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The perceptions of our own body (e.g., size and shape) do not always

coincide with its real characteristics (e.g., dimension). To track the complexity

of our perception, the concept of mental representations (model) of the

body has been conceived. Body representations (BRs) are stored in the

brain and are maintained and updated through multiple sensory information.

Despite being altered in di�erent clinical conditions and being tightly linked

with self-consciousness, which is one of the most astonishing features of

the human mind, the BRs and, especially, the underlying mechanisms and

functions are still unclear. In this vein, here we suggest that (neuro)robotics

canmake an important contribution to the study of BRs. The first section of the

study highlights the potential impact of robotics devices in investigating BRs.

Far to be exhaustive, we illustrate major examples of its possible exploitation

to further improve the assessment of motor, haptic, and multisensory

information building up the BRs. In the second section, we review the main

evidence showing the contribution of neurorobotics-based (multi)sensory

stimulation in reducing BRs distortions in various clinical conditions (e.g.,

stroke, amputees). The present study illustrates an emergent multidisciplinary

perspective combining the neuroscience of BRs and (neuro)robotics to

understand and modulate the perception and experience of one’s own body.

We suggest that (neuro)robotics can enhance the study of BRs by improving

experimental rigor and introducing new experimental conditions. Furthermore,

it might pave the way for the rehabilitation of altered body perceptions.

KEYWORDS

body representations, neurorobotic, rehabilitation, stroke, amputee, haptic, eating
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Mental body representations

Our body mediates the interactions with the external environment, through the

senses and movements. Moreover, the body is itself an object of perception, whose

current status is transmitted to the brain viamultiple bodily signals. Bodily information

is conveyed by visual and external auditory cues, but also by tactile, proprioceptive,
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vestibular, or interoceptive signals. These multisensory and

motor signals are integrated into coherent models of the body,

i.e., body representations (BRs), that are stored in our brain

encoding and tracking the state of the body in time and space

(De Vignemont, 2016; Riva, 2018; Bassolino and Serino, 2021).

Intriguingly, the way we perceive the body does not always

coincide with the physical body. Studies revealed systematic

distortions of certain properties of the body (e.g., position

and size) across healthy individuals (Bassolino et al., 2014;

Longo, 2018; Galigani et al., 2020; Sorrentino et al., 2021), and

in different clinical conditions such as amputation, stroke, or

neuropsychiatric disorders (Thakkar et al., 2011; Keizer et al.,

2013; Blanke et al., 2016; Case et al., 2019).

Following the description of patients’ altered BRs, multiple,

separate body representations with specific characteristics and

functions have been described (Schwoebel et al., 2002; de

Vignemont, 2010). So far, no consensus has been reached on the

exact number and functions of different body representations

(de Vignemont, 2010; Kammers et al., 2010; Canzoneri et al.,

2013). The lack of a comprehensive model has determined a

widespread terminological and conceptual confusion on BRs

(Gallagher, 1986; de Vignemont, 2010). Thus, precise and

quantitative methods are required to isolate, control, and assess

the contribution of certain sensory information (e.g., vision or

proprioception) in the various BRs. The next section highlights

how (neuro)robotics can provide support in investigating BRs to

improve our understanding of their definitions and functions.

(Neuro)robotics to assess body
representations

In the context of BRs, a distinction between explicit

and implicit BRs has been proposed (Canzoneri et al., 2013;

Longo, 2015a). Explicit BRs include perceptual, conceptual, or

emotional subjective knowledge that humans consciously have

about their own body (Cash and Brown, 1987; de Vignemont,

2010; Longo, 2015a; Bassolino and Serino, 2021). Explicit

BRs can be assessed by asking subjects directly, as through

questionnaires [e.g., the Body Shape Questionnaire, Cuzzolaro

et al., 2006; the Bath Complex Regional Pain Syndrome (CRPS)

Body Perception Disturbance Scale, Ten Brink et al., 2021;

the Affected Limb Perception Questionnaire, see https://osf.

io/p6v7f], or via other protocols requiring participants to

compare, draw, or recognize their perceived image (e.g., the

image marking methods, optical distortion methods, depictive

method) (Gardner and Brown, 2010; Longo et al., 2015). In

contrast, there is knowledge about our bodies that we are

not constantly aware of, yet we implicitly use it to move

and interact with objects. For instance, when we venture into

a small cave, we can cross it without hitting the rock by

considering the dimensions of the cave, but also implicitly

the size of our body. Various tasks have been designed to

tap into implicit BRs without asking the subject directly.

Some protocols focus on assessing metric features requiring

participants to localize body parts or somatic sensations in

the body (Longo and Haggard, 2010). Participants’ judgments

are used to infer the perceived implicit length/width of the

body parts by calculating the distance between two reported

localizations (e.g., the arm length is estimated by calculating

the distance between the perceived localization of the index

and the elbow). Then, the perceived and real dimensions are

compared to detect eventual bias (Bassolino et al., 2014; Saulton

et al., 2016; Longo, 2018). Often, these tasks benefit from

motion tracking systems to precisely register the perceived

and real positions of the body (Peviani and Bottini, 2018;

Galigani et al., 2020), thus reducing potential human errors

resulting from manual measurements. These protocols could

exploit robotics to guide or assist the participants’ movements

enabling experimental paradigms in active conditions, which

have already been showed to tap into metric BRs involved in

the action (e.g., see Peviani and Bottini, 2018; Peviani et al.,

2020 where participants move the tested non-visible hand to

reach external visual targets). Indeed, robotic workstations can

be programmed to include and control different parameters

(hand positions, speed, low friction, mechanical robustness,

etc.) allowing them to mimic the dynamic characteristics of

natural movement (Krebs et al., 1998; Grange et al., 2001;

Casadio et al., 2006). Movement-assistance robots would be

particularly useful to improve the current assessment of BRs

metrics in patients with sensorimotor deficits (Bassolino et al.,

2022). For instance, motor impairments and spasticity (i.e.,

muscle stiffness, tightness, and rigidity) (Pantano et al., 1995;

Sommerfeld et al., 2004) would prevent the use of active tasks

in some patients with poststroke, thus limiting their assessment

to static tasks (Longo and Haggard, 2012; Bassolino et al., 2015),

or motor imagery skills (Shahvaroughi-Farahani et al., 2021).

Assisting technology would allow exploiting residual motor

functions in these patients by promoting the use of active tasks to

investigate BR subserving action. In addition, robotic protocols

have been largely used to manipulate the external environment,

for instance by applying forces through a manipulandum as

in the seminal studies by Shadmehr and Mussa-Ivaldi (1994)

to study motor learning. Results showed gradual adaptation

of the subjects’ dynamics to the force-field manipulation by

suggesting the ability to predict and compensate for the changes

in the external environment (Shadmehr and Mussa-Ivaldi, 1994;

Burdet et al., 2001). These adaptative protocols would be

used to study plastic effects on BR due to motor learning in

healthy subjects and patients (Sarlegna et al., 2010; see also

next section). More generally, studying BR by considering the

perspective of motor control would drive major achievements in

the understanding of the origin and functions of distortions in

body perception (Bassolino and Becchio, Under Review).

Other tasks used to evaluate BRs only partially exploit

the potential support of robotics. The Tactile Distance Task
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(TDT) is a widely used experimental procedure for assessing

the perception of distances between tactile stimuli (Tamè et al.,

2016; Longo and Golubova, 2017; Tosi and Romano, 2020).

The rationale behind TDT is that no tactile receptor provides

information on the distance between two touches on the skin.

Accordingly, to estimate these distances, we need to map those

touches on a representation retaining the metric properties of

the body part being stimulated (Longo et al., 2010, 2015; Longo

and Haggard, 2011). Typically, the TDTs setup consists of sticks,

or a grid applied to the skin. Since the stimulations are often

applied manually, many factors are hard to control such as

the force or pressure of the stimulating objects, or the stimuli

position. Haptic robotic devices (i.e., devices designed to enable

human–machine interaction via the kinesthetic and/or tactile

sense) (Basdogan and Srinivasan, 2002; Biggs and Srinivasan,

2002; O’Malley and Gupta, 2008) would improve the control

and replicability of the experimental procedures allowing to

systematically apply the pressures with predefined force in the

same location.

Haptic robotics devices can also be used in the context of

multisensory integration paradigms (e.g., the Phantom force-

feedback devices) (Ernst and Banks, 2002; Gepshtein and

Banks, 2003), where sensory modalities (e.g., vision and touch)

are independently manipulated in various conditions. These

multisensory protocols have also been adapted to indirectly

investigate BRs, as in the case of patients suffering from

anorexia nervosa where the overestimation of stimuli’s width is

interpreted as an alteration of the perceived size of the stimulated

body region (Serino and Haggard, 2010; Risso et al., 2020),

or amputees where a multisensory optimal stimulation reduces

phantom sensations (Risso and Valle, 2022; Risso et al., 2022).

Multisensory stimulation has also been used to induce illusions

such as the rubber hand illusion (RHI) (Botvinick and Cohen,

1998) or the full-body illusion (FBI) (Lenggenhager et al., 2007)

to study self-perception and specifically body ownership (i.e.,

the unified and coherent experience of owning our body) and

agency (i.e., the subjective experience that the self is identified

as the agent of the actions). Typically, the synchronized tactile

stimulation of the subject’s real non-visible body, together with

the view of the same stimulation on a fake body, induces

the illusion that the fake body feels like the participants’ one.

The congruency between the visuotactile stimulation is crucial

inducing the illusion (Blanke et al., 2015). However, the tactile

stimulation is often given manually, thus introducing possible,

not measurable, incongruencies between stimulations on the

real and fake limbs and likely reducing the illusion strength.

Accordingly, technological versions of the RHI/FBI have been

developed employing virtual reality (Tsakiris et al., 2006; Kilteni

et al., 2012; Serino et al., 2022), neurostimulations (Marasco

et al., 2011; Bassolino et al., 2018), and robotics (Arata et al.,

2014; Salomon et al., 2017; Huynh et al., 2019), allowing to

better control and synchronize the stimuli presentation, and

to propose other versions of the illusions (e.g., visuomotor

stimulations). For instance, to induce the motor RHI, a robotic

master–slave manipulator has been used, where the subject

performs unilateral movements inducing similar movements on

the rubber hand (Hara et al., 2014). A similar approach has been

used to induce the feeling of presence (FoP), i.e., the strange

sensation that somebody is nearby when no one is actually

present. The FoP resembles the presence of hallucinations

described in neurological and psychiatric patients (Critchley,

1955; Brugger et al., 1996). The protocol to induce the FoP in

healthy individuals provides that while standing blindfolded,

participants moved their arms and the master device in front

of them. These movements were sent to the slave robot,

which applied tactile stimuli in real time to the participants’

backs. When the tactile feedback on the back is delivered

asynchronously with respect to patients’ arms movements in

the front, the FoP was reported (Blanke et al., 2014). Recently,

this protocol has also been applied to patients with Parkinson’s

disease (PD) to determine the fundamental mechanisms of

hallucinatory symptoms in this pathology (Bernasconi et al.,

2021). The authors identified a subgroup of patients with PD

showing an increased sensitivity to conflicting sensorimotor

stimulation and robot-induced hallucinations. In addition, by

combining MR compatible robotics to deliver sensorimotor

stimulation in healthy participants and lesion network mapping

in neurological patients without PD, authors showed that the

frontotemporal connectivity, associated with hallucinations in

healthy participants, was disrupted in patients with PD suffering

from hallucinations. Moreover, this study can also be taken as

an example of the use of MR-compatible robotic devices (in this

case, the master–slave robot for the sensorimotor stimulation)

(Hara et al., 2014) to allow controlled and reproducible bodily-

related multisensory stimulation in the scanner to study the

neural correlates of body perception in healthy participants and

patients (see for other studies on body perception using MR-

compatible robotic devices: Ionta et al., 2011; Blanke et al., 2014;

Akselrod et al., 2021).

Overall, the use of neurorobotics has proved particularly

helpful to study self-body perception. Accordingly, the term

“cognetics” has been proposed to indicate key technological

approaches that can render and combine artificial multisensory

stimuli with motor signals to investigate bodily perception and

consciousness (Rognini and Blanke, 2016).

To sum up, the inclusion of robotic instruments into

BRs experimental routine might support more rigorous

empirical research and new experimental paradigms

allowing to unveil crucial BRs’ mechanisms (see upper

arrow Figure 1). The costs of the robotic devices limit

the applicability and development of robotics protocols

evaluating BRs. Often, these technologies are not available

in the research or rehabilitation centers (Wolpert and

Flanagan, 2010), and require considerable expertise.

Interdisciplinary collaboration among different professionals

and novel affordable user-friendly and transportable
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FIGURE 1

Interaction between body representations and (neuro)robotics. The figure represents the potential contribution of (neuro)robotics to the field of
body representations (BR). (Neuro)robotics might enhance the study of BRs by improving experimental rigor and by allowing new empirical
conditions that would be di�cult to achieve without technological automation and control (top arrow). By providing controlled and precise
somatosensory stimuli, also in combination with other technologies (e.g., virtual reality), (neuro)robotics may o�er a significant contribution to
the modulation of distorted BRs (bottom arrow). In this new perspective, the ability of robotic devices to monitor and possibly treat BRs
distortions could become one of the parameters to evaluate their e�ectiveness (central dotted arrow). The image on the right is modified with
permission from Blanke et al. (2014).

device development could be an important contribution

to future research.

Distortion in mental body
representations

In several pathological conditions (Keizer et al., 2013; Schott,

2014; Risso et al., 2020; Longo, 2022), abnormal perceptions

of the body could be directly caused by a lack of altered

inflow of sensory, proprioceptive, and/or motor information

to the brain due to central or peripheral lesions (e.g., stroke

or deafferentation), or because of structural damage (e.g.,

amputees). Alternatively, such distortions may not directly

involve the somatosensory pathway, as in eating disorders (Nico

et al., 2010; Keizer et al., 2012) or body integrity dysphoria

(Saetta et al., 2020). Although the presence of biases in body

perception can also characterize healthy subjects’ perceptions

(Longo and Haggard, 2011; Longo, 2017, 2022), pathologies

are often accompanied by undesired feelings. For instance,

amputation or deafferentation is characterized by unpleasant

phantom sensations and pain (Flor et al., 2006). In patients

with chronic stroke with persistent sensorimotor deficits, the

affected limb can be perceived as “foreign,” “ill,” and “like dead”

(Bassolino et al., 2022; Crema et al., 2022).

Noteworthy, one of the most interesting characteristics

of BRs is their plasticity. BRs can reshape accordingly to

sensorimotor experiences such as tool use (Canzoneri et al.,

2013; Martel et al., 2016; Galigani et al., 2020), anesthesia

(Paqueron, 2003), immobilization (Bassolino et al., 2015), or

in case of manipulation of multisensory processing inducing

illusory sensations (see the previous paragraph) (Taylor-Clarke

et al., 2004; Bruno and Bertamini, 2010; Tajadura-Jiménez et al.,

2012). This evidence suggests that the BRs distortions observed

in patients can be restored through appropriate rehabilitative

training. This is crucial given that alterations in BRs could be

a detrimental factor in the functional abilities’ recovery (Farne,

2004; Gialanella et al., 2005; Hammerbeck et al., 2019) and

protheses’ use and acceptance (Makin et al., 2017; Preatoni et al.,

2021).

(Neuro)robotics to reduce
distortions in body representations

The main idea behind rehabilitative robots is to provide

physical support to patients by adapting to their residual

sensorimotor abilities, with the specific aim of enabling actions

accomplishment and therapy support by increasing its intensity

and repetitions (Casadio et al., 2009; Marini et al., 2017;

Gassert and Dietz, 2018). Most rehabilitation technologies

aim to restore motor impairments. Robotic technologies have

also been proposed to convey tactile feedback (Dario, 1991;

Reinkensmeyer and Dietz, 2016; Bicchi and Buttazzo, 2020;

Handelzalts et al., 2021; Yeh et al., 2021) or reliable and

quantitative proprioceptive assessments (Dukelow et al., 2010;
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Cappello et al., 2015). Neural interfaces based on invasive

and non-invasive stimulations yielded promising results in

this direction, restoring haptic sensations to individuals with

somatosensory deficits (Petrini et al., 2019a,c; Risso et al.,

2019; Ortiz-Catalan et al., 2020; Crema et al., 2022). Overall,

these technologies allow modulating sensory modalities that

are fundamental to constructing and updating BRs. However,

their effects in reducing BRs distortions have been rarely

assessed. Few studies exploiting neural interfaces compared

the perceived body dimensions in patients with altered

BRs before and after stimulation. Rognini et al. (2018)

administered tactile stimulation to the phantom limb of

amputees via intraneural implant into the residual limb nerves.

Through virtual reality, such stimulation was combined with

a coherent visual illumination of the patient’s prosthetic hand.

This visuotactile immersive experience importantly reduced

telescoping phantom sensation (i.e., the phantom limb is

perceived as shorter than the intact limb). Phantom limb

distortions (i.e., perceiving the phantom dimensions/positions

as closer to contralateral length) were also proved to decrease

in a real-life environment (Graczyk et al., 2018) or when

biomimetic feedback (i.e., specific encoding strategy modulating

the frequency and amplitude of the stimulations to elicit more

natural sensations) was delivered in a natural environment (i.e.,

not in virtual reality) during precision grip tasks (Valle et al.,

2018). Similar results were shown in lower limb amputees,

where a multisensory approach combining virtual reality and

electrocutaneous non-invasive stimulation allowed to decrease

the telescoping effect in one patient and the phantom leg

displacement (i.e., the perceived shift in the phantom leg’s

position) in the second patient (Risso et al., 2022). Phantom

displacement reduction was also proved in lower limb amputees

provided with invasive direct nerve stimulation (Petrini et al.,

2019b). Intriguingly, even if the prosthetic device usually weighs

less than the limb they replace (Jones and MIT Press, 2019),

amputees often perceive it as much heavier, with an important

impact on prosthesis acceptance and use (Sinha et al., 2014;

Handy Eone et al., 2018). Preatoni et al. (2021) showed that an

amputee provided with a coherent somatosensory stimulation

via intraneural feedback during walking reported a decrease in

the perceived weight of the prosthesis (Preatoni et al., 2021).

Although studies exploiting neurorobotics-based

rehabilitation to improve altered BRs mainly focus on

amputees with the aim of boosting artificial limb embodiment

(Makin et al., 2020), alterations in BRs have also been reported

in different clinical conditions such as eating disorders, chronic

pain, or stroke (Moseley et al., 2012; Keizer et al., 2013;

Bassolino et al., 2022). To tackle BRs alterations, rehabilitative

training exploiting multisensory stimulations has been proposed

(Bolognini et al., 2015; Garbarini et al., 2015). In this sense,

the potential of neurorobotics may be crucial providing

controlled and precise sensory stimuli also in combination

with other technologies (e.g., virtual reality) (see bottom arrow

in Figure 1). Promising results in this direction are shown

by a recent study assessing the effect of neurorobotics-based

stimulation in patients with chronic stroke with motor deficits.

After receiving a rich sensorimotor neuromuscular electrical

stimulation through an array of 59 active electrodes embedded

in a matrix placed on the patient’s arm (helping hand), the

alterations in the perceived arm dimension and the altered

subjective feeling toward the affected limb were significantly

reduced (Crema et al., 2022). Interestingly, alteration in BRs also

involved other aspects of self-perception as body ownership,

agency (Longo, 2015b), and the perception of pain (Flor et al.,

2006; Makin et al., 2013, 2015; Halicka et al., 2020; Schone

et al., 2022). Intriguingly, recent studies suggest that sensory

stimulation via neurorobotics has beneficial effects on all these

aspects (agency: Collinger et al., 2013; ownership: Marasco

et al., 2011; and pain: Page et al., 2018; Petrini et al., 2019a).

However, before any attempt at rehabilitation, our knowledge

of distortions in different clinical populations should be better

known (leading back to the first part of this study, higher arrow

in Figure 1). For example, studies in patients with anorexia

nervosa showed impairments in their implicit body experience

(Keizer et al., 2013; Spitoni et al., 2015; Risso et al., 2020). A

neurorobotics-based rehabilitation allowing to correct these

implicit distortions could be relevant support for these patients.

In this perspective, the ability of robotic devices to monitor

and possibly treat BRs distortions could become one of

the parameters to evaluate their effectiveness (dotted central

arrow in Figure 1). Thanks to interdisciplinary collaboration

and knowledge, this change in perspective might create new

techniques to improve the recovery of patients with altered

BRs and sensorimotor functions and increase our knowledge on

self-body perception.

Conclusion

In conclusion, mental body representations (BRs) are a

complex and multifaceted concept involved in different clinical

conditions (e.g., stroke, psychiatric disease, deafferentation,

amputation, etc.) whose recovery might significantly improve

the patient’s outcomes. The past decades have seen rapid

developments in rehabilitative (neuro)robotics, which has been

only recently applied to the field of BRs. The few seminal

evidence on the use of neurorobotics for the evaluation and

treatment of BRs described in this review encourages the further

development of such an approach in patients with stroke and

amputees and its extension to other pathologies (e.g., eating

disorders, integrity dysphoria, deafferentation, etc.). However,

given that our knowledge of BRs is still partial and growing,

the application of neurorobotics for BRs rehabilitation must be

accompanied by basic scientific investigation. Robotics might

also be an important support in this regard, allowing more

sophisticated and controlled experimental paradigms to assess

unisensory and multisensory features underlying BRs.
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