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Abstract

Laminin-332 (a3ß3c2) (Lm332) supports the stable anchoring of basal keratinocytes to the epidermal basement membrane,
while it functions as a motility factor for wound healing and cancer invasion. To understand these contrasting activities of
Lm332, we investigated Lm332 matrices deposited by normal human keratinocytes and other Lm332-expressing cell lines.
All types of the cells efficiently deposited Lm332 on the culture plates in specific patterns. On the contrary, laminins
containing laminin ß1 and/or c1 chains, such as Lm511 and Lm311, were not deposited on the culture plates even if
secreted into culture medium. The Lm332 deposition was not inhibited by function-blocking antibodies to the a3 and a6
integrins but was inhibited by sodium selenate, suggesting that sulfated glycosaminoglycans on cell surface, e.g. heparan
sulfate proteoglycans, might be involved in the process. HEK293 cells overexpressing exogenous Lm332 (Lm332-HEK)
almost exclusively deposited Lm332 on the plates. The deposited Lm332 matrix showed a mesh-like network structure as
analyzed by electron microscopy, suggesting that Lm332 was highly polymerized. When biological activity was analyzed,
the Lm332 matrix rather suppressed the migration of keratinocytes as compared with purified Lm332, which highly
promoted the cell migration. The Lm332 matrix supported adhesion of keratinocytes much more strongly and stably than
purified Lm332. Integrin a3ß1 bound to the Lm332 matrix at a three times higher level than purified Lm332. Normal
keratinocytes prominently showed integrin a6ß4-containing, hemidesmosome-like structures on the Lm332 matrix but not
on the purified one. These results indicate that the polymerized Lm332 matrix supports stable cell adhesion by interacting
with both integrin a6ß4 and a3ß1, whereas unassembled soluble Lm332 supports cell migration.
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Introduction

The interaction of animal cells with various extracellular matrix

(ECM) molecules plays critical roles in both tissue construction and

regulation of cellular functions such as cell adhesion, migration,

proliferation and differentiation [1,2]. After secretion from cells,

most ECM proteins are assembled into a large and complex matrix

network by self-polymerization and/or interaction with other

molecules [3]. Basement membrane (BM) is a thin sheet of

specialized ECM, in which ECM proteins such as laminins, type IV

collagen, nidogens and perlecan are assembled into a complex

mesh-like membrane structure [3,4]. It remains uncertain how

each ECM molecule is assembled into the BM structure. In the

BMs of various types of tissues, laminins play major roles in

regulating cellular functions. Like other ECM proteins, the

biological activity of laminins can be analyzed using purified

proteins. However, it seems very likely that the biological activity of

assembled ECM proteins differs from that of isolated proteins [5].

One of the laminin isoforms, laminin-332 (Lm332; previously

known as laminin-5), which consists of laminin a3, ß3 and c2

chains, is a major component of BMs in the skin and other

stratified squamous epithelial tissues [6], and associates with

integrin a6ß4 to form the stable adhesion structure hemidesmo-

some [7,8]. Therefore, genetic mutations of Lm332 subunits cause

a severe and lethal skin blistering disease, Herlitz’s junctional

epidermolysis bullosa [9,10]. In vitro, Lm332 promotes cellular

adhesion, motility and scattering [11–13]. These activities are

mainly mediated through the interaction of the C-terminal

laminin globular (LG) domain of the a3 chain, especially the

LG3 domain with integrins a3ß1, a6ß1 and a6ß4 [14,15]. Lm332

has unique activity that even in a soluble form, it induces cell

migration and scattering via PKC, phosphatidylinositol 3-kinase

(PI3K) and ERK activation by binding to integrins a3ß1 and a6ß1
on apical cell surface [16]. In vivo, expression of Lm332 is induced

at the wounded edge of epidermis and at the leading edge of

invading carcinomas. Therefore, Lm332 is thought to contribute

to cell migration in wound healing [17,18] and tumor invasion

[19,20]. Indeed, keratinocytes deficient in Lm332 expression show

defects in their cell migration [18,21]. These facts suggest a crucial

role of Lm332 in the migration of normal keratinocytes as well as
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invading cancer cells. In contrast, there is a report showing that

Lm332 inhibits keratinocyte migration in vitro [22]. Thus, Lm332

seems to exhibit two opposite activities, stable adhesion and cell

motility both in vivo and in vitro.

Proteolytic processing of Lm332 may be at least in part

responsible for the contrasting activity of Lm332. There are

reports showing that the cleavage of the laminin a3 chain from the

precursor (190 kDa) to the mature (160 kDa) form decreases the

cell migration activity of Lm332 [23]. However, our previous

study with recombinant Lm332 showed that both cell adhesion

and motility activities of Lm332 are enhanced when the a3 chain

is processed to the mature form [24]. On the other hand, the

proteolytic cleavage of the laminin c2 chain seems to be more

important for the Lm332-mediated cell migration than that of the

a3 chain. Previous studies showed that the cleavage of the c2
chain from the precursor (150 kDa) to the mature (105 kDa) form

significantly increases the cell migration activity of Lm332 [25,26].

However, because the difference in the cell motility activity

between the two forms of Lm332 is not very striking [27], it is

difficult to consider that only proteolytic processing could be

responsible for the differential cell motility activity of Lm332 [28].

Many previous studies have shown that normal keartinocytes

deposit Lm332 onto the surface of culture plates [29]. This

Lm332-containing matrix may have a different biological activity

from that of purified Lm332. In addition, it is important to

investigate how Lm332 is deposited and assembled into the matrix

after secretion. We previously established HEK293 cell lines

overexpressing recombinant Lm332 (Lm332-HEK) [30] or

laminin-3B32 (Lm3B32-HEK) [31]. They secrete and deposit

Lm332 or Lm3B32 at a high level in culture. Using Lm332-HEK

and other Lm332-expressing cell lines, we here investigated the

assembly of Lm332 into matrix and its biological activity,

comparing the activities of the deposited Lm332 matrix and

purified Lm332 protein.

Results

Deposition of Lm332 Matrix by Normal and Cancer Cells
Lm332 is expressed by various kinds of normal epithelial cells

and cancer cells [11,32]. The C-terminal LG4-5 domain of the a3
chain and the N-terminal short arm of the c2 chain, both of which

are liberated by proteolytic processing, regulate the matrix

assembly and activity of Lm332 [33,34]. To characterize the

Lm332-containing matrices, we first analyzed Lm332 secreted and

deposited by primary normal human epidermal keratinocytes

(NHK), three squamous cell carcinoma cell lines (A431, CaSki,

and HSC-4) and two gastric adenocarcinoma cell lines (STKM-1

and MKN-45) by Western blotting. The relative amount of the

deposited Lm332 in the ECM to the soluble one in the

conditioned medium (CM) was highest in NHK cells, but all

cancer cell lines deposited considerable amounts of Lm332 on the

plastic surface (Figure 1, left column). In the deposited ECM, the

190-kDa precursor a3 chain, which contains the LG4-5 domain,

was detected only in the cultures of NHK and STKM-1 cells. All

ECMs (Figure 1, left column) and CM (Figure 1, right column)

contained both the 150-kDa precursor and 105-kDa processed c2
chains, but the relative amount of the processed form to the

precursor was higher in the CM than the ECMs. A nearly single

band of ß3 chain was detected in all samples, indicating that this

chain is relatively resistant to the proteolytic cleavage.

To see how Lm332 is deposited, the Lm332 deposition was

visualized by immunofluorescent staining with the anti-a3 chain

antibody BG5 in sparse cultures (Figure 2A). In agreement with

a previous study [35], migrating NHK deposited many Lm332

signals on their trails (Figure 2A, upper panels, Lm332). In

a stationary HSC-4 cell, Lm332 was most densely observed in

a perinuclear circle area and co-localized only with perinuclear

actin filaments (a lower cell in Figure 2A, middle panels, Merged).

A slowly migrating cell deposited these Lm332 proteins as spike-

like or arrowhead-like spots in a semicircle area. We have

previously established HEK293 cell lines which overexpress

recombinant Lm332 (Lm332-HEK) [30]. Slowly migrating

Lm332-HEK cells produced and left different sizes of Lm332

spots uniformly behind the cells (Figure 2A, lower panels, Lm332).

However, when Lm332-HEK cells were plated at a high density,

they initially deposited Lm332 in peripheral regions of individual

cells (Figure 2B, left panel), but further deposition of Lm332

covered whole surface of the culture plates with cotton-like fibers

(Figure 2B, right panel). We also examined the patterns of Lm332

matrices deposited by confluent cultures of NHK and cancer cell

lines (Figure S1). NHK, A431 and HSC-4 produced a cloud-like

or rosette-like pattern of Lm332 deposition, where small ring

structures were visible especially in the matrices of NHK and A431

(Figure S1). Compared to these matrices, two gastric adenocar-

cinoma cell lines (STKM-1 and MKN-45) produced relatively

homogeneous Lm332 matrix with spiny or fibrous structures

(Figure S1). These results suggest that Lm332 is initially deposited

in perinuclear or more peripheral regions, and the differences in

the Lm332 deposition patterns may largely depend on the motility

and cytoskeletal structure of Lm332-expressing cells. Similar

Lm332 patterns were obtained when the Lm332 matrices were

immunostained with antibodies recognizing the laminin a3, ß3
and c2 chains (Figure S2).

It has been reported that the Lm332 deposition or its assembly

to ECM is mediated by cell surface molecules [35–37]. We

Figure 1. Deposition of Lm332 on culture plates by normal
keratinocytes (NHK) and five cancer cell lines (A431, CaSki,
HSC-4, STKM-1 and MKN-45). Cells were suspended in serum-free
medium, inoculated at a density of 56106 cells per 90-mm dish, and
incubated for 2 days. The resulting ECM and CM were prepared from
each culture. To prepare ECM, cells were removed from the dishes by
treating them with 10 mM EDTA and briefly with 20 mM NH4 OH and
then washing with PBS. The ECMs on the dishes were extracted with the
SDS sample buffer. A twentieth part of the CM and a thirtieth part of the
ECM were subjected to immunoblotting with the antibodies to the
laminin a3, c2 and ß3 chains under reducing conditions. Bars indicate
the position and size of the laminin chains. Other experimental
conditions are described in ‘‘Materials and Methods’’.
doi:10.1371/journal.pone.0035546.g001
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examined the possible role of integrins in the Lm332 deposition.

Although a mixture of function-blocking anti-integrin-a3 and

anti-integrin-a6 antibodies completely blocked cell adhesion to

Lm332-coated plates, it did not affect the Lm332 deposition on

collagen-coated plates (Figure S3). On the other hand, sodium

selenate, an inhibitor for the sulfation of glycosaminoglycans,

inhibited the Lm332 deposition of NHK cells onto culture plates

as analyzed by immunoblotting (Figure 3A) and immunocyto-

chemistry for the laminina3 chain (Figure 3B), under nontoxic

conditions (Figure 3C). These results strongly suggest that the

Lm332 deposition is mainly mediated by cell surface sulfated

glycosaminoglycans, e.g. heparan sulfate proteoglycans like

syndecans, but not by integrins.

Characterization of Lm332 Matrix Deposited by Lm332-
HEK Cells
To characterize the Lm332-containing matrix biochemically

and biologically, we used Lm332-HEK and related HEK293 cell

lines, as well as purified recombinant Lm332 protein. ECMs were

prepared from the cultures of Lm332-HEK [30], a3AALm332-

HEK, which overexpresses an a3 chain-mutated Lm332 resistant

to proteolytic processing [24], and ß3c2-HEK, which had been

transfected only with the laminin ß3 and c2 chain cDNAs [30].

The ECMs and purified Lm332 were analyzed by SDS-PAGE

and subsequent Coomassie Brilliant Blue (CBB) staining or

immunoblotting. The CBB staining showed that Lm332-HEK

(Figure 4A, lane 2) and a3AALm332-HEK (Figure 4A, lane 3) cell

lines almost exclusively deposited the three chains of Lm332 and

their proteolytic fragments. We identified two proteolytic frag-

ments of laminin c2 chain at approximately 90-kDa (#) and 50-

kDa (*). NH2-terminal amino acid sequencing revealed that the

90-kDa protein had the same NH2-terminal sequence as the

mature 105-kDa c2 chain, while the 50-kDa protein was the NH2-

terminal fragment separated from the 105-kDa c2 chain. These

fragments were also present in the CM of Lm332-HEK cells (data

not shown). Furthermore, this analysis showed that ß3c2-HEK

cells secreted and deposited the ß3 and c2 chains (Figure 4A, lane

4). As shown by immunoblotting (Figure 4B, upper panel) as well

as the CBB staining (Figure 4A), a3AALm332-HEK cells

deposited the 190-kDa precursor (or unprocessed) a3 chain as

a major component, whereas this was never or scarcely detected in

the purified Lm332 and the ECM of Lm332-HEK (named

Lm332-ECM), both of which contained the 160-kDa mature (or

processed) a3 chain as a major component. Immunoblotting for

the c2 chain showed that the Lm332-ECM contained the 150-kDa

c2 chain more than the 105-kDa processed c2 chain, but vice

versa in the ECM of a3AALm332-HEK and the purified Lm332

(Figure 4B, lower panel).

When the ECM was prepared from Lm332-HEK cultures 6

and 30 h after inoculation, the 190-kDa unprocessed a3 chain was

found as a major band at 6 h but it was mostly converted to the

160-kDa processed form for 30 h (Figure 4C). Similarly, the 150-

kDa precursor c2 chain was found as a single band at 6 h, but it

was partially converted to the 140- and 105-kDa processed forms

for 30 h. These results suggest that the proteolytic cleavage of

these chains mainly occurs after Lm332 is deposited and the

processing of the a3 chain is much faster than that of the c2 chain.

When Lm332-ECM prepared from a 2-days culture was

separated by SDS-PAGE under non-reducing conditions,

Figure 2. Immunofluorescent staining of Lm332 deposited by three cell lines. NHK (A, top), HSC-4 cells (A, center) and Lm332-HEK cells (A.
bottom) were suspended in serum-free medium, inoculated at a cell density of 26103 cells/well on collagen-coated 8-well chamber slides and
incubated for 6 h. The cultures were stained for F-actin with rhodamine phalloidin (left panels) and for Lm332 with the anti-a3 chain BG5 antibody
and followed by a FITC-labeled secondary antibody (center panels), as described in ‘‘Materials and Methods’’. Right panels are merged images. In (B),
Lm332-HEK cells were inoculated at a high cell density (16105 cells/well), incubated for 6 h (left panel) or 48 h (right panel), and stained for Lm332 as
above.
doi:10.1371/journal.pone.0035546.g002

Figure 3. Effect of sodium selenate on Lm332 deposition by
NHK cells. (A) Immunoblotting analysis. NHK cells were inoculated in
serum-free medium at a density of 46105 cells per 35-mm dish,
incubated overnight, and treated with (+) or without (2) 0.1 mM
sodium selenate (Sigma) at 37uC for 24 h. After the incubation, the ECM
and CM were prepared from each culture and analyzed for the laminin
a3 chain by immunoblotting as described in Figure 1. (B) The ECMs
from the control (none) and selenate-treated cultures (+selenate) were
subjected to immunofluorescence staining with the anti-laminin a3
chain antibody BG5. (C) Phase-contrast micrographs of control and
selenate-treated cultures. Other experimental conditions are described
in ‘‘Materials and Methods’’.
doi:10.1371/journal.pone.0035546.g003
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Lm332 heterotrimer could not enter the separating gel (Figure 4D).

The same was true even in the Lm332-ECM from a 6-h culture

(data not shown). Since Lm332 in the ECM was separated into its

three subunits by reducing SDS-PAGE (Figure 4A), Lm332 was

supposed to be polymerized by cross-linkage with disulfide bonds.

The density of Lm332 in the ECM deposited by Lm332-HEK

cells was analyzed by Enzyme-linked immunosorbent assay

(ELISA) with monoclonal antibodies against the laminin a3 and

c2 chains. The Lm332 concentration on the plate was equivalent

to that obtained by coating purified Lm332 at a concentration of

0.56 mg/ml and 0.61 mg/ml as analyzed for the a3 and c2 chains,

respectively (Figure S4, A and B). SDS-PAGE analysis verified that

this level of Lm332 was indeed present in Lm332-ECM (Figure

S4, C). The ELISA also showed that the concentration of the c2

Figure 4. SDS-PAGE analyses of Lm332-ECM deposited by Lm332-HEK cells. Confluent cultures of Lm332-HEK (lane 2), a3AA-Lm332-HEK
(lane 3) and ß3c2-HEK (lane 4) were incubated in the serum-containing growth medium for 4 days, and the resultant ECMs were prepared and
applied to SDS-PAGE under reducing conditions, followed by CBB staining (A) or immunoblotting with anti-a3 (B, upper panel) and -c2 (B, lower
panel) chain antibodies. Purified Lm332 was run as a standard on lane 1. Bars on the left indicate major protein bands with their approximate
molecular sizes in kDa. The two minor bands (# and *) in (A) were identified as laminin c2 fragments by NH2-terminal amino acid sequencing. Other
experimental conditions are described in ‘‘Materials and Methods’’. (C) To see the proteolytic processing of deposited Lm332, Lm332-HEK cells were
incubated for 6 h and 30 h, and the deposited Lm332 was prepared and applied to SDS-PAGE under reducing conditions, followed by
immunoblotting for the a3 chain (left panels) and the c2 chain (right panels). (D) CM (lane 1) and ECM (lane 2) were prepared from the confluent
culture of Lm332-HEK cells after incubation in serum-free medium for 2 days and analyzed by immunoblotting under non-reducing conditions with
anti-a3 (left panel) and -ß3 (right panel) chain antibodies. Lane 3, purified Lm332 with processed c2 chain (400 kDa). Note that Lm332 in the ECM
remains on the gel top as a broad band (lane 2).
doi:10.1371/journal.pone.0035546.g004
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chain in the ECM deposited by ß3c2-HEK cells was almost the

same as that in the Lm332-ECM.

It is likely that ECM proteins other than Lm332 are also

assembled into Lm332-ECM. We have previously reported that

HEK293 cells secrete laminin-511 (Lm511) into the culture

medium [38]. In immunoblotting analysis, the laminin a5 chain

was detected at lower molecular sizes than the authentic a5 chain

of recombinant Lm511 in the CM of Lm322-HEK cells, but it was

undetectable in the ECM (Figure S5A). Similarly, the laminin ß1

and c1 chains were detected only in the CM. As shown in Figure

S1, two gastric carcinoma cell lines showed characteristic patterns

of the Lm332 matrix. Therefore, we also analyzed other laminins

in the CM and ECM of MKN45 cell line. Non-reducing

immunoblotting analysis showed that the CM of MKN45 gastric

carcinoma cells contained both Lm332 and laminin-311 (Lm311)

at comparable levels, but neither the laminin ß1 nor c1 chain was

detected in the ECM (Figure S6). These results suggest that in

contrast to Lm332, laminins containing laminin ß1 and/or c1
chains, such as Lm511 and Lm311, are hardly deposited on the

culture plates. Furthermore, we analyzed fibronectin, nidogen-1,

perlecan, type IV collagen and type VII collagen in the ECM and

CM of Lm332-HEK cells. Human fibronectin and nidogen-1 were

detected in the CM but they were absent in the ECM (Figure S5,

B and C, respectively). Perlecan, type IV collagen and type VII

collagen were undetectable in both ECM and CM of Lm332-

HEK cells (data not shown).

Fine structure of Lm332-ECM was also analyzed by trans-

mission electron microscopy (TEM). The TEM image of Lm332-

ECM showed a mesh-like, molecular network structure covering

whole surface of the glass plate, in which high density areas were

distributed (Figure 5). This suggests that Lm332 may be

polymerized on the basal surface of cell membrane and transferred

onto the culture substrate. Such a mesh-like structure was not

found in the ß3c2-ECM, though high density areas, possibly due

to protein aggregates, were distributed on the plates. Lm332-

coated plates showed some protein aggregates without any clear

structure, suggesting that Lm332 molecules mostly detached from

the plate during the staining procedure.

Migration of Keratinocytes on Lm332-ECM
To show the biological activity of Lm332-ECM, we first

examined effects of Lm332-ECM and purified Lm332 on

migration of NHK cells. In these assays, the cell density and

incubation length were minimized to neglect the effect of

endogenously secreted or deposited Lm332. When the cells were

plated onto culture plates pre-coated with 1.0 mg/ml Lm332,

they actively and directionally migrated on the substrate

(Figures 6A and S7). When the Lm332 concentration was

increased to 2.5 mg/ml, the cell migration was reduced to a half

level. To obtain regular orientation of coated Lm332 molecules,

we first coated a monoclonal antibody (LSac3) that recognizes an
NH2-terminal sequence (domain IIIa) of the a3 chain onto a plate

and then bound Lm332 to the antibody-coated plate, thus

allowing the integrin-binding domain LG1-3 of the a3 chain to

face the cell surface receptors. This antibody-mediated Lm332-

coated plate supported the rapid migration of NHK cells

(Figure 6A, Ab). In contrast, NHK cells poorly migrated on

both Lm332-ECM and a3AALm332-ECM (Figure 6A, WT and

AA; Figure S8), regardless of the differences in the proteolytic

processing of the a3 and c2 chains as shown in Figure 4B. We

could not measure the cell migration speed on ß3c2-ECM,

because NHK cells could not fully adhere to the substrate for

initial 1.5 h. However, when purified Lm332 was coated on

Lm332-ECM (Figure 6A, WT+Lm332) and ß3c2-ECM
(Figure 6A, ßc+Lm332), the cell migration was significantly

enhanced. These results demonstrate that coated Lm332 potently

promotes migration of NHK cells, whereas Lm332-ECM rather

suppresses it. The migration-suppressive activity of Lm332-ECM

seemed to be independent on the orientation of Lm332 or the

proteolytic processing of the a3 and c2 chains.

As described above (Figure S1), the patterns of Lm332

deposition differed depending on cell types. To confirm the

suppressive effect of Lm332-ECM on cell motility, we also

examined effects of the Lm332-containing ECM and the CM

obtained from the culture of NHK cells. The culture plate pre-

coated with the CM, which contained a high level of Lm332 as

shown in Figure 1, strongly promoted the migration of NHK cells

(Figure 6B). In contrast, the Lm332-containing ECM showed the

suppressive effect on the cell migration.

Figure 5. Fine structures of Lm332-ECM (left), ß3c2-ECM (center) and purified Lm332 (right) were analyzed by TEM at
a magnification of650,000. Bars indicate 100 nm.
doi:10.1371/journal.pone.0035546.g005
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Cell migration requires morphological changes associated with

dynamic actin cytoskeleton reorganization. Therefore, cell mor-

phology and actin cytoskeleton were examined for NHK cells on

purified Lm332, Lm332-ECM and ß3c2-ECM. On ß3c2-ECM,

NHK cells attached but poorly spread extending filopodia-like

protrusion (Figure 6C). In contrast, NHK cells efficiently attached

to Lm332-ECM and spread well showing disc-like, very flat

morphology. The cells on Lm332-coated plates showed refractive

morphology with typical lamellipodia at the leading edge. Such

polarized cells were rarely found in the cells on Lm332-ECM or

ß3c2-ECM. There was little difference in cell morphology

between the Lm332 concentrations of 1.0 mg/ml and 2.5 mg/ml.

Figure 6. Migration and morphology of NHK cells on purified Lm332 and Lm332-ECM substrates. (A) NHK cells were inoculated on
Lm332-coated plates (left three columns) or deposited ECMs (right four columns), which were prepared as described below. After 1.5 h incubation,
cell migration was monitored by video microscopy for 5.5 h. Purified Lm332 was coated at a concentration of 1.0 or 2.5 mg/ml on a non-treated plate,
or at 1.0 mg/ml on a plate pre-coated with the anti-laminin a3 chain antibody LSac3 (Ab). ECM substrates were prepared from Lm332-HEK (WT),
a3AA-Lm332-HEK (AA), and ß3c2-HEK (ßc) cultures. In the right two columns, ß3c2-ECM and Lm332-ECM were further coated with 1.0 mg/ml purified
Lm332 (+Lm332) and then used for the migration assay. On ß3c2-ECM alone or a non-treated plate, NHK cells never attached and migrated during
the initial 7 h (data not shown). Each bar represents the mean 6 S.D. of the migration speeds of 8 cells in each assay. These results were essentially
reproduced in three independent experiments. Other experimental conditions are described in ‘‘Materials and Methods’’. (B) CM and deposited ECM
(ECM) were prepared from confluent cultures of NHK cells. The CM was coated on a 24-well plate. Migration of NHK cells on these substrates was
analyzed as above. (C) NHK cells were incubated for 3 h on ß3c2-ECM, Lm332-ECM and plates coated with 1.0 or 2.5 mg/ml purified Lm332, and cell
morphology was observed under a phase-contrast microscope. Original magnification,6300. (D) In the same cultures as (C), actin cytoskeleton was
visualized with FITC-phalloidin. Numerical values in parentheses indicate the concentration (mg/ml) of Lm332 coated.
doi:10.1371/journal.pone.0035546.g006
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Morphological characteristics of NHK cells on the different

substrates were reproduced by visualization of actin cytoskeleton

with rhodamine-phalloidin (Figure 6D). NHK cells plated on

purified Lm332, regardless of its coating concentration, exhibited

large lamellipodia toward the moving direction and F-actin

accumulation and many retraction fibers at the rear. In contrast,

the cells spread on Lm332-ECM exhibited cortical actin

accumulation around the cell body and some stress fibers. The

cells on ß3c2-ECM were characteristic in robust cortical actin

bundles and radially extended actin filaments around cells. When

NHK cells were placed on their own ECM, they showed similar

morphological characteristics to the cells on Lm332-ECM. These

morphological and cytoskeletal characteristics of NHK cells on the

different substrates appear to reflect their motile property.

Distinct Cell Adhesion Activity Between Lm332-ECM and
Purified Lm332
The results shown above suggested that the differential cell

motility between purified Lm332 and Lm332-ECM might depend

on difference in their cell-adhesive activity. This possibility was

tested by incubating NHK cells at 37uC for 10 min or 40 min on

each substrate (Figure 7A). NHK cells could not attach to ß3c2-
ECM under these conditions and even after incubation for 1.5 h.

In contrast, NHK cells on Lm332-ECM attached and in parts

spread at 10 min and they mostly well spread at 40 min. On

a plate coated with 1.0 mg/ml Lm332, NHK cells more slowly

attached and a majority of them started to spread at 40 min. Such

observation was confirmed by quantitative analysis (Figure 7B).

Lm332-coated plates promoted cell attachment in a dose-de-

pendent manner. The cell attachment reached the same level at

5.0 mg/ml as that to Lm332-ECM.

To examine which receptors mediate the strong adhesive

activity of Lm332-ECM, inhibitory effects of various function-

blocking anti-integrin antibodies and EDTA were analyzed

toward NHK cells (Figure 8). In agreement with previous reports

(8–10), the cell attachment to purified Lm332 was effectively

blocked by an anti-a3 integrin and weakly by an anti-ß1 integrin

antibody, but anti-a2, -a5 and -a6 antibodies did not have such

inhibitory effect (Figure 8A). A combination of anti-a3 integrin

and anti-a6 integrin antibodies, as well as EDTA alone,

completely blocked the cell attachment. On the other hand, the

attachment of NHK cells to Lm332-ECM was scarcely blocked by

any of anti-a3, -a6 and -ß1 antibodies (Figure 8B). However,

a combination of anti-a3 and -a6 antibodies blocked the cell

attachment to about 25%. The addition of anti-ß1 integrin

antibody, but not anti-a2 or -a5 antibody, to the mixture of anti-

a3 and -a6 antibodies completely blocked the cell attachment.

When morphological effect was examined, the spreading of NHK

cells on the Lm332-ECM was blocked partially by the anti-a3
integrin antibody and almost completely by the combination of

anti-a3 and -a6 antibodies (Figure 8C). Neither anti-a6 nor anti-

ß1 integrin antibody showed significant inhibition of cell

spreading. ß4 integrin is known to be expressed as a6ß4, rather
than a6ß1, integrin in keratinocytes [39]. Therefore, these results

suggest that although NHK cells preferentially utilize integrin

a3ß1 to attach to purified Lm332, integrin a6ß4 also contributes

to the cell attachment to some extent. In the case of the cell

attachment to Lm332-ECM, NHK cells seemed to utilize both

integrins a3ß1 and a6ß4.
The results shown above suggest that the binding affinity of

integrins a3ß1 and a6ß4 for Lm332-ECM may be higher than

that for purified Lm332. To test this possibility, we analyzed the

binding affinity of integrin a3ß1 to Lm332-ECM and purified

Lm332 (Figure 8D). When purified integrin a3ß1 was added at

varied concentrations into wells deposited with Lm332-ECM or

those pre-coated with 1 mg/ml purified Lm332 in the presence of

Mn2+, the integrin bound to the former at a much higher level

than the latter. When integrin a3ß1 was added at 37 nM, the

amount of integrin bound to Lm332-ECM was about 3.6-times

higher than that to the coated Lm332 even though the actual

concentration of Lm332 was higher in the latter wells (also see

Figure S4).

To further confirm the strong cell adhesion activity of Lm332-

ECM compared to coated Lm332, we measured cell detachment

by treatment with trypsin or 10 mM EDTA. After NHK cells were

allowed to adhere and fully spread on Lm332-coated plates or

Lm332-ECM by incubating them for 1 h, they were treated with

a diluted trypsin solution for the indicated lengths of time, followed

by counting the remaining attached cells. Although the cells on

purified Lm332 were almost completely detached for 10 min

incubation, the majority of the cells on Lm332-ECM remained

attached to the plates even after 30 min (Figure 9A). Almost the

same result was obtained when treated with EDTA alone: after

20 min incubation, 86% of NHK cells were detached from

Lm332-coated plate but few cells from Lm332-ECM (Figure 9B).

These results also indicated that NHK cells firmly adhered to

Lm332-ECM compared to purified Lm332.

Hemidesmosome Formation
It is well known that keratinocytes produce the stable cell

adhesion structure hemidesmosome by binding to Lm332 via

integrin a6ß4. The hemidesmosome structure is known to remain

as insoluble spots after Triton X-100 treatment [35]. To assess the

hemidesmosome formation, we analyzed localization of ß4

integrin on NHK cells by immunofluorescent staining. When

NHK cells were directly subjected to the immunostaining for ß4

integrin, the cells on Lm332-ECM showed strong ring-like stain

with small dot signals around nucleus, whereas those on purified

Lm332 were locally stained at both front and rear edges

(Figure 10A, left panels). When NHK cells were immunostained

after treatment with 0.5% Triton X-100, hemidesomosome-like

punctuated structures of NHK cells became prominent specially at

their peripheral regions on Lm332-ECM, but such peripheral

staining was totally absent in the cells on purified Lm332

(Figure 10A, right panels). Based on these results, it may be

concluded that NHK cells efficiently produce hemidesomosome

structures containing integrin a6ß4 on Lm332 matrix but scarcely

on purified Lm332.

Discussion

In the present study, we analyzed deposition of Lm332 matrix

by 7 kinds of Lm332-expressing cells including normal keratino-

cytes and cancer cell lines. All these kinds of cells efficiently

deposited Lm332 in specific patterns onto culture plates. In a case

of Lm332-HEK cells, Lm332 was an almost exclusive component

in the ECM and organized into a mesh-like structure, suggesting

that Lm332 was self-polymerized into the mesh structure.

Furthermore, we found that the Lm332 matrix exhibited distinct

activity from that of purified Lm332 protein. The former

supported strong adhesion of keratinocytes but suppressed their

migration as compared with the purified Lm332.

Many groups have investigated deposition and assembly of

Lm332 by cultured keratinocytes [24,29,33–38]. These studies

have shown that many factors including cell surface proteins,

ECM proteins and intracellular signaling molecules are involved in

the deposition and/or organization of laminin matrix. In this

study, we could not detect any of type IV and VII collagens,
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perlecan and nidogen-1 in Lm332-ECM. Although the exact

mechanism of laminin deposition remains to be clarified, it seems

clear that secreted laminins can be deposited without support of

any other ECM molecules. BM proteins such as nidogens, perlcan

and type VII collagen are thought to stabilize the laminin matrix in

vivo [29]. Cell surface receptors such as integrins, dystroglycans

and sulfatides have been reported to regulate the organization

and/or deposition of the laminin matrix [36,37,40]. In the present

study, the Lm332 deposition by migrating cells was independent of

Lm332-binding integrins such as integrins a3ß1, a6ß1, and a6ß4,
but stationary or confluent cells seemed to interact with the self-

made Lm332 matrix through these integrins, modulating the

pattern of Lm332 matrix. On the other hand, sodium selenate, an

effective inhibitor for the sulfation of heparan sulfates and

chondroitin sulfates [41], significantly inhibited the Lm332

deposition, suggesting that heparan sulfate proteoglycans such as

syndecans might play an important role in this process. It seems

also possible that sulfated glycolipids on cell membrane mediate

the Lm332 deposition.

Full-sized laminins such as laminin-111, laminin-211 and

laminin-511 are able to self- or co-polymerize in the matrix

[42,43]. Because the LN domains of the three full-sized laminin

chains are critical for the polymerization, Lm332, of which the

three chains are all truncated in their short arms, has been

believed to be incapable of self-polymerization or co-polymeriza-

tion with other laminins [29]. In the present study, Lm332-HEK

cells deposited Lm332 in a mesh-like network structure as

analyzed by electron microscopy. Although ß3c2-HEK cells

deposited the ß3 and c2 proteins, probably in a heterodimer

form, such a mesh structure was not found in the ß3c2-ECM. In

addition, the deposited Lm332 matrix was not dissociated into the

Lm332 heterotrimer by SDS in the absence of reducing reagent.

These results strongly suggest that the Lm332 heterotrimer is able

to self-polymerize in the matrix. It has been reported that the short

arm of the c2 chain [33] and the LG4-5 domain of the a3 chain

[34] are important for the Lm332 deposition. By using a HEK cell

line expressing Lm332 without the c2 short arm, we have

confirmed that the short arm is critical for the Lm332 deposition

Figure 7. Cell adhesion activity of Lm332-ECM and purified Lm332 toward NHK cells. ECMs from ß3c2-HEK and Lm332-HEK cultures and
Lm332-coated plates were prepared as described in Figure 4. (A) Phase-contrast microscopic images of NHK cells after 10 min incubation. Original
magnification,6300. Lm332 protein was coated at 1.0 mg/ml on the plate. (B) NHK cells suspended in KGM growth medium were inoculated into
each well and then incubated at 37uC for 10 min. After the incubation, non-adherent cells were removed, and adherent cells were quantified.
Numerical values under three right columns indicate the concentration at mg/ml of coated Lm332 protein. Each bar represents the mean6 S.D. of the
fluorescent intensity (FI) for adherent cells in triplicate assays. The data shown are representative of at least three independent experiments
performed.
doi:10.1371/journal.pone.0035546.g007
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(unpublished data). We also found that the LG4-5 domain of the

a3 chain enhances the Lm332 deposition [24] but it seems not

essential [31]. The short arm of the ß3 chain does not significantly

affect the Lm332 deposition but it promotes the deposition of

laminin-511, suggesting its interaction with the full-length laminin

chains [38]. Present analyses showed that after the deposition of

Lm332, the c2 short arm and the a3 LG4-5 domain were released

by proteolytic cleavage. This suggests that they are required for the

Lm332 deposition but not directly involved in the polymerization.

It is expected that the interaction of the c2 short arm with heparan

sulfate proteoglycans or sulfated glycolipids plays a critical role in

the efficient deposition of Lm332. Our results that Lm511 and

Lm311 were not deposited on the matrix also imply the important

role of the laminin c2 short arm in the Lm332 deposition. Further

studies are required to clarify how the cleaved Lm332 self-

polymerizes in the matrix.

Although there were numerous studies on the biological activity

of Lm332 protein, few reports compared the activities of Lm332-

ECM and purified Lm332. Here we demonstrated that Lm332-

ECM was clearly different from the purified, coated Lm332

substrate concerning the biological activity. It has been accepted

that purified Lm332 efficiently supports cell adhesion and

migration [28]. However, Lm332-ECM supported the adhesion

of keratinocytes much more rapidly and strongly than the purified

Figure 8. Interaction of purified Lm332 or Lm332-ECM with integrins. (A and B) To identify integrins responsible for cell adhesion, NHK cells
suspended in the KGM medium were pretreated with the indicated integrin antibodies (2 mg/ml IgG) or EDTA for 30 min at room temperature and
plated on the plates with purified Lm332 (A) or Lm332-ECM (B). After 20 min incubation, adherent cells were quantified. The relative number of
adherent cells in the presence of control mouse or rat IgG was taken as 100%. Each bar represents the mean6 S.D. of the fluorescent intensity (FI) for
adherent cells in triplicate assays. (C) Morphology of NHK cells was examined after incubation on Lm332-ECM in the presence of control mouse IgG,
or the indicated anti-integrin neutral antibodies for 20 min. In the upper left culture (Lm332+IgG), NHK cells were incubated in a well precoated with
1.0 mg/ml purified Lm332 in the presence of the control IgG. Original magnification, 6300. The images shown are representative of at least three
independent experiments performed. (D) Binding affinity of integrin a3ß1 to purified Lm332 and Lm332-ECM was determined by ELISA. Varied
concentrations of purified integrin a3ß1 was allowed to bind to the plates coated with 1 mg/ml purified Lm332 (closed squares) or deposited with
Lm332-ECM (open circles) in the presence of 1 mM MnCl2. Bound integrin a3ß1 was quantified by ELISA using an anti-integrin a3ß1 polyclonal
antibody. The amounts of integrin a3ß1 bound in the presence of 10 mM EDTA was taken as nonspecific binding and subtracted as the background.
The results shown are the means of duplicate assays.
doi:10.1371/journal.pone.0035546.g008

Characterization of Polymerized Laminin-332 Matrix

PLoS ONE | www.plosone.org 10 May 2012 | Volume 7 | Issue 5 | e35546



Lm332. The strong and stable cell adhesion to Lm332-ECM,

which was evident by the resistance of keratinocytes to cell

detachment treatments, lead to the suppressed cell migration. Both

Lm332-ECM and ß3c2-ECM hardly supported cell migration,

but treatment of these ECMs with purified Lm332 enhanced cell

migration. Even in this experiment, the Lm332-ECM coated with

purified Lm332 showed suppressed cell motility activity as

compared with purified Lm332 alone or ß3c2-ECM plus

Lm332. These results clearly indicate that Lm332-ECM rather

inhibits cell migration.

The strong cell adhesion to Lm332-ECM obviously depends on

the interaction with integrins. It has been reported that

keratinocytes interact with self-deposited Lm332 through integrins

a3ß1 for polarization and migration [35]. Integrin a3ß1 also

functions for the proper organization of deposited Lm332 [36].

Our results indicated that integrin a3ß1 bound to Lm332-ECM in

a much higher affinity than purified Lm332. In addition,

experiments with neutral integrin antibodies suggested that

integrin a6ß4 contributed to the cell adhesion to Lm332-ECM

more greatly than that to purified Lm332. The interaction of

Lm332 with the cell surface integrin a6ß4 nucleates the stable cell

adhesion structure hemidesmosome in keratinocytes [8]. The

present immunocytochemical staining with an anti-integrin ß4

antibody revealed numerous detergent-resistant, hemidesmosome-

like structures in the cells adhered to Lm332-ECM, whereas these

structures were almost absent in the cells adhered to purified

Lm332. Based on all these data, it may be concluded that the

polymerized Lm332 matrix strongly binds to integrins a3ß1 and

a6ß4, and the latter binding promotes hemidesmosome formation,

resulting in the tight and stable cell adhesion and the suppressed

cell migration. Our finding is similar to the previous study that

three-dimensionally organized fibronectin matrix has stronger cell

adhesion activity than purified fibronectin [5].

The stable adhesion of keratinocytes to Lm332-ECM mimics

the interaction of Lm332 with integrin a6ß4 in the hemidesmo-

some structure of basal keratinocytes in vivo [8]. Lm332 is known to

bind to type VII collagen via the short arm of the ß3 chain,

forming the anchoring filaments [44]. It is highly expected that the

self-polymerization of Lm332 occurs in normal basement

membranes and type VII collagen binds to the polymerized

Lm332. These Lm332-dependent cell structures could support the

stable anchoring of the edpidermis to the dermis in the normal

skin. On the other hand, the cell motility activity of Lm332 is

thought to contribute to wound repair [17] and tumor invasion

[45]. We have previously reported that Lm332 stimulates cell

migration in a soluble form [16]. It has been reported that matrix

metalloproteinases capable of cleaving the short arm of the

laminin c2 chain are overexpressed in pathological conditions

such as wound healing and cancer invasion [25,26]. It is expected

that the proteolytic cleavage of the c2 chain prevents the

polymerization and assembly of Lm332 into the basement

membrane. The resultant soluble Lm332, like coated Lm332, is

likely to promote the migration of normal skin cells and cancer

cells in the wound healing and cancer invasion, respectively [28].

In conclusion, the present study strongly suggests that the

contrasting activities of Lm332, i.e. the stable cell adhesion vs.

the enhanced cell motility, are caused from the different states of

Lm332, i.e. polymerized Lm332 matrix and nonpolymerized

soluble Lm332. It is assumed that the soluble or unassembled form

of Lm332 plays an important role in the elevated cell migration

during the wound healing and tumor invasion.

Materials and Methods

Antibodies and Reagents
Mouse monoclonal antibodies against the N-terminal regions of

human laminin a3A chain (LSac3 and BG5), ß3 chain (12C) and

c2 chain (D4B5) and one against human nidogen-1 (10F) were

produced in our laboratory [46]. Function-blocking anti-integrin

antibodies used are anti-a2 integrin antibody (P1E6), anti-a3
integrin antibody (P1B5), anti-a5 integrin antibody (P1D6) and

anti-ß1 integrin antibody (6S6) from Chemicon (Temecula, CA),

and anti-a6 integrin antibody (GoH3) from PharMingen (San

Diego, CA). For immunostaining, anti-laminin-c2 chain antibody

(GB3) and anti-a6 integrin (H-87) and anti-ß4 integrin (H-101)

antibodies from Santa Cruz Biotechnology (Santa Cruz, CA) were

also used. Other commercial antibodies to human antigens used

for immunoblotting are monoclonal antibody against the laminin

ß3 chain (Kalinin B1) from Transduction Laboratories (Lexington,

KY), rabbit polyclonal antibody against the laminin a5 chain

(LAMA A01) from Abnova (Taipei, Taiwan), anti-fibronectin

antibodies (FN 12–8 and 8–12) from Takara (Tokyo, Japan), anti-

Figure 9. Differential detachment of NHK cells adhered to
purified Lm332 and Lm332-ECM. NHK cells were inoculated onto
the plates coated with 1 mg/ml purified Lm332 or deposited with
Lm332-ECM and incubated for 1 h. After washing with PBS, the cells
were incubated with trypsin/EDTA diluted 1:35 in PBS (A) or with
10 mM EDTA alone (B). After incubation for the indicated lengths of
time and then washing with PBS, the relative number of adherent cells
was determined as described in Figure 5. Each bar indicates the mean
6 S.D. of the fluorescent intensity (FI) for adherent cells in triplicate
assays.
doi:10.1371/journal.pone.0035546.g009
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type VII collagen antibody (LH7.2) from Sigma (St. Louis, MO),

anti-type IV collagen antibody (H-234) from Santa Cruz, and anti-

perlecan antibody (Clone 7B5) and Alexa Fluor 488-labelled

secondary antibody from Invitrogen (Camarillo, CA). Human

recombinant Lm332 and Lm311 were purified as described

previously [30,47]. Human recombinant Lm511 was purchased

from BioLamina (Sundbyberg, Sweden).

Cells and Transfectants
Human embryonic kidney cell line HEK293 (ATCC CRL-

1573) was purchased from American Type Culture Collection and

transfected with the cDNAs of the three Lm332 subunits to

overexpress the wild-type Lm332 (Lm332-HEK) [30] or an a3-
mutated Lm332 resistant to the proteolytic processing of the a3
chain (Lm332a3AA-HEK) [24]. Lm332-producing human cancer

cell lines used were epidermoid carcinoma of the vulva (A431),

epidermoid carcinoma of the cervix (CaSki), squamous adenocar-

cinoma of the tongue (HSC-4) and gastric adenocarcinomas

(STKM-1 and MKN-45). STKM-1 was established and provided

by Dr. S. Yanoma (Kanagawa Cancer Center, Yokohama, Japan)

[48], and the others were obtained from Japanese Cancer

Resources Bank (JCRB; Tokyo). Expression of Lm332 in these

cancer cell lines were reported in our past studies [11,32]. All these

cell lines were stored in a liquid N2 tank in our laboratory and

cultured in DMEM/F12 medium (Invitrogen, Carlsbad, CA)

supplemented with 10% fetal calf serum, penicillin and strepto-

mycin sulfate. NHK cells from neonatal foreskin were obtained

from Cascade Biologics (Portland, OR), and cultured in KGM

medium (Sanko-Junyaku, Tokyo, Japan), which was composed of

keratinocyte basal medium, 0.1 ng/ml human EGF, 0.4% (v/v)

bovine pituitary extract, 10 mg/ml insulin, 500 ng/ml hydrocor-

tisone, 50 mg/ml gentamicin, and 50 ng/ml amphotericin B.

Passages 2 and 3 were used in the described experiments.

Preparation of CM, Deposited ECM, and Lm332-coated
Plates
Unless otherwise noted, cells were grown to subconfluence in

the growth medium, washed three times with PBS and then

incubated in serum-free medium. Two days later, the CM was

collected and added with two protease inhibitors, phenylmethyl-

sulfonyl fluoride and N-ethylmaleimide. The CM was dialyzed

against pure water, lyophilized and then dissolved in a 1/50

volume of PBS. To prepare deposited ECM, subconfluent cultures

were incubated in the growth medium for 2 days with medium

change every day. After washing twice with PBS, the cells were

removed from the plates by incubating with 10 mM EDTA, and

Figure 10. Localization of integrin ß4 in NHK cells on purified Lm332 and Lm332-ECM. Glass-bottom dishes (Asahi Techno Glass, Tokyo,
Japan) were previously coated with 2.0 mg/ml Lm332 or deposited with Lm332-ECM. NHK cells were inoculated and incubated in growth media. After
incubation for 5 h, the cells were washed with PBS and then fixed with 4% (w/v) paraformaldehyde in PBS for 10 min and then treated without (w/o
Triton) or with (Triton) 0.5% (v/v) Triton X-100. The fixed cells were stained with an integrin ß4 antibody and an Alexa Fluor 488-labeled secondary
antibody. Other experimental conditions are described in ‘‘ Materials and Methods’’.
doi:10.1371/journal.pone.0035546.g010
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the plates were washed five times with PBS and then used for the

following assays. In cases of NHK cells, the cells remaining on the

plates after EDTA treatment were completely removed by further

treating with 20 mM NH4OH for 5 min. All preparations were

checked to be cell-free under a microscope. For immunoblotting

analysis, the deposited ECM was dissolved in the SDS sample

buffer. In some experiments, cells were directly inoculated and

incubated at a high density in serum-free medium for the indicated

lengths of time, and ECM and/or CM were prepared. To coat

culture plates with purified Lm332 protein or CM, the plates were

incubated with Lm332 or CM overnight at 4uC, briefly washed

with PBS, and blocked with 1% bovine serum albumin (BSA) at

room temperature for 1 h. After washing three times with PBS, the

plates were used for the following assays.

ELISA
ELISA was carried out as follows. Ninety-six-well plates coated

or deposited with test substances were blocked with 2% BSA for

1 h, washed three times with PBS containing 0.1% Tween20

(PBS/Tween), and then incubated with anti-a3 (Lsac3) or anti-c2
chain (D4B5) antibody (diluted 1:1000 with PBS/Tween) for 1 h

at room temperature. After washing with PBS/Tween, the

samples were incubated with goat anti-mouse IgG antibody

coupled with biotin and then with alkaline phosphatase-conjugat-

ed avidin D. The immunosignals were visualized with p-

nitrophenylphosphate and measured for absorbance at 405 nm.

Immunofluorescence Staining of Lm332 and Integrins
To analyze the Lm332 deposition by cultured cells, Lab-Tek 8-

well chamber slides (Nunc, Naperville, IL) were previously coated

with 10 mg/ml bovine type I collagen (Koken, Tokyo, Japan) at

4uC overnight and washed with PBS. Cell suspension (26103

cells/0.25 ml) in serum-free medium was inoculated per well of

the chamber slides and incubated for 6 h. The cultures were

washed with PBS, fixed with 4% (w/v) paraformaldehyde in PBS

for 10 min, and then treated with 0.5% (v/v) Triton X-100 in PBS

for 15 min. The fixed cells were blocked with 2% BSA in PBS for

1 h and then reacted with the mouse anti-laminin a3 chain

antibody BG5 or other antibodies for 1 h. After washing with PBS,

the cultures were incubated with a mixture of FITC-conjugated

goat anti-mouse IgG antibody (Vector Laboratory, Burlingham,

CA) and rhodamine phalloidin (Invitrogen) for 1 h, and then

washed with PBS. Fluorescence images were obtained using

fluorescence microscope BZ-8000 (Keyence, Osaka, Japan) or

a LSM510 confocal microscope (CarlZeiss). To immunostain

Lm332 in the ECMs deposited by various types of cells, the ECMs

were prepared as described above and directly subjected to the

staining without the fixation. In the analysis of integrin

localization, rabbit polyclonal antibodies against ß4 integrin (H-

101) and a6 integrin (H-87) were used as primary antibodies.

Cell Adhesion Assay
Cell adhesion assay with NHK cells was performed as described

previously [15]. Briefly, each well of 96-well ELISA plates (Costar,

Cambridge, MA) was coated with a substrate protein at indicated

concentrations at 4uC overnight and then blocked with 1% BSA.

Cells (26104 cells) were inoculated per well containing KGM

medium, and incubated in described conditions. After non-

adherent cells were removed, adherent cells were fixed and

stained with Hoechst 333432. The fluorescent intensity of each

well of the plates was measured using a CytoFluor 2350

fluorometer (Millipore, Bedford, MA). For inhibition assay, the

cell suspension was incubated with function-blocking anti-integrin

antibodies or inhibitors under the indicated conditions before

inoculation.

Cell Migration Assay
NHK cells (2.56104 cells in KGMmedium) were inoculated per

well of 24-well plates pre-coated with a test protein or deposited

with cell-derived ECM. After pre-incubation for 1.5 h at 37uC,
cell movement was monitored using a time-lapse video equipment

for 5.5 h. Total length of random pass that each cell covered was

measured using a video micrometer (VM-30, Olympus, Tokyo).

SDS-PAGE and Immunoblotting
SDS-PAGE was performed on 5% gels, or 4.0–7.5% or 5.0–

20% gradient gels under reducing or non-reducing conditions.

Separated proteins were stained with CBB. For immunoblotting

analyses, proteins resolved by SDS-PAGE were transferred to

nitrocellulose membranes and detected with the ECL detection

reagents (GE Healthcare, Buckinghamshire, UK).

Integrin Binding Assay
Integrin titration assays were carried out by the method of

Nishiuchi et al. [49]. Microtiter plates were coated with 1 mg/ml

Lm332 overnight at 4uC or deposited with Lm332-ECM as

described above. The wells were blocked with 1.2% BSA at room

temperature for 1 h and then washed with TBS/Mn (20 mM Tris-

HCl, pH7.5, 0.15 M NaCl, 1 mM CaCl2, 1 mM MgCl2, 1 mM

MnCl2) containing 0.1% BSA and 0.02% Tween-20 (Buffer A).

Serially diluted a3ß1 integrin with Buffer A was added to the

plates and allowed to bind to the substrates for 3 h. For negative

control, Buffer A containing 10 mM EDTA was used. The plates

were washed with 25 mM HEPES (pH 7.6) containing 1 mM

MnCl2 or 10 mM EDTA, and bound integrins were fixed with

2.5% glutaraldehyde in HEPES buffer for 10 min. The plates

were washed with TBS/Mn, and the bound integrin was

quantified by ELISA. Buffer A was used for the dilution of

reagents and plate washing. The absorbance obtained in the

presence of 10 mM EDTA was subtracted as background from

each data.

Cell Detachment Assay
NHK cells (26104 cells) were seeded into each well deposited

with Lm332-ECM or coated with purified Lm332 in 96-well

plates, and incubated for 1 h at 37uC. The cells were then treated

with a solution of trypsin/EDTA (Cambrex Bio Science,

Walkersville) diluted 1:35 in PBS or with 10 mM EDTA/PBS

for varied lengths of time. The relative number of adherent cells

was determined as described in the cell adhesion assay section.

Transmission Electron Microscopy of ECM Proteins
Confluent cultures of Lm332-HEK and ß3c2-HEK cells were

incubated on poly-L-lysine-coated cover slide glasses for 4 days,

and their deposited ECMs were prepared as described above. The

ECMs were then fixed with 2% glutaraldehyde and then with

osmium tetraoxide. The materials were analyzed with JEOL JEM

200EX (Tokyo) at Hanaichi Electron Microscope Technology

Institute (Okazaki, Japan).

Supporting Information

Figure S1 Immunostained patterns of Lm332 matrices
deposited by normal keratinocytes (NHK) and four
cancer cell lines (A431, HSC-4, STKM-1 and MKN-45).
Each kind of cells (16105 cells) were inoculated per well of Lab-

Tek 8-well chamber slides in serum-free medium and incubated
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for 2 days. After the cells were removed by treating with 10 mM

EDTA, deposited Lm332 matrices were immunostained with the

anti-laminin a3 chain antibody BG5 and a FITC-conjugated

secondary antibody. Other experimental conditions are described

in ‘‘Materials and Methods’’. Bars, 100 mm.

(TIF)

Figure S2 Immunostaining of Lm332 matrices deposit-
ed by NHK and Lm332-HEK cells with antibodies to the
laminin a3 (BG5), ß3 (12C) and c2 (GB3) chains. The

Lm332 matrices deposited by the two types of cells during 6 h

incubation were subjected to immunofluorescence staining with

the three different antibodies. Other experimental conditions are

the same as described in Figure S1.

(TIF)

Figure S3 Effect of anti-integrin antibodies on Lm332
deposition by Lm332-HEK cells. (A) Effect on cell attach-

ment. Ninety-six-well plates were coated with 0.3 mg/ml purified

Lm332 and blocked with BSA. Lm332-HEK cells suspended in

serum-free medium were pretreated with non-immune mouse IgG

(20 mg/ml) as a negative control or with both anti-a3 integrin

(P1B5) and anti-a6 integrin (GoH3) antibodies (20 mg/ml IgG

each) at 37uC for 15 min. The pretreated cells were inoculated

onto the Lm332-coated plates and incubated for 1 h. After the

incubation, adherent cells were determined. Each bar represents

the mean 6 S.D. of the fluorescent intensity (FI) for adherent cells

in triplicate assays. (B) Effect on Lm332 deposition. Lm332-HEK

cells treated with the control IgG (left panel) or with the anti-

integrin antibodies (right panel) were inoculated on collagen-

coated 8-well chamber slides and incubated for 6 h. The cultures

were then stained for Lm332 with the anti-a3 chain antibody BG5

followed by a FITC-labeled secondary antibody (green) and for F-

actin with rhodamine phalloidin (red). Other experimental

conditions are described in Figure 2 and ‘‘Materials and

Methods’’.

(TIF)

Figure S4 Quantitative assay of Lm332 deposited on
culture plates by Lm332-HEK cells by ELISA and CBB
staining. Fifty ml of purified Lm332 protein (open circles) were

coated at the indicated concentrations to the 96-well plates.

Lm332-HEK transfectant was cultured in DMEM/F12 medium

supplemented with 10% fetal calf serum, and ECM proteins

(closed circles) were deposited on the plates for 3 days. The

amount of Lm332 on the plates was determined by ELISA using

the antibodies against the laminin a3 (A) and c2 (B) chains. Each

bar represents the mean 6 S.D. for triplicate assays. The data

shown are representative of at least three independent experiments

performed. The Lm332 concentration on the plate was equivalent

to that obtained by coating purified Lm332 at a concentration of

0.61 mg/ml or 0.56 mg/ml as analyzed for the a3 and c2 chain,

respectively. (C) A 90-mm culture dish was coated with 10 ml of

1.0 mg/ml Lm332, while another 90-mm dish was deposited with

Lm332-ECM by Lm332-HEK cells as described above. The

coated Lm332 and the deposited Lm332-ECM were collected by

dissolving with the SDS sample buffer. A 1/3 aliquot of each

extract was run on a 5–20% gradient gel and stained with CBB.

The ratio of the total band intensity of Lm332-ECM to the

purified Lm332 was determined to be 1.1 by the NIH image

software.

(TIF)

Figure S5 Immunoblotting analyses of Lm511, nidogen-
1 and fibronectin present in CM and ECM of Lm322-
HEK cells. CM (lane 1) and ECM (lane 2) were prepared from

the confluent culture of Lm332-HEK cells incubated for 3 days in

serum-free medium and subjected to immunoblotting, as described

in Figure 1 and ‘‘Materials and Methods’’. In both cases,

approximately 5% of the total sample was applied to each lane

of SDS-PAGE. (A) Immunoblots for Lm511 subunits. The CM

and ECM were analyzed for the laminin a3, a5, ß1 and c1 chains.
Lane 3, recombinant Lm511. (B) Immunoblots for fibronectin

with the antibody FN12–8, which recognizes both human and

bovine fibronectin. Lane 3, human fibronectin; lane 4, bovine

fibronectin. Similar immunoblots were obtained for lanes 1–3

when human, but not bovine, fibronectin-recognizing antibody

(FN 8–12) was used. (C) Nidogen-1. Immunoblotting was carried

out under non-reducing conditions.

(TIF)

Figure S6 Immunoblotting analyses of Lm332 and
Lm311 in CM and ECM of MKN45 gastric carcinoma
cells. CM (lane 1) and ECM (lane 2) were prepared from the

serum-free confluent culture of MKN45 cells and analyzed for the

laminin a3, ß1 and c1 chains by non-reducing immunoblotting.

Lane 3, purified Lm332; lane 4, purified Lm311. The upper open

arrowhead in the left panel indicates the polymerized Lm332 in

the ECM (lane 2), and the two lower open arrowheads indicate the

Lm332 heterotrimers with different processing (360–400 kDa).

The upper major band in lane 3 seems to be an artificial Lm332-

Lm332 dimer. Closed arrowheads (lanes 1 and 4 in all panels)

indicate Lm311 (600 kDa).

(TIF)

Figure S7 Video microscopy of NHK cell migration on
plate coated with 1.0 mg/ml Lm332. The cell migration was

monitored by video microscopy for 5.5 h under the conditions

described in Figure 6.

(MPG)

Figure S8 Video microscopy of NHK cell migration on
plate deposited with Lm332-ECM. The cell migration was

monitored by video microscopy for 5.5 h under the conditions

described in Figure 6.

(MPG)
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