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In endothelial cells, the tight control of the redox environment is essential for the maintenance of vascular homeostasis. The
imbalance between ROS production and antioxidant response can induce endothelial dysfunction, the initial event of many
cardiovascular diseases. Recent studies have revealed that the endoplasmic reticulum could be a new player in the promotion of
the pro- or antioxidative pathways and that in such a modulation, the unfolded protein response (UPR) pathways play an
essential role. The UPR consists of a set of conserved signalling pathways evolved to restore the proteostasis during protein
misfolding within the endoplasmic reticulum. Although the first outcome of the UPR pathways is the promotion of an adaptive
response, the persistent activation of UPR leads to increased oxidative stress and cell death. This molecular switch has been
correlated to the onset or to the exacerbation of the endothelial dysfunction in cardiovascular diseases. In this review, we
highlight the multiple chances of the UPR to induce or ameliorate oxidative disturbances and propose the UPR pathways as a
new therapeutic target for the clinical management of endothelial dysfunction.

1. Introduction

Endothelial cells produce different vasoactive substances that
control vascular homeostasis in concert with pro- and anti-
oxidant or pro- and anti-inflammatory factors [1–3]. Among
them, nitric oxide (NO) which is produced by nitric oxide
synthases (NOS) and targets guanylyl cyclase of the underly-
ing smooth muscle cells to activate the signalling of vasodila-
tation plays a key function in blood vessel homeostasis [4, 5].
Endothelial dysfunction (ED) occurs when vascular homeo-
stasis is altered in favour of vasoconstriction, inflammation,
and prooxidation, all factors that produce a proatherogenic
and prothrombotic phenotype [3, 6]. ED is the early patho-
genic event of several cardiovascular and metabolic diseases
and therefore is predictive of cardiovascular events with fatal
outcome [7, 8]. Reduced endothelium-dependent dilatation

(EDD) is the initial signal of ED. EDD is the consequence
of reduced NO bioavailability resulting from impaired NO
production or increased NO degradation. In this state, endo-
thelial NOS (eNOS) begins to generate reactive oxygen
species (ROS), such as superoxide, a phenomenon known
as “uncoupling” [3–5]. Furthermore, peroxynitrite (ONOO−)
promotes nitration of the eNOS cofactor BH4 and critical
antioxidants, leading to propagation of ED and endothelial
cell death [9]. Similar to eNOS uncoupling, other enzymes
may function as ROS sources, such as NADPH oxidase,
xanthine oxidase, and the mitochondrial respiratory chain
complex, giving rise to OS-induced ED, an event that occurs
in several different cardiovascular diseases (CVDs) [10–14].
Increasing evidence identifies endoplasmic reticulum stress
(ER stress) as another source of ROS [15, 16]. As a conse-
quence, a growing number of studies are focused on defining
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the role of ER stress in OS induction aiming at understanding
whether ER stress could have a role as a promoter of ED or
merely worsen ED in human pathologies [14, 17–19]. In this
review, we will analyse the basic mechanisms of ER produc-
tion of ROS and discuss novel targets for the pharmacological
therapy of CVDs derived from ED.

2. Endoplasmic Reticulum Function and the
Control of the Redox State of the Cell

Redox homeostasis inside the cell is controlled by specialized
mechanisms located in the cytosol, as well as within the
peroxisomes, mitochondria, and the ER. The ER is intensely
engaged in the control of folding and trafficking of secretory
proteins [20]. Within the ER lumen, a quality control system
(ERQC) selects properly folded from misfolded proteins that
are addressed to degradation rather than to access down-
stream cell compartments of the secretory pathway. In this
way, the ER ensures the functions of post ER compartments
and controls the proteostasis and the trafficking of secretory
proteins [21–24]. Under normal conditions, the ER has
restricted antioxidant activity and the ER proteostasis is
highly sensitive to the redox state of the cell. Several patho-
physiological conditions could disturb the ER proteostasis
by inducing the accumulation of misfolded or unfolded pro-
teins within the ER [25, 26]. This condition is called ER stress
and activates the signalling pathways of the unfolded protein
response (UPR) [27, 28]. The UPR pathways aim to reestab-
lish ER proteostasis throughout different outcomes: reducing
ER protein load, potentiating the ER quality control, acti-
vating the ER-associated protein degradation machinery
(ERAD), and, eventually, activating autophagy [29]. How-
ever, when all the adaptive responses fail, the UPR can
activate the apoptotic programme [30, 31]. Since protein
folding is coupled to ROS formation, the increment of
folding load during ER stress strongly induces ROS produc-
tion and exacerbates OS [16, 32–34]. The formation of
disulfide bonds within the ER requires a stable redox envi-
ronment. In order to maintain redox homeostasis during
protein folding, the ER is provided with several buffering
factors, such as glutathione (GSH), ascorbic acid, and flavin
nucleotides. Specifically, GSH reacts with and reduces non-
native disulfide bonds, thus allowing misfolded proteins to
fold again [35]. In the meantime, specific oxidoreductases
such as protein disulfide isomerases (PDIs), in conjunction
with the ER oxidoreductase 1 (Ero1), catalyse disulfide bond
formation [36–38], but this event generates the formation of
hydrogen peroxide (H2O2), the most abundant ROS pro-
duced in the ER. During ER stress, the accumulation of mis-
folded proteins, which requires more cycles of disulfide bond
formation and isomerization, produces a higher amount of
H2O2, depletes the ER GSH level, and, as a consequence,
devastates the redox state of the ER [39].

3. The Unfolded Protein Response Pathways:
Oxidative and Antioxidative Control

The ER stress activates the UPR pathways by means of
three transmembrane transducers: the inositol-requiring

kinase 1 (IRE1), the pancreatic ER kinase (PERK), and
the activating transcription factor 6 (ATF6) [28]. In normal
conditions, the three transducers are maintained inactive
by the chaperone binding immunoglobulin protein/78 kDa
glucose-regulated protein (Bip/GRP78). In stressed condi-
tions, Bip/GRP78 dissociates from IRE1, PERK, and ATF6
and allows UPR activation (Figure 1). The adaptive response
induced by the UPR, if successful, can moderate ROS pro-
duction within the ER, not only by simply reducing the
folding demand but also by performing another compensa-
tive response consisting in the activation of genes encoding
antioxidant factors (Figure 2). In particular, antioxidant con-
trol has been linked to the PERK and IRE1 pathways as
shown by the work of Harding et al. [40]. They demonstrated
that ATF4 is essential for GSH synthesis and, as a conse-
quence, for the maintenance of redox balance in the ER.
Moreover, the IRE1/XBP1 branch of the UPR stimulates
the hexosamine biosynthetic pathway (HBP), which is essen-
tial for the production of UDP-N-acetylglucosamine (UDP-
GlcNAc). This compound is crucial for the stress-induced
O-GlcNAc modifications, which favour cell survival and
increase the defence against ROS [41]. Besides the ATF4/
GSH and the XBP1/HBP antioxidant pathways, the UPR
controls the activation of a potent transcription factor
involved in the antioxidant response: the nuclear factor
erythroid 2-related factor 2 (NRF2) [42, 43]. Under basal
conditions, NRF2 is inactivated by the Kelch-like ECH-
associated protein 1 (KEAP1), which induces its degradation
through the cullin3/ring box 1-depedent ubiquitin ligase
complex. During OS, ROS react with specific KEAP1 cyste-
ines inducing conformational changes that prevent the
binding of de novo-produced NRF2. As a consequence,
newly translated NRF2 can migrate into the nucleus to
activate antioxidant gene transcription [44]. In addition to
that, it is well established that OS-activated PERK could
induce NRF2 phosphorylation and dissociation from KEAP1
[45] enhancing the antioxidant activity of NRF2. Since ER
protein misfolding highly increases ROS, we would expect
that UPR activation could preferentially reduce abnormal
production of ROS. On the contrary, evidence shows that
UPR pathways can even activate ROS production during
ER stress and therefore aggravate the OS (Figure 2). This is
the case of the PERK pathway of the UPR that activates the
transcription factor C/EBP homologous protein (CHOP),
which induces the expression of Ero1 that accounts for the
peroxide production during the oxidative protein folding
[37, 38, 46]. Additionally, CHOP expression can be enhanced
by the ROS-induced activation of the NADPH oxidase
(NOX) members 2 or 4, which induce the double-stranded
RNA-dependent protein kinase (PKR), another activator of
CHOP [47]. The PERK/CHOP axis is not the only pathway
of the UPR that initiates ROS formation. In fact, the
IRE1 pathway of the UPR activates the apoptosis signal-
regulating kinase 1 (ASK1) [48] and ASK1 activation is also
sustained by the mitochondrial ROS production deriving
from c-Jun N-terminal kinase- (JNK-) mediated inhibition
of the mitochondrial electron transport chain (ETC) [49].
This event leads to the persistent activation of ASK1 thus
linking the activation of UPR to OS-induced apoptosis. The
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IRE1 pathway of the UPR also contributes to OS by
increasing thioredoxin-interacting protein (TXNIP) mRNA
levels throughout the reduction of the TXNIP inhibitory
microRNA-17 [50], and such event makes cells more suscep-
tible to OS, since TXNIP inhibits the antioxidant thioredoxin

(TRX) enzyme. Several studies have demonstrated the fine
tuning of the UPR by the OS [51, 52]. OS control of the
UPR is mediated by the protein disulfide isomerases PDIA5,
which reduces disulfide bonds in the luminal domain of
ATF6, and PDIA6, which reduces specific cysteines of the
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Figure 1: The signalling pathways of UPR. (a) During normal conditions, Bip/GRP78 binding to IRE1α, PERK, and ATF6α maintains the
three transducers in an inactive state. In stressed conditions, Bip/GRP78 dissociates from IRE1α, PERK, and ATF6α to help the folding of
secretory proteins and allows the activation of the transducers [28]. (b) After the release from Bip/GRP78, IRE1α dimerizes and
autophosphorylates to activate its kinase and endoribonuclease domains [15]. Activated IRE1α cleaves 26 nucleotides from the mRNA
encoding the X-box-binding protein 1 (XBP1) allowing the translation of XBP1 [140]. Bip/GRP78 dissociation enables also PERK
activation through dimerization and trans-autophosphorylation. Activated PERK phosphorylates eIF2α at Ser51 leading to attenuation of
protein synthesis, thereby reducing ER protein load. During this condition, some mRNA, such as the activating transcription factor 4
(ATF4) mRNA, are preferentially translated [141]. During severe ER stress, ATF4 strongly induces CHOP that triggers the apoptotic
programme in different ways [31]. The eIF2α-ATF4 axis can also be activated by other cytosolic kinases allowing the regulation of global
protein synthesis and the preferential translation of specific mRNA in response to different stimuli in a convergent signalling pathway
known as integrated stress response (ISR) [20, 30]. ATF6α is the third ER stress sensor located in the ER membrane. Upon ER stress and
release by Bip/GRP78, ATF6α is packaged into COPII vesicles and transferred to the cis-Golgi where it undergoes intramembrane
proteolysis-specific cleavage by site 1 protease (S1P) and S2P to produce a transcriptionally active fragment (pATF6α). (c) XBP1, ATF4,
and pATF6α migrate into the nucleus to activate the transcription of specific UPR genes involved in protein folding and trafficking,
ERAD, cellular metabolism, autophagy, and apoptosis [20, 142]. Bip: Bip/GRP78; uXBP1: unspliced XBP1; sXBP1: spliced XBP1.
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luminal domain of PERK and IRE1. In this way, by pro-
moting oxidation of the three UPR sensors, ROS could
modulate the UPR by inhibiting the ATF6 pathway and,
simultaneously, potentiating the IRE1 and PERK pathways.

4. The Endoplasmic Reticulum/Mitochondria
Axis for Reactive Oxygen Species Production

OS activated at the ER level can be transmitted in a Ca2+-
dependent manner to mitochondria with a consequent pro-
duction of ROS. Mitochondria are connected to the ER
through mitochondrial-associated ER membranes (MAMs)
[53]. Across MAMs, ATP, Ca2+, metabolites, and ROS are
rapidly transmitted from the ER to mitochondria [54]. As
a consequence, the sustained calcium influx from the ER

into mitochondria triggers the opening of the permeability
transition pore and the release of cytochrome C. Loss of
cytochrome C impairs complex III of the mitochondrial
ETC with the consequent increase of ROS production
[55, 56]. Moreover, Ero1 that is transcriptionally induced
by CHOP during the UPR potentiates the inositol-1,4,5-
trisphosphate receptor (IP3R)-mediated Ca2+ leakage from
the ER [57, 58]. Under these circumstances, ROS production
could even be enhanced by other mechanisms. Firstly, the
UPR induces the expression of a truncated isoform of SERCA
pumps that increase Ca2+ transfer to mitochondria [59].
Then, impaired ETC affects ATP production inhibiting
SERCA pumps [60]. Furthermore, the ER protein sigma-1
receptor dissociates from Bip/GRP78 following calcium
depletion from ER and stabilizes IP3R at MAM leading
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Figure 2: The oxidative and antioxidant programmes of UPR. The antioxidant (green lines) and oxidative (red lines) pathways of UPR are
depicted on the left or on the right, respectively. The PERK and IRE1α/XBP1 pathways promote the maintenance of ER proteostasis as
follows. (1) There is PERK-mediated activation of the antioxidant transcription factor NRF2 and the promotion of GSH synthesis [45].
(2) There is IRE1α/XBP1-mediated induction of the hexosamine biosynthetic pathway (HBP), which is important for the production
of UDP-GlcNAc [41]. On the right, the ER stress-dependent amplification of ROS production (red lines) is depicted. (3) Following ER
stress, the increased folding activity of ER augments ROS production. (4) The ER stress increases the MAM-mediated calcium flux to
mitochondria that inhibits ETC and increases mitochondrial ROS production; moreover, reduced ATP synthesis from the impaired
ETC affects SERCA activity and the consequent ER calcium content which in turn boosts up unfolding [143]. (5) CHOP, through the
induction of Ero1, potentiates calcium efflux from the ER. The higher cytosolic calcium activates the Ca2+/calmodulin-dependent
protein kinase II- (CaMKII-) JNK-NOX-protein kinase R (PKR) pathway, which in turn positively feedbacks on CHOP expression
[47, 57]. In addition, Ero1-increased expression potentiates the oxidative protein folding and ROS production. (6) Through microRNA
inhibition, the RIDD activity of IRE1 relieves the expression of TXNIP protein that blocks the antioxidant enzyme TRX [50]. (7) IRE1α
activates the tumor necrosis factor α-associated receptor 2 (TRAF2)/ASK1/JNK pathway that further upregulates the NOX-dependent
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to a prolonged calcium signalling to mitochondria [61].
Next, PERK is uniquely enriched in MAMs and helps
the tightening of ER-mitochondria contact sites during
chronic ER stress facilitating calcium influx and ROS-
mediated mitochondrial apoptosis [62, 63]. Nevertheless,
ER Ca2+ pumps and IP3R or ryanodine receptor (RyR)
channels are themselves influenced by the redox state of
ER [64] together with the IP3 agonist of IP3R channels
[65]. Thus, Ca2+-mediated mitochondrial ROS production
further enhances calcium release from ER, which in turn
impairs Ca2+-dependent chaperone activity and ER homeo-
stasis, resulting in ER stress. Moreover, ROS themselves
impair the ER oxidative protein folding. Indeed, the futile
cycles of disulfide bond formation produce more ROS and,
by depleting ATP, stimulate mitochondrial ROS production
and so on. Taken together, these mechanisms create a
vicious cycle of ER stress and mitochondrial dysfunction
that boost each other and decide for apoptosis commitment.

5. Endoplasmic Reticulum Stress and the
Unfolded Protein Response Pathways as
Therapeutic Targets in the Oxidative
Stress-Induced Endothelial Dysfunction

The role of the UPR pathways in the beginning of ED is a
relatively recent area of investigation. Just over ten years
ago Gargalovic et al. [66] were among the first to demonstrate
the activation of UPR in human aortic endothelial cells
exposed to oxidized phospholipids. In this work, it was
demonstrated that the UPR factors ATF4 and XBP1 were
both required for the activation of proinflammatory proteins
and that the silencing of their expression abolished these
effects. Although the authors did not demonstrate the mech-
anisms of the UPR induction by oxidised phospholipids, they
hypothesised that an increase in OS could at least in part
explain UPR activation and, in this way, they provided the
first proof of the contribution of the ER stress in ED. Since
then, several studies have shown the correlation of ER stress
and UPR to ED in both animal and cellular models [67–70].
The failure of antioxidant therapy in decreasing cardiovascu-
lar risk in human clinical trials [71, 72] points up the impor-
tance to find new therapeutic approaches to counteract OS
induced ED. Since ER stress is closely linked to OS, as dis-
cussed in depth in this review, targeting the UPR pathways
or the ER stress could be a successful approach in the attempt
to neutralise OS. Two possible approaches can be used to
counteract OS-induced UPR. One is to modulate directly
the activity of individual UPR mediators. Another consists
of the activation of auxiliary pathways potentiating the
adaptive response to ER stress to relieve unfolding. With
reference to the last option, novel pharmacological inhibitors
of ER stress-induced ED have been identified. One example is
hyperhomocysteinemia. Hyperomocysteinemia is a cardio-
vascular risk factor associated with ED, atherosclerotic vascu-
lar diseases, and ischemic heart attacks [73]. It is well
established that homocysteine (HC) induces ER stress by
disrupting disulfide bond formation and that ER stress
activates apoptosis in vascular cells through the upregulation

of CHOP [74]. Instead, the activation of the PERK pathway
of the UPR can induce endothelial detachment-mediated
apoptosis through the overexpression of the T cell death-
associated gene 51 (TDAG51) [75]. Recently, it has been
reported that HC also impairs EDD following ER stress-
mediated inhibition of the Ca2+-activated potassium channel
[76] and that the resveratrol analogue piceatannol displays a
protective effect on HC-induced ED through the NRF2-
mediated upregulation of heme oxygenase 1 (HO-1) [77].
In particular, pretreatment with piceatannol significantly
reduced ER stress, homocysteine-induced apoptosis, and
ROS production in endothelial cells [77]. Interestingly, many
natural compounds can ameliorate ED through the reduction
of ER stress-induced OS. As an example, black tea extracts
improved endothelial-dependent relaxation and attenuated
ROS production in HC-treated rat aortae and in cultured
rat aortae cells through the suppression of ER stress both
in HC- and angiotensin II-induced hypertension [78].
Another compound extracted from the Chinese herb barber-
ine showed the ability to reduce endothelial-dependent con-
traction in carotid arteries from spontaneous hypertensive
rats through the alleviation of ER stress, the reduction of
ER stress-dependent ROS production, and the downregula-
tion of the ROS-dependent expression of cyclooxygenase-2
(COX-2) [79]. This effect depended on the activation of
AMP activated protein kinase (AMPK). AMPK is a protein
involved in the control of energy status, whose induction
has been correlated with the mitigation of ER stress in several
studies [79–82]. The upregulation of AMPK is another
putative way to induce an auxiliary pathway reducing ER
stress. An example of the therapeutic effect of AMPK acti-
vation is the work by Li et al. [83], in which the natural
triterpenoid ilexgenin A was found to be therapeutic in
high-fat diet- (HFD-) fed mice and in endothelial cells
stimulated with palmitate. In these models, ilexgenin A
reduced ER stress and ER stress-dependent ROS generation
through the inhibition of the NOD-like receptor family pyrin
domain containing 3 (NLRP3) inflammasome and this effect
depended on enhanced AMPK activity. Moreover, in HFD-
fed mice the oral administration of ilexgenin A improved
significantly endothelial function with the recovery of EDD
and NO production [83]. These results strongly suggested
that AMPK activation is helpful to reduce ER stress and ED
and have triggered the study of new pharmacological
inducers of AMPK. Among them, aminoimidazole carboxa-
mide riboside (AICAR), salicylate, cycloastragenol, and
astragaloside-IV inhibit ER stress-dependent ROS generation
and the induction of NLRP3 inflammasome in various
models of palmitate-induced ED [84, 85].

Although the molecular mechanism involved in AMPK-
dependent mitigation of ER stress was not fully addressed,
it could be possible that the key target of the AMPK action
is the inhibition of the OS-generated upstream or down-
stream of the ER stress, so that this event is responsible for
the TXNIP induction and NLRP3 inflammasome formation.
In this regard, Li et al. [84] demonstrated that salicylate and
AICAR, through the activation of AMPK, inhibited ROS pro-
duction and the subsequent recruitment of the dynamin-
related protein 1 (Drp1) on the mitochondrial membrane
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preventing mitochondrial fission and ER stress, thus, linking
mitochondrial dysfunction to ER stress and OS in the gen-
eration of endothelial disturbances. Previously, Dong et al.
[80] demonstrated that the AMPK activation by AICAR,
metformin, and simvastatin suppresses ER stress through
the inhibition of NOX-derived ROS and SERCA oxidation
in glycated and oxidized-LDL- (HOG-LDL-) induced ED.
Metformin, in particular, is widely used in diabetic patients
and has been shown to be a strong activator of AMPK in
vasculature [86–89]. AMPK activation following metformin
administration had a therapeutic effect on HFD-fed mice
with the inhibition of ER stress and OS and the restoration
of EDD and NO production [67]. These effects were medi-
ated by the interaction with the proliferator-activated recep-
tor δ (PPARδ) that is responsible for the upregulation of
important pathways involved in lipid metabolism [67, 90].
Similarly, a recent work Choy et al. demonstrated that paeo-
nol exerted a protective effect against tunicamycin-induced
ER stress and the subsequent ED via activation of the
AMPK/PPARδ signalling pathway [91]. AMPK activation
and its beneficial effects on endothelium functions are
also involved in the molecular activity of mangiferin.
The xanthonoid mangiferin was shown to be effective in
high-glucose-induced ED by inhibiting ER stress and ER
stress-dependent OS, and as for other AMPK activators,
the inhibition of NLRP3 inflammasome allowed restoration
of NO production and endothelial homeostasis [92]. Still
concerning high-glucose-induced ED, cobalt (III) protopor-
phyrin IX chloride (CoPP) prevented ER stress, reduced
inflammation and apoptosis, and improved endothelium
functions and angiogenesis through the induction of NO
release and vascular endothelial growth factor A (VEGFA)
expression [93]. All these effects were mediated by CoPP-
mediated induction of HO-1 [93]. A variety of other novel
inhibitors of ER stress including fenofibrate, salidroside,
and sodium hydrogen sulfide also have shown to be effective
in the restoration of ER stress-dependent ED [94–96].

Another promising approach to reduce ER stress is
represented by the upregulation of the ER folding capacity
of ER chaperones or by the use of chemical chaperones.
Tauroursodeoxycholate (TUDCA) and sodium phenylbu-
tyrate (PBA) are two chemical chaperones previously
approved by the Food and Drug Administration (FDA)
for the treatment of, respectively, primary biliary cirrhosis
and urea-cycle disorders and several diseases associated to
ER stress and OS [97–100]. Interestingly, TUDCA and
PBA have also displayed cardioprotection effects and thera-
peutic function on some CVDs such as ischemia/reperfusion
and atherosclerosis [101–103]. Regarding the potential use of
TUDCA and PBA for the treatment of ED, Walsh et al.
demonstrated that oral administration of TUDCA reduced
hyperglycemia-induced ED in humans [104]. In addition,
the extensive use of TUDCA and PBA as chemical inhibitors
of ER stress revealed their ability to inhibit ER stress-
dependent features of ED such as EDD reduction, reduced
eNOS phosphorylation, inflammatory response, and ROS
production in experimental models of ED including hyper-
tension [70, 78, 105], hyperglycemia [106–108], hyperhomo-
cysteinemia [77], and hyperlipidemia [83, 84].

Another therapeutic strategy to neutralise ER stress-
induced ED is the modulation of Bip/GRP78, PDI or Ero1
activity. In particular, a screening study, aimed at the discov-
ery of Bip/GRP78 inducers, identified the compound BIX
(Bip inducer X). BIX was found to induce Bip/GRP78 expres-
sion via the ATF6 pathway and to have protective effects
towards ER stress-dependent apoptosis of neuroblastoma
cells [109]. More interestingly, BIX intracerebral administra-
tion in ischemic mice reduced the area of infarction suggest-
ing its potential use also in an ischemic heart [109].

Another promising, therapeutic approach is the targeting
of Ero1. With this regard, Blais et al. identified the small
Ero1α inhibitor EN460, reporting that this molecule inter-
acted specifically with the active form of Ero1α and pre-
vented its reoxidation [110]. In the same work, the authors
found that the continuous exposure to a low concentration
of EN460 protected the ER stress-sensitive PERK−/− mouse
embryonic fibroblasts from the exposure to tunicamycin,
suggesting the potential use of Ero1α inhibitors in the pro-
tection against the consequences of severe ER stress in
mammalian cells.

Similarly, in the same year, Pal et al. demonstrated
that curcumin and masoprocol preserved PDI from S-
nitrosylation during cycles of OS, protecting its functional
integrity [111]. In particular, curcumin is a recognised
anti-inflammatory and antioxidant drug, whose beneficial
effect is well known for several diseases including cancer,
diabetes, neurological, and CVDs thanks to its capacity to
augment the activity of different antioxidant enzymes other
than PDI [112, 113]. Only recently, curcumin was found to
inhibit ER stress, to reduce insulin resistance through the
inhibition of the JNK/insulin receptor substrate-1 (IRS-1)
signalling, and to promote autophagy in endothelial cells
exposed to palmitate, thus emphasizing its possible thera-
peutic outcome in ED [114].

An alternative strategy for mitigating ER stress is the
modulation of individual UPR pathways such as PERK/
eukaryotic initiation factor 2α (eIF2α) and IRE1/XBP1.
These compounds revealed potential therapeutic features in
several diseases related to ER stress including neurodegen-
erative and metabolic disorders, cancer, inflammatory dis-
orders, and finally CVDs [115, 116].

With regard to the modulators of the PERK/eIF2α
axis, several small molecules have been identified. This
class includes salubrinal, a small compound that prevents
the dephosphorylation of eIF2α through the inhibition of
GADD34 and CReP, the two enzymes that direct the
activity of the eIF2α protein phosphatase PP1 [117]. Salu-
brinal showed powerful protection from ER stress in
several conditions [117–119] including myocardial infarc-
tion [120, 121] and oxidized-LDL-mediated ED [122]. On
the contrary, recent studies found that salubrinal could
potentiate lipid-induced ER stress with cytotoxic outcome
[123, 124] suggesting that salubrinal employment in CVDs
has to be accurately evaluated in clinical conditions.

Similarly to salubrinal, guanabenz, which is FDA-
approved for the treatment of hypertension, increases eIF2α
phosphorylation during ER stress condition through the
inhibition of the CReP/PP1 complex [125].
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Among the molecules that act directly on the PERK
protein, GSK2606414 and GSK2656157 inhibit PERK
phosphorylation showing promising anticancer activity
[126, 127] and reduced development of prion disease in
prion-infected mice [128]. Recently, ex vivo treatment of
mouse mesenteric arteries with GSK2606414 was found to
counteract the positive effect on vascular function and eNOS
phosphorylation deriving from the overexpression of a
longevity-associated genetic variant of the bactericidal/
permeability increasing fold-containing-family-B-member-
4 (LAV-BPIFB4) [129]. This work suggests that the potential
therapeutic use of GSK2606414 in CVD could be negated in
patients carrying the LAV-BPIFB4 genetic variant. In addi-
tion, or as an alternative, to the modulation of PERK/eIF2α
signalling, the inhibition of the IRE1/XBP1 pathway can also
be achieved to impair UPR in ER stress-dependent diseases.
IRE1/XBP1 signalling can be impaired by inhibiting either
IRE1 kinase activity or IRE1 RNAse activity. STF-083010,
4μ8C, MKC-3946, toyocamycin, and salicylaldehydes are
small molecules targeting IRE1α RNAse activity and block-
ing XBP1 mRNA splicing and regulated IRE1-dependent
decay of mRNA (RIDD) [130–134]. In contrast, APY29 or
sunitinib inhibited IRE1α kinase activity without affecting
oligomerization and RNAse activity while both activities
were impaired by compound 3 [135, 136].

Overall, the efficacy of these molecules has been tested
in vitro and in few in vivo models of various diseases, and
no data are available from models of CVD. However, given
their therapeutic potential, it will be interesting to investigate
their clinical and biological effects on animal and cellular
models of ER stress-dependent ED and CVD.

6. Conclusive Remarks

CVDs represent the most common cause of death worldwide,
and although the clinical management and the prevention
strategies have improved remarkably, they are still a public
health issue in developed countries. Therefore, the discovery
of new targets for the development of innovative therapeutic
approaches for CVDs remains a fundamental mission of
medical science, also considering that in the future this
matter will be even more critical in view of the rise in life-
expectancy levels in the population.

In this review, we extensively discussed the connections
between ER stress, UPR, and OS in the pathogenesis of CVDs
derived from ED. Although many aspects are only in part
clear, for example, the contribution of each of the three
branches of UPR and how it changes in acute and chronic
ED, the ER stress and its signalling response certainly repre-
sent a promising system to design new molecules and
elaborate new therapeutic methodologies for the manage-
ment of ED. In this context, we examined how the signalling
pathways of the UPR could be modulated to establish
therapeutic strategies to alleviate ED. Such a result has been
achieved either by enhancing the antioxidative mechanisms
or by inhibiting prooxidative properties of the UPR path-
ways. The choice between the two strategies depends on the
different temporal outcomes of the adaptive response with
regard to the prooxidative and proapoptotic response, the

first being activated earlier and the second upon prolonged
stress induction.

Another factor that should be taken into account
might be the effect of UPR inhibition on other tissues not
experiencing ER stress. For example, PERK expression is
essential for pancreatic β cells, while IRE1α RIDD activity
is expressed in basal conditions and is essential to maintain
ER homeostasis [20, 137]. Moreover, unexpected effects
could come by the inhibition of UPR transducers also in
the targeted tissue. For example, the RIDD activity of IRE1
is crucial for the regulation of microRNA expression during
UPR activation [138, 139]; therefore, inhibition of IRE1
RIDD activity could have deleterious effects on the expres-
sion of the microRNA targets. The conflicting data regarding
UPR inhibition (such as those concerning salubrinal, as
reported previously) reveal the complexity of UPR response
and indicate that its modulation may exert both protective
and toxic effects depending on the nature of the insult. These
considerations highlight that future efforts are necessary to
solve this puzzle in order to develop new clinical protocols
for the management of ED.

Therefore, further studies are needed in order to define
the optimal targets for each specific clinical condition,
develop novel drugs, and prevent possible side effects
deriving from the UPR perturbations.
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