being offered a colposcopy and, if a lesion is confirmed, an
operation to remove it. The detection of a low grade lesion
may lead to a follow-up smear being taken after a shorter time
interval than the normal 2-3 years.

In principle, the screening task is straightforward. The
morphological changes that a cell undergoes when it is
being transformed into a malignant cell are quite apparent
and easy to describe. The nucleus becomes larger and more
irregularly shaped, the cytoplasm becomes smaller so that
the nuclear/cytoplasm size ratio changes, and the chromatin
distribution in the nucleus changes to become more coarse
and irregularly distributed (see Figure 2).

To visually detect these changes we need to see details
close to the optical resolution limit. A nucleus is around 10
microns in diameter and the chromatin structures and shape
variations are at the micron or submicron level. Therefore
a high power lens is used, typically 40x. The precancerous
lesion may be quite small and local and the number of diag-
nostic (pre-)malignant cells on a specimen may be low. It is
desirable to detect a precancerous lesion even if there are only
a few diagnostic cells present on the specimen. This creates
a demanding search problem. A smear covers about 25 x
50 mm and typically contains a few hundred thousand cells,
sometimes even more. The screening is initially done at low
resolution using a 10x lens, and when something suspicious is
seen the screener switches to 40x. At 10x around 1,000 fields
of view need to be scrutinized to cover the whole sample.
The time required for this varies depending on how difficult
the sample is, but on average it only takes 5-10 minutes.
There are recommendations saying that, due to the hazards
of fatigue, a cytotech should not work more than 7 hours a
day and analyse no more than 70 samples [8]. Even when
following this recommendation, the cytotech has to inspect
three image fields per second on the average. Furthermore,
since the visible precancerous changes may be quite local, the
cytotech needs to maintain full concentration all the time in
order not to risk missing some diagnostic cells.
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2. Historical Development of
Automated Screening Systems

Based on the fact that the changes in cell morphology
are quite obvious and the fact that the visual screening
is very demanding, tedious, and expensive in terms of
labour requirements, there were very early, only a decade
after the PAP-test became generally accepted, proposals for
automating the screening through some kind of scanning
and image analysis mechanism [9]. The hope was that an
automated system would be able to do the screening both at
a lower cost and with higher accuracy.

Since then a large number of projects have attempted to
develop screening systems. The problem turned out to be
a lot harder than anticipated. It took more than 40 years
before the first successful commercial systems appeared. And
still automated screening is not sufficiently cost-effective to
completely replace the visual screening judging from the
relatively limited penetration of automated screening systems
in the screening operations worldwide. In this section, we
briefly outline this development and try to see for each new
generation of systems in what ways they improved on earlier
systems, what were the main problems, and what was learned.
We also discuss the underlying technical aspects and try to
understand what makes the problem so hard and how one
can go about solving it.

2.1. First Generation Systems. The Cytoanalyzer project in the
US was the first attempt at building an automated screening
device for PAP-smears [10]. The system was based on the
concept that cancer cells could be distinguished from normal
cells on the basis of nuclear size and optical density. The sys-
tem included automatic slide feed and autofocus circuits. The
image analysis was based on hard-wired analogue video pro-
cessing circuits that generated two-dimensional histograms
of nuclear size versus nuclear optical density. The spatial
resolution was 5 micrometers. Preliminary experiments had
shown that it was possible to detect the difference in size
between normal and malignant cells at this resolution. This
was the first fully automated microscope and as such a quite
expensive project. Unfortunately, tests with the Cytoanalyzer
revealed that the special purpose fixed logic pattern recog-
nition produced too many false alarms on the cell level [11].
There were numerous objects of a size similar to malignant
cells present also on normal specimens, for example, clumps
of blood cells, strands of tissue and mucus, overlapping
epithelial cells, and so forth. Every sample, including the
normal ones, was thus found to be suspicious for abnormality.
The project failed in the early sixties, mainly because of this
artefact rejection problem.

Due to the bad reputation for cytology automation caused
by this early and expensive failure in the US, the attempts at
automation over the next couple of decades were shifted to
Europe and Japan. In Britain a one-parameter (nuclear size)
automatic screener was developed in the late sixties [12]. It
failed for the same reason as the Cytoanalyzer.

In Japan, Watanabe and coworkers at Toshiba devel-
oped CYBEST [13]. Their first version used special-purpose
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electronic circuits while later versions were based on general
purpose digital computers, thus bridging the gap between
old analogue and new digital technology. The pixel size
was around one micron. They extracted four different fea-
tures from the cell images: nuclear area, nuclear density,
cytoplasmic area, and nuclear/cytoplasmic ratio. They also
realized that nuclear shape and chromatin pattern were
useful parameters but were not able to reliably measure these
features automatically mainly because the automatic focusing
was unable to reliably produce images with all the cell nuclei
in sufficiently good focus. The chromatin pattern measure
that was proposed by this group was the number of blobs
within the nuclear region. Four generations of prototype
systems were developed over a 15-year period. The last one
used strobed illumination and nonstop scanning motion to
reach high scanning speeds. The prototypes were used in large
field trials in the Japanese screening program and showed
promising results but none of them became a product [14].

2.2. New Generations of Systems. When the first generation
systems were developed there were no interactive computers
and no display units capable of showing digital images
available. This, of course, made development much harder.
However, during the seventies it became possible to develop
interactive image analysis systems, albeit with very limited
capacity, typically with a memory size of a few hundred kB
and a monochrome or binary display. These systems were
used to explore new image segmentation, feature extraction,
and classification designs which led to a new generation
of systems in the early 1980-ies such as BioPEPR [15],
FAZYTAN [16], Cerviscan [17], LEYTAS [18], and at the
authors’ laboratory the Diascanner [19].

Typical cellular features used in these systems were simi-
lar to those used by CYBEST, although there were many vari-
ations in exactly how the features were extracted. The most
important factor was found to be that the cells were digitized
at sufficiently high resolution and in better focus. In order to
be able to scan a whole specimen sufficiently rapidly while
still being able to do the crucial analysis at high resolution,
some of these designs, for example, the Diascanner, used a
dual resolution approach, an initial low resolution search scan
followed by high resolution scans of fields of interest. Most
of these systems reached an operational prototype stage in
the mideighties. Some of the systems reported classification
accuracies that were well within the range of what is achieved
by the conventional visual screening. But none reached the
market, and an important reason for this was lack of cost
effectiveness; automated microscopes and computers with
sufficient processing power were still too expensive.

The progress in computer display technology, that had
been important in making it possible to create interactive
systems that could be used for developing new automated
screenings systems, eventually also led to the possibility
of developing interactive screening systems. For the early
systems the only option was full automation, or possibly
stopping the automated microscope to physically show an
operator the cell that was suspected as being abnormal.
The concept was to create a “prescreening” system; that is,

a system that for a reasonably large fraction of specimens
would be able to say that they are perfectly normal and
could be classified as such without any human inspection.
All other specimens, on which the system found something
that indicated that they might not be normal, would have to
be screened in the conventional fully manual way. In the late
eighties, computer displays and memories had reached suffi-
cient capacity to make it feasible to save images of suspicious
cells that were good enough for a human to judge whether
the object could be a malignant cell or something else. The
PAPNET system from Neuromedical Systems was the first
to introduce interaction into automated screening [20]. After
an initial low resolution object search, high resolution fields
were processed, first by an algorithmic classifier and then
by a neural network classifier. The output of the classifiers
was a ranking of the abnormality of the detected “cells,” so
that images of the 64 most abnormal ones could be stored
on a magnetic tape and later shown to the cytotech at a
review station. There the decision whether the specimen
should be classified as normal or suspicious was taken. For the
suspicious cases a cytopathologist would do the final analysis
and make the decision whether the woman should be called
for follow-up or not.

In the late eighties there was a great increase in interest
in cytology automation in the US for economic/legal reasons
and many new projects were started [21]. One new aspect
that appeared at this time was new ways of preparing the
samples. The Cytyc Corporation had developed their own
automated specimen preparation technique, ThinPrep, which
based on liquid cytology made much cleaner specimens
than the conventional smears, at the expense of significantly
more complex preparation technique [22]. Another similar
preparation method was developed by AutoCyte [23].

The AutoPap 300 from NeoPath was similar to PAPNET
in that it used conventional Pap-smears and neural network
classifiers [24]. It increased the image acquisition rate by
utilizing strobed illumination similar to the CYBEST system.
This was used at two resolution levels, an initial low resolution
mapping of the specimen, followed by a high resolution
field by field analysis of the most “interesting looking” parts
of the specimen in a way similar to the earlier generation
Diascanner. The image processing was carried out in custom
designed processing boards. Most of the processing was based
on mathematical morphology operations resulting in as many
as 68 different features being sent to the classifiers. The final
result was a “normal” versus “requires visual inspection”
decision on the specimen level; that is, no interactive con-
firmation was used of the machine decision for the negative
cases.

2.3. 'The First Commercially Available Systems. During the
nineties there was strong competition between the American
companies developing screening technology as well as strug-
gles to get the various solutions approved by the powerful
Food and Drug Administration, FDA. Screening systems
were classified in a category of medical devices requiring
premarket approval, meaning that no system can be sold in
the US without FDA approval. Hundreds of millions were



spent on developments and field trials and there was a shake-
out; the companies merged and were acquired by larger
companies. The first company with a screening product to
finally receive FDA approval was Tripath in 1998. It was
the merger of NeoPath, Neuromedical, and AutoCyte. The
Tripath Company was in turn acquired by BD in 2006 and
the system renamed BDFocalPoint Slide Profiler [25]. It is
to a large extent based on the AutoPap 300 system. A new
liquid based specimen preparation technique called SurePath
has been added to further improve the system performance
although it can also analyse conventional smears. According
to the FDA approval, the system can be used to recognize
about 25% of the slides as normal for no further review;
the other 75% are ranked into five categories at risk for
abnormality. There is also a possibility of visually reviewing
fields of particular interest at a special review station. The
system can also be used for quality control and claims
increased sensitivity in detecting abnormalities [26].

Cytyc was quite successful with their improved liquid
based preparation technique and could demonstrate better
performance for that technique as compared to conventional
smears. They also developed an interactive system with a
computer prescreen that selected the most abnormal looking
objects on each specimen for human inspection. In 2003
they received FDA approval for their ThinPrep Imaging
System [27], and in 2007 they became part of the Hologic
Company. The system is marketed for increasing detection
of abnormalities by improved specimen preparation and
screening both visually and by machine [28].

3. The Technical Challenges

In the quick review of the historical development above
we have briefly mentioned some of the key features of the
different generations of systems. We will now return to
the different crucial aspects of the technologies behind a
screening system and discuss what needs to be achieved in
order to screen a sample in a time comparable to that of a
human screener that is less than 10 minutes.

3.1. Specimen Preparation. In the original PAP-smear the
cellular material is manually spread over the glass slide. It
is important that both the endocervical and ectocervical
regions (see Figure 3) are represented in the sample and
through the smearing there may actually be a mapping
between the source region and the location on the slide. [29].
The samples are fixed and stained in a rather straightforward
procedure, which can be done fully manually or in staining
machines with varying degrees of sophistication. The mate-
rial cost for the whole preparation is quite low, on the order
of 1-2US dollars. In Figure 1, an image of a high resolution
field from a PAP-smear is shown.

The manual smearing and staining do unfortunately lead
to big variations in specimen quality. Sometimes the cellular
material may be unevenly distributed leading to dense clumps
which light cannot penetrate while other parts of the slide
may be empty. Even when the smear is done well there will
still be regions which are too dense and have too many
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FIGURE 1: A typical PAP-smear and a high resolution field of view
through a 40x lens. Approximately 10.000 such fields of view are
needed to cover the whole slide.

overlapping cells for reliable interpretation. An experienced
cytotech can cope with great variations in specimen quality
and still make a rather reliable assessment of the specimen,
but the smears are very challenging to analyse automatically.

To make specimens that are better, both for visual and
machine analysis, various liquid based cytology (LBC) prepa-
ration techniques have been developed. The common strategy
here is to submerge the brush or spatula with all the cellular
materials collected from the cervix in a liquid, which then is
treated in various ways before it is deposited onto a glass slide,
fixed, and stained. The result is ideally a cellular sample that
is spread in a monolayer with optimal density over a well-
defined part of the glass slide. The goal of this procedure is
that the resulting samples should be easier to interpret reliably
visually and in particular by machines. Several different
techniques for liquid based preparations have been developed
over the years, the two leading techniques are Surepath
[25] and Thinprep [27] mentioned above. There have been
numerous studies comparing the liquid based preparations
to the conventional smears and most of them come to the
conclusion that they are at least as good or better when it
comes to reliability of detecting abnormalities [28, 30-32].
All currently marketed machine screening systems work with
liquid based preparations.

The great disadvantage of the liquid based preparations
is the associated operational costs. They require significantly
more materials to be used for preparing a specimen, for exam-
ple, vials, liquids, filters, and also more complex equipment,
for example, centrifuges. The procedures are proprietary
and the necessary equipment is sold as kits which increases
the cost of preparing a slide to at least 10 US dollars. This
causes significant economic problems in regions with limited
resources. Still there are studies indicating that liquid based
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FIGURE 2: To the left a few normal cells and to the right some clearly atypical, premalignant cells.
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FIGURE 3: Illustration showing the anatomy of a uterus. For speci-
men acquisition it is important that cells are acquired from both the
endocervical and ectocervical regions, that is, both above and below
the region known as the transformation zone.

preparations are more effective [33, 34] while a large metas-
tudy concluded that they could see no significant differences
[35]. There are also alternative liquid based preparations that
have been developed and are competing with lower costs [36,
37] although those have so far not been tested as extensively
as the leading techniques.

3.2. Scanning. In order to analyse a cell sample in a computer,
it should be scanned at sufficiently high resolution to reliably
extract the features that can determine whether it is normal
or indicating a precancerous change. This is very challenging.
At a pixel size of 0.2 microns, a smear of 25 x 50 mm will
give 31 billion pixels. Just transferring this amount of data
from the camera to the computer will take minutes, even with
the latest high-speed transfer techniques. Since there are no
lenses that can resolve the whole specimen area at once and
no image sensors with 31 gigapixels, we have the problem of
repositioning the lens over a large number of image fields that
together cover the specimen. A high resolution microscope
lens gives a field of view with a diameter of around 0,5 mm
and with a matching 6 megapixel sensor we will get 5000
image fields. Repositioning and capturing an image at each

of these will take at least 10 minutes. This can be reduced
by using nonstop motion and flash illumination to freeze the
images. The CYBEST4 system was the first screening system
to use this idea [14] and later it was used in the AutoPap
[24]. An alternative is to use a 1D sensor with a length of,
for example, 2000 pixels and smoothly move the microscope
stage in the orthogonal direction. The Cerviscan [17] and
Diascanner [19] systems used this idea. It is also used in the
currently popular slide scanners by Aperio [38] although at a
lower resolution.

Another serious issue is focusing. In order to reliably
extract the texture information from the cell image they must
be in very good focus which requires high quality autofocus,
which also is time consuming. An alternative is to scan the
specimen at several focus levels and choose the best for
each cell, which reduces the need for autofocus but increases
the amount of data even more. So in summary it is quite
demanding to scan a whole smear in a sufficiently short time
at sufficiently high image quality. In Figure 4, an illustration
of the two different scanning approaches mentioned above is
seen.

One way to decrease the demands is to use a smaller
part of the slide surface for the specimen. With a smear
this cannot be done without decreasing specimen sampling
quality. With liquid based preparation the area of the sample
is around 1/10 of that of a smear, a great advantage when it
comes to scanning. For smears we can instead use a dual
resolution approach mimicking the way cytotechs switch
between 10x and 40x lenses. If we scan with 1 micron pixel
size we can cover the smear in 200 fields which can be
done in about 20 seconds. This will produce a map of where
cellular material with a suitable density is distributed, which
can then be used to control where a number of scans at
high resolution are acquired. A variant of this approach is
to not only look for areas with suitable density of cells but
also for areas with cells that look suspicious for abnormality.
This dual resolution screening approach was first proposed
by Poulsen [39] and used in some of the early systems, for
example, the Diascanner [19]. A potential risk with this design
approach is that, if the low resolution scan systematically
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FIGURE 4: Illustration schematically showing image scanning using
one- or two-dimensional sensor arrays. With a 2D array an image
or a stack of images at different focus levels are read before the
microscope stage moves a few hundred micrometers to a new
position where this process is repeated as soon as the vibrations
caused by the move have died out. With a 1D array the microscope
stage is moving continuously and single lines in the direction
orthogonal to the move are read into the computer creating a
continuous flow of image data.

misses some type of abnormalities, those abnormalities never
become subject to the high resolution analysis.

3.3. Segmenting Cells and Nuclei. In order to extract the
features describing the cells we must find and delineate
each cell and/or cell nucleus in the specimen image. This is
called image segmentation and is a crucial step in almost
all image analysis based systems. Segmenting nuclei in PAP-
smears is made very difficult by the same complications
that make the smears hard for humans to analyse, that is,
variable smear thickness and staining intensity, obscuring
elements, and so forth. The earliest systems used thresholding
based on greyscale for the segmentation in the very first
systems using a fixed threshold value but later on with a value
determined by histogram analysis as originally suggested by
Prewitt and Mendelsohn [40]. More recent projects have
used more complicated approaches. Bergmeir et al. [41] use
mean shift and morphological filtering and later try Canny
edge detection followed by the randomized Hough transform
[42]. Bamford and Lovell [43] use a dual active contour
algorithm. Malm and Brun [44] use Canny edge detection
followed by anisotropic curve closing. In a recent review [45],
five different classes of approaches to cell segmentation are
identified and it is demonstrated how they have appeared
and gained popularity over the years. There is still a need of
developing new methods, since none of the existing ones are
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as flexible and robust as the human visual system in really
identifying where the nuclear or cytoplasmic border is located
in difficult cases.

The main requirement for a good cell nucleus segmen-
tation method is that it accurately can detect and delineate
the cell nucleus under different staining conditions and in the
presence of disturbing object in the direct vicinity. A second
important requirement is that this segmentation can be done
quickly. We cannot spend more than a few milliseconds per
cell if we are to accomplish the analysis in an acceptable
time. The increasing computer power has made it possible
to do this even with somewhat complex algorithms. It does,
however, require the algorithms to be implemented in an
efficient way, for instance, taking advantage of the possibilities
of parallelism possible in modern computers.

3.4. Artefact Rejection. The goal for the segmentation algo-
rithms is to find and accurately delineate cell nuclei (and
sometimes cytoplasms) that are sufficiently well preserved
and imaged to allow accurate extraction of features for the
subsequent classification. But it will fail sometimes either
because the image of the nucleus is corrupted by overlaying
objects or other artefacts or when the cell is so poorly
preserved or presented in the image that the extracted outline
of the object will be wrong. It is then very important that
we can detect this failure and discard the data from the
object. Otherwise it will lead to unreliable classification
performance on the specimen level. The process of analysing
the segmentation results in order to remove erroneous results
is called artefact rejection.

Artefact rejection is a difficult topic because there are an
infinite variety of ways in which blood cells, inflammatory
cells, folded and distorted cells, overlapping objects, mucus,
staining mistakes, and so forth, influence the image of a
cell (see Figure 5). But it is an absolutely essential step in
a screening system. The motivation for this can be found
in the statistics we have to deal with. A standard PAP-
smear may typically contain 100,000-200,000 cells of the
relevant cell types and we should be able to call it positive
if we find 10-20 diagnostic, premalignant, or malignant cells
(ideally a single clearly malignant cell should be enough).
A classifier that only makes one percent false positive error
will call at least 1000 cells positive even on a healthy sample,
making every sample called positive and the system thus
useless. One approach to deal with this problem is to make
the classifier highly asymmetrical between false positive and
false negative, that is, allowing it to miss-classify a large
fraction of the actually malignant cells as normal. This may
seem to defeat the purpose of the system which is to detect
(pre-)malignancy. But the highly unbalanced numbers work
that way. If the system has a false negative rate of 80% it will
still detect 2—4 of the diagnostic malignant cells if we have 10-
20 available. This is acceptable as long as the false positive rate
is virtually zero, less than 0.001%. Creating such a classifier is
hard but possible if we can work with perfectly imaged cells
with accurate segmentation and carefully extracted features.
To make sure this is the case we need very effective artefact
rejection.
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FIGURE 5: Images displaying four common types of artefacts found
in PAP-smears. From top to bottom: bacteria, leucocytes, stain
residues, and overlapping and folded material.

There is very little explicit research done on artefact rejec-
tion for cervical screening. Some research papers ignore the
problem by working on visually selected or verified images
of nuclei thus relying on manual artefact rejection, which of
course cannot be done for a real screening system. Other
papers include the artefact rejection in the segmentation
or classification steps. Still, analysing the artefact rejection
problem on its own makes it easier to see what performance
can be achieved and to relate that to what is needed. Malm et
al. recently presented such a study where they demonstrated
a specificity of 99.38% on smears and 99.83% on LBC
specimens, while maintaining a sensitivity of around 98%
based on a material of around 12,000 automatically detected
and segmented images of objects visually classified into cell
nuclei and artefacts [46]. With that kind of performance we
would still have a few hundred artefacts corrupting the data
if we analyse 100,000 objects, so it may be hard to achieve the
sensitivity of detecting a few abnormal cells without getting
too many false positive samples. Still it points in the direction
of what is necessary to achieve for a useful system.

3.5. Feature Extraction. When we have an accurate segmenta-
tion of cell nuclei, we can extract features describing the size,
shape, and texture of the object. The most obvious features
are those representing the greater size and more irregular
overall shape of the malignant nuclei. Those features can be
extracted at relatively low resolution and even without having
the cell in perfect focus. Assuming perfect artefact rejection
those features may be useful in detecting a large proportion
of the clearly malignant cells and specimens. They were used
in the first generation systems, which failed because of the
lack of adequate artefact rejection. Over the years, many more

features have been invented and tested. In [47] the different
kinds of features that have been proposed were reviewed and
systematically categorized.

The most important information about whether the
nucleus is normal or (pre-)malignant is found in the chro-
matin pattern or texture of the nucleus. The DNA in the
nucleus is distributed in a different way when the cell is
influenced by a malignant process. This effect can be seen and
measured even with PAP-stain which is not stoichiometric
for DNA. Measuring the chromatin distribution is, however,
difficult. The most common approaches are based on a
statistical description of neighbouring grey levels typically
measured through so-called transition probability matrices
as originally proposed in [48]. Another approach is to see the
individual chromatin granules as objects that are segmented,
and then the spatial relations between these objects are
described, for example, through graph analysis methods [49].
Different ways of measuring chromatin features are discussed
in [50] and also in [47]. A very important aspect of the
chromatin analysis is that you need perfect focus and very
high quality images to reliably represent this pattern which is
at or beyond the optical resolution limit.

4. Classification Strategies

The ultimate goal of the PAP-smear screening process is
to find women with precancerous lesions, so that they can
be treated before the malignancy develops into potentially
lethal invasive cancer. When running the conventional visual
screening process, the cytotechs can classify most speci-
mens as clearly normal and needing no further review. It
is important to realize that we typically are screening a
general population so that the great majority of samples,
perhaps 96%, are normal. Still some specimens look more
suspicious and are referred to a cytopathologist for review;
in some cases the malignancy may be so obvious that the
cytotech can be sure about it; still the confirmation by a
pathologist is required. A positive sample will then lead
to the women being called in for additional investigation,
possibly involving colposcopy and a biopsy, and if the lesion
is confirmed, a simple operation with a loop electrosurgical
excision procedure or similar to remove it. There are different
levels of changes in cell appearance that can be detected and
there is a consensus standard for how to classify these called
the Bethesda system [51]. According to the Bethesda system
there is also a range of abnormalities from the perfectly
normal slide via slight abnormalities ASC-US, low grade
lesions, LSIL, high grade lesions, HSIL, and finally cancer. It is
of course particularly important to pick up the higher grades
and not clear whether it really is necessary to detect the slight
changes. Not all low grade lesions will progress to cancer even
when left untreated and when they do it may take a decade
or even more. With a regular recurring screening program
taking a new sample with a few years interval, the probability
of detecting a lesion before it progresses to cancer is therefore
high even if the risk of missing it at a single screening occasion
is rather high, perhaps 20-30%.



When adding an automated screening device to the
overall screening setup, it can be used in various ways.
The original concept was to do an automated prescreening,
which would be able to say that a substantial fraction of the
specimens were normal while having very few false negatives,
that is, not missing any, or very few true positive specimens.
To reach a low false negative rate a relatively high false
positive rate could be accepted since those specimens were
screened visually. Even if only 50% of the specimens could be
dismissed as clearly normal the system would remove half the
visual screening workload and could be cost-effective if it did
not add too much to the overall screening cost. The SurePath
system is typically used in this mode and set to only remove
25% of the specimens, while also ranking the positives into
different categories of likelihood of being truly positive.

Another way of using an automated system is to run it
in parallel to visual screening. Since humans and machine
most likely will make different errors, the combined system
will increase the sensitivity of the overall screening process,
that is, reduce the false negative rate. But the downside is
that the overall workload and cost are increased rather than
decreased. The Thinprep system is mainly marketed to be
used in this mode.

4.1. The Rare Event Approach. An image analysis based
automated screening system analyzes cells one by one and
can, based on the features extracted from the cell image,
classify it as being normal or abnormal. The simplest way
of using the information from the cell classifier is to simply
count how many abnormal cells we have found on the
specimen and if it is over a low threshold we call the specimen
suspicious. The problem is to set the threshold so that we
do not miss true positives in particular not high grade ones,
while avoiding too many false positives [52].

This approach disregards the information about how
certain the cell classifier is about its decision. It may be that
one cell is found to be clearly malignant while another one is
very close to the threshold for being normal. If we retain this
information, we can make a specimen level decision about
whether we have found too much abnormality to call the
specimen normal, either based on just a few clearly malignant
cells, or a larger number of cells slightly over the threshold
[53].

If we can do the image analysis and feature extraction
online as we scan the specimen, we may stop the analysis as
soon as we have found sufficient evidence that the specimen
is not clearly normal. This may save time by making it
unnecessary to scan and process the rest of the specimen.
This strategy is not controversial since it does not increase
the risk of false negatives. But since the great majority of
specimens are normal in a typical screening situation we
would need to be able to stop early also when we have found
sufficient evidence that a specimen is normal in order to
really save time. And this is controversial; it is generally
required that a cytotech looks at the entire specimen before
calling it normal. Still only a small part of the cells scraped
from the cervix really makes it onto the glass so we are not
analysing all possible cells even when we look at the whole
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slide. However, with a conventional PAP-smear there is a kind
of mapping between areas in the cervix onto the slide so we
may systematically miss some important region by stopping
early. For a liquid based preparation, much fewer cells are
available for analysis on the specimen, but there is a mixing
step involved so we can assume that we have a random sample
and can stop as soon as we have sufficiently many cells for a
required statistical significance in the decision function.

4.2. Malignancy Associated Changes (MAC). In the approach
to the screening problem described so far the systems have
been mimicking the way humans do it, that is, searching
for potentially rare (pre-)malignant cells. Achieving a low
false negative rate even for specimens with a low number
of diagnostic cells is challenging and requires analysing very
many cells. There is, however, an alternative approach based
on so-called malignancy associated changes (MAC). It was
discovered already in 1967 that cells in the vicinity of a
malignancy are influenced so that they undergo small, often
subvisual changes in the chromatin texture [54]. These dis-
coveries were confirmed in the early research on automated
cervical screening [55, 56]. Even though these shifts were not
strong enough to be useful on the individual cell level, it made
it possible to detect abnormal specimens through a statistical
analysis of the feature distributions of a small population, a
few hundred cells, provided that these features were extracted
very accurately. Since these changes are present in all cells in
a large neighbourhood of a malignant process we can have
a different approach to the screening. We need to be able
to reliably detect these subtle changes in cell populations
from a specimen. But we will not need to search through
the whole specimen; only data from sufficiently many cells to
characterize the chromatin distribution of the cell population
is needed, typically around 500 cells. The group that has been
pursuing this idea most systematically is the one at the British
Colombia Cancer Research Centre [57, 58]. Also in this case
we need very accurate artefact removal; we do not want to
extract texture data from artefacts. And we need perfect focus
for each cell. Even a small deviation from perfect focus causes
significant changes in the chromatin image. It has not yet been
convincingly demonstrated that MAC alone can detect early
premalignant changes with sufficient sensitivity.

4.3. The DNA Ploidy Approach. The malignant process not
only modifies the distribution of DNA in the nucleus, it
also increases the amount of DNA. With a stoichiometric
stain, a histogram over the integrated optical density of all
the nuclei will show a diploid distribution for normal cells
and a different aneuploid distribution for malignant cells.
Therefore modified, stoichiometric PAP-like stains have been
developed and used for automated screening studies [59-61],
showing quite promising results. This method is currently
being used in China in a study involving several hundred
thousand women [62]. Since this approach is based on densit-
ometric measurements, there are rather strong requirements
of consistent staining and control of the illumination and
calibration of the imaging. The artefact rejection is also very
important; we must be sure that the DNA measurements
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are only from single, free-lying, well-preserved nuclei. A
significant problem with these modified stains is to get them
accepted by the wider community, since new appearance of
the samples may require expensive retraining. This concept
can also be used with the conventional PAP-stain, but due to
the lack of stoichiometric staining the ploidy measurements
will be less reliable.

4.4. Field Test Statistics and Performance Requirements: Tech-
nical and Ethical Issues. The statistics needed for developing
a successful screening system is difficult on several levels
as described in the previous paragraphs. But we also have
difficult statistics on the highest population screening level.
A screening machine that systematically misses a significant
proportion of the positive samples will decrease the confi-
dence in the screening programs and put the women at risk
of developing invasive cancer before the problem is detected.
Since a screening system is typically used mainly to analyse
normal specimens, at most a few percent of the samples
are truly positive. To prove the detection capabilities of the
system with high confidence we need it to analyse hundreds
of positive cases. In a development phase we can achieve
high numbers of positive cases by selectively running positive
cases in the machine. But for the final evaluation we should
run it on the typical mix of routine specimens. We thus need a
volume of tens of thousands of specimens to properly test the
system. And the situation is made even more complicated by
the fact that there are various kinds of rare abnormalities that
are detected by the visual screening. We need to verify that
the machine does an acceptable job also for those. During this
testing phase the machine will have to be used in parallel to
visual screening, causing double operational costs plus extra
work for doing the comparisons and statistical evaluations.
The final system verification stages are thus a difficult and
expensive threshold to get over before a new system is ready
for widespread use.

What performance requirements a screening machine
must meet is an issue that has caused controversy over
the years. The perfect machine should have zero percent
false negatives and zero percent false positives. In practice
this is impossible so we have to consider what the realistic
requirements are.

The false negative rate is primarily an ethical issue. If
we miss to detect high grade lesions, it may lead to the
women getting cancer. The requirement should then be that
the machine is at least as good as the current visual screening
process. But there are two aspects also of this requirement.
It should on average not miss more specimens than what
is missed by a good cytotech. Additionally it should not
systematically miss any relevant kind of lesion.

The false positive rate of the initial automated specimen
inspection on the other hand is an economic issue. False
positives from the whole screening setup, after inspection by a
cytologist are expensive and cause anxiety for the woman who
is called for a new investigation which may be interpreted as a
message that she may have a cancer. But no screening system
is set up so that the machine positive samples lead to a call
for the woman to come to a new examination. The samples

classified as potentially positive by the machine are screened
visually by a cytotech and, if still found to be positive, by
a cytologist. This rescreening costs money and reduces the
gain of having the machine screening. Still very high levels of
“machine false positives” can be accepted, for example, 75%
for one of the commercial systems. The machine is then set up
so that only clearly normal specimens are classified as normal,
and everything else should be inspected also by a human.

4.5. Performance Requirements: Legal Issues. The deployment
of an automated screening process is made significantly
more complicated by the legal aspects. There are in most
countries, for good reasons, strong regulations for how to test
a screening machine before it is approved for routine use.
In the USA a screening machine needs premarket approval
by FDA before it can be sold for clinical screening use.
Obtaining such approval involves detailed documentation
of all aspects of the machine as well as extensive testing
of its performance in large, well-documented studies. But
the legal aspect is not limited to obtaining approval from
the appropriate authorities. If a machine misses to detect
a high grade lesion present in a sample and this leads to
a woman getting cancer, the manufacturer of that machine
can be sued for the damages caused. This can be extremely
expensive and is a risk no manufacturer can take. Therefore
the procedures for how to use the screening machines are
designed to minimize this risk. One way of doing this
is to require a human screener to visually inspect some
data from every specimen, for example, a set of images of
objects the machine determined to be the most “malignant
looking” on the specimen or a number of selected image fields
optically through the eye-piece of the microscope. Thus the
responsibility of calling the specimen “normal” is transferred
from the manufacturer to the user. Another approach has
been to run the machine screening in parallel to conventional
visual screening with the rationale that the errors done
by machine and by the human are different and thus the
overall sensitivity for detecting malignancy is increased. By
setting the threshold for when to call a specimen “normal”
without further human inspection very conservatively some
manufacturers have decreased the risk of missing a positive
specimen to the point where it has been deemed acceptable.
In the USA that threshold currently seems to be at the 25%
level; that is, 75% of all specimens will have to be screened
both by machine and humans. No fixed such thresholds are
set in other parts of the world.

All these legal precautions are meant to protect the
women from unnecessary risks of obtaining cancer in spite
of having been screened, which of course is a good thing.
But they have also significantly contributed to the fact that
automated screening so far has failed to have a real impact
on the screening costs. Still the majority of women in the
world are not offered regular screening because of the high
associated costs. An automated screening system that is
almost as good as the best visual screening systems at a
significantly lower cost could save millions of women from
dying in cervical cancer. But will such a device ever be
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accepted by the legal systems? It will not probably be accepted
in the USA but perhaps in some other parts of the world.

5. Conclusion

We have in this paper outlined the 60-year history of efforts
to automate the screening for cervical cancer and pointed out
how the different generations of systems have tried to meet
the challenges of this difficult task. We have also discussed
the different aspects of these challenges and how they can be
met. Now in conclusion let us discuss where we stand today.

The purpose of an automated inspection system is to
decrease the cost and/or false negative rate of a screening
program. To achieve the first goal it is necessary that the cost
of operating the system including capital and maintenance
costs in addition to the direct operational costs is less than
what it costs to do the same work as the system does with
conventional manual methods. It is doubtful if the present
generation commercial systems meet these goals. They have
been more focused on the second goal. By running machine
screening in parallel to visual screening it is likely that
the machine misses other abnormalities than the human
screener, thus reducing the overall false negative rate. The
overall operational cost will however be higher. The currently
available commercial systems may thus marginally increase
the quality of the screening but they will not significantly
decrease the cost.

It is today known that cervical cancer is caused by human
papillomavirus infection. An alternative or supplementary
screening method is to test for such infections. There are
studies showing that combining both kinds of analysis adds
sensitivity of detecting precancerous lesions [63]. Still there
seems to be limited advantage of replacing the PAP-test by
only a virus test. The knowledge that the cancer is caused
by a virus infection has also opened up the possibility
of vaccination against the HPV virus. If such vaccination
programs became globally comprehensive, the prevalence of
the cancer could be decreased to the level where screening
would be no longer necessary. But unfortunately it is not likely
that that will happen any time soon and it will take decades
even after everyone is offered vaccination before the effects
reach all age groups.

The historical developments of the screening field have
taken place in parallel to the fantastic development of
computer technology. We now have millions of times more
computer power available per dollar than we had when the
first digital screening systems were built. Similarly the image
sensor technology has developed dramatically. Even since
the time the first version of the current commercial systems
was developed some 15 years ago there has been significant
progress in the underlying technologies. There have also been
significant developments on the algorithmic side, although
perhaps not as dramatic as for the hardware. All this sets
the stage for a good opportunity today to develop a really
cost-effective screening system. It is most likely that a fully
automated screening system today can be built at a cost of
at least an order of magnitude lower than the cost of the
currently available commercial systems. Such a system could
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make it economically feasible to implement comprehensive
screening systems also in the poorer parts of the world
and eventually have an impact on the high incidence of
cervical cancer there. There are of course major challenges in
organizing an effective screening program in such countries,
but a compact, robust automated screening system could
make a big difference.
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