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Sepsis and SIRS (systemic inflammatory response syndrome) belong to a severe disease complex characterized by infection and/or
a whole-body inflammatory state. There is a growing body of evidence that neutrophils are actively involved in sepsis and are
responsible for both release of cytokines and phagocytosis of pathogens. The neutrophil level is mainly regulated by G-CSF, a
cytokine and drug, which is widely used in the septic patient with neutropenia. This review will briefly summarize the role of
neutrophils and the therapeutic effect of G-CSF in sepsis. We further suggest that targeting neutrophil function to modulate the
balance between innate immunity and inflammatory injury could be a worthwhile therapeutic strategy for sepsis.

1. Introduction

SIRS (systemic inflammatory response syndrome) and sepsis
are two different entities of the same disease complex both
leading tomultiorgan dysfunction and eventually death of the
patient.

SIRS is defined as an overwhelming systemic inflam-
mation without infectious component. In contrast, sepsis is
a potential fatal medical condition that is characterized by
a severe systemic infection accompanied by a dysregulated
systemic inflammation [1]. Experimentally, SIRS is often
induced by injection of LPS, whereas the frequently used
model of sepsis is based on the intra-abdominal inoculation
of fecal suspension.

The causes for SIRS and sepsis could be manifold.
SIRS can develop as sterile complication of severe trauma,
extensive burns, shock, or severe local inflammation such

as pancreatitis. The concomitant inflammatory response to
the increasing endotoxin levels may result in a vicious cycle
leading to SIRS. Sepsis can result from any local or systemic
infection and is frequently associated with increased blood
levels of endotoxin.

Severe sepsis is amajor cause of death in the intensive care
unit (ICU) of hospitals and affects millions of people around
the world each year. Despite an overwhelming increase in
our knowledge regarding the pathogenesis of sepsis and the
subsequent advances in clinical care, sepsis still accounts for
an unacceptable high mortality ranging from 25 to 30% [2].

2. Neutrophils Are the Major Cell Type
Involved in SIRS and Sepsis

2.1. Neutrophil Is the Primary Line of Defense against Infec-
tion. The neutrophils are the major cell type of the innate
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immune system, which acts as primary line of defense against
invading microbial pathogens [3]. Neutrophils are terminally
differentiated hemopoietic cells with a short life span, which
respond to infection by migrating from the bloodstream into
the infectious site [3].

Efficiency of bacterial elimination is dependent on the
rapid recruitment of neutrophils from the circulation, which
is promoted by the release of chemotactic agents [4]. Once
at the site of infection, neutrophils capture the microbe
into a phagosome, which then fuses within transcellular
granules forming a phagolysosome. In the phagolysosome,
the microbe is destroyed by a combination of oxidative
(reactive oxygen species; ROS) and nonoxidative (enzymes,
proteases, and antimicrobial peptides) mechanisms [3].

2.2. The Activation of Neutrophils Induces an Overt Inflam-
matory Response and Causes Tissue Damage. Although neu-
trophils are important for pathogen clearance, the activation
of neutrophils also causes an overt inflammatory response
and tissue injury. The migration of neutrophils could poten-
tially extend neutrophil-endothelial cell interactions and
enhance vascular damage [4]. Local secretion of cytokines
by the neutrophils might change the nonthrombogenic prop-
erties of endothelial cells to a procoagulant state with the
initiation of disseminated intravascular coagulation (DIC)
and induce the production of nitric oxide in both endothelial
and smooth muscle cells [4]. The inducible nitric oxide
(iNOs) is mainly released by neutrophils and has received
considerable attention as a mediator of the tissue response to
sepsis [5].The key function of iNOs is to induce the synthesis
of nitric oxide (NO), which leads to vasodilation, cytotoxicity,
and inflammation [6].

3. G-CSF Mobilizes Neutrophils and
Enhances the Innate Immunity

3.1. Mobilization of Neutrophils Is Induced by Granulocyte
Colony-Stimulating Factor (G-CSF). G-CSF is the principal
granulopoietic growth factor regulating the maturation, pro-
liferation, and differentiation of neutrophil precursors and
has been used in patients with neutropenia [7]. It enhances
maturation of neutrophil functions such as chemotaxis,
phagocytes, and bactericidal clearance. It suppresses produc-
tion of tumor necrosis factor-𝛼 (TNF-𝛼) and promotes the
release of IL-1ra and soluble TNF receptor (sTNFr) [8]. It is
formed at the site of infection or inflammation but exerts its
primary action at a remote organ, that is, bone marrow [8].
G-CSF is able to stimulate the proliferation of neutrophils
and plays an important role in modulating the release of
inflammatory mediators in acute inflammation.

3.2. G-CSF Is Modulating the Innate Immune Response. Sev-
eral studies have documented the neutrophil-activating effect
of G-CSF [9], indicating that it should be considered a potent
activator of mature circulating neutrophils. It is capable
of priming the respiratory burst, inducing the release of
secretory vesicles, and modulating the expression of surface
adhesion molecules.The polymorphonuclear surface antigen
CD11b/CD18 expression and the plasma elastase-𝛼1AT com-
plex levels are increased following G-CSF administration.

G-CSF induced mobilization of CD34+ cells and
improved survival of patients with acute-on-chronic liver
failure (ACLF) [10].This effect was attributed to the increased
innate immune state, which potentially contributed to
prevention from sepsis andmultiorgan failure, and improved
survival in the study group [11]. A recent experimental study
has shown that the use of G-CSF recruited bone marrow-
derived macrophages into the liver, which, on engraftment
in the liver, did help in reducing the hepatic fibrosis and
supported hepatic regeneration.

4. G-CSF Is Used for Treatment of
Septic Patients

4.1. G-CSF Treatment Increased Immune Response of the
Patients. According to a large number of clinical trials, G-
CSF can decrease the incidence of infections and strengthen
host defense in patients. G-CSF administration increased
concentrations of IL-1ra, soluble TNF receptors (sTNFr),
and IL-10 and reduced TNF-𝛼, IFN-𝛾, and GM-CSF in
healthy volunteers [12]. Application of a single dose of G-
CSF resulted in the upregulation of neutrophils. These newly
formed neutrophils were well equipped against bacterial
infections in terms of Fcy RI expression, Fcy RI-dependent
antibody-dependent cellular cytotoxicity, and strong-surface
CD14 expression. In contrast the biological significance of
the decreased surface-expression of Fcy RI11 and the high
intracellular LAP content still needs to be elucidated.

4.2. G-CSF Has Beneficial Effects in Experimental Models of
Sepsis. G-CSF has been used successfully in the past to pre-
vent and to treat experimentally induced sepsis, for example,
using the cecal ligation and perforation (CLP) model in rats
and mice [13, 14]. It has been reported that the combination
of G-CSF application and antibiotic prophylaxis was themost
efficacious treatment in rats with polymicrobial peritonitis
[15]. Prophylaxis with G-CSF increased the survival rate,
decreased the bacterial load, and promoted the production of
inflammatory cytokines directly, as demonstrated in experi-
ments [16].

The protective effects were at least partially related to
increased neutrophil function, as studies proved that similar
phenomena were observed by increasing the neutrophil
secretory proteins. Singer observed in a model of iNOs
knock-out mice that the iNOs derived NO is a determinant
of the proinflammatory phenotype acquired by the hepatic
microvasculature during sepsis [5]. Luo et al. found that the
neutrophil extracellular trap had a proinflammatory role in
abdominal sepsis and regulated the pulmonary infiltration of
neutrophils and tissue injury [17].

The results might provide insights and guidance for the
application ofG-CSF and antibiotic in the perioperative treat-
ment of patients who are susceptible to infection following
intra-abdominal surgery.

4.3. G-CSF Treatment of Patients with Sepsis Leads to Con-
troversial Results. It has become well accepted that sepsis
is composed of two, often concomitant, phases (Figure 1):
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Figure 1: The development of sepsis has two phases, that is, activating and suppressing phase. The activation of the innate immune system
can lead to a balanced response that can trigger the elimination of invading pathogens and the recovery of tissue but can also lead to an
unbalanced response that can induce hyperinflammation or immune suppression.

an immune-activated phase and an immune-suppressed
phase [1]. Identification of two distinct phases of sepsis
calls for a stage dependent therapy. However, it remains
difficult since the two stages can be hardly distinguished in
experimental models but much less in patient with sepsis.

Therefore, treatment strategies targeting only one phase
may fail and cause mortality.

G-CSF is frequently and successfully used in patients with
severe neutropenia, who are at risk of sepsis [18]. However,
when used in clinical trials to treat ongoing severe sepsis
or when given as prophylactic treatment, G-CSF did not
result in a clear benefit (Table 1). It is reported that periop-
erative G-CSF administration was effective in upregulating
immune function in patients subjected to major surgery. G-
CSF administration resulted in increased levels of natural
circulating antagonists of TNF-𝛼 and IL-1, that is, TNF-R
p55/p75 and IL-1ra in patients, thus increasing the threshold
of triggering the inflammatory reaction. Perioperative pro-
phylaxis with G-CSF in high-risk colorectal cancer patients
resulted in improved recovery [19]. In acute-on-chronic liver
failure (ACLF) patients, treatment of G-CSF significantly
decreases the risk of sepsis [10]. Additionally, G-CSF is used
in the treatment of neonates and adults with infection [20].

Although G-CSF administration is associated with a
longer duration of survival in patients with severe sepsis, a
meta-analysis from Bo et al. indicated that G-CSF therapy
did not significantly reduce the overall mortality at 14 days or
28 days or in-hospital mortality in patients with sepsis [21].
Nelson et al. reported that G-CSF treatment did effectively
increase neutrophil levels but did not affect the mortality rate
of the patient with community-acquired pneumonia [22].
A multicenter clinical trial of G-CSF had shown similar
results that the G-CSF treatment did not substantially reduce
mortality and complication rate in patients with pneumonia
and severe sepsis [23]. The clinical trials in nonneutropenic

septic patients indicated that the use of G-CSF decreased the
risk of sepsis in nosocomial pneumonia patients, although
the effect did not reach statistical significance [24]. Similarly,
a clinical observation from melioidosis patients indicated
that G-CSF treatment was associated with longer survival
duration but was not associated with an overall survival
benefit [25]. Another study from the same group showed
that the G-CSF treatment did not improve the outcome
in patients with septic shock, [26]. Altogether, the G-CSF
administration in infectious disease was not associated with
a clear therapeutic benefit (Table 1).

5. The Therapeutic Effect of G-CSF
Might Be Enhanced by Reducing
the Inflammatory Response

5.1. G-CSF Treatment Induces LPS Sensitization. Our own
results demonstrated that G-CSF pretreatment was not only
mobilizing neutrophils but also inducing LPS sensitization
to inflammatory response [27]. The inflammatory response
contributed to bacterial clearance but did become deleterious
if circulating LPS was abundant. Therefore, both compo-
nents of the disease—the state of innate immunity and the
inflammatory response—have to be addressed appropriately
to maximize the therapeutic efficiency of GCSF in sepsis.

According to the sepsis treatment guidelines [28–30],
therapy consists of elimination of the septic focus by early
antibiotic treatment (“hit early, hit hard”) as well as support-
ive therapy consisting of volume resuscitation and mainte-
nance of organ function. Antibiotic treatment is very efficient
to reduce the bacterial load. However, the antimicrobial,
cytolytic properties of antibiotics may induce the release of
LPS from the outer membrane of Gram-negative bacteria
[31]. Antibiosis does not address the effect of high circulating
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endotoxin levels. Current guidelines do not call for reducing
the overwhelming inflammatory response to circulating free
endotoxin. New evidence indicated that the controversial
clinical observations might be related to the G-CSF modu-
lated inflammatory response.

5.2. Strategies to Decrease the LPS Induced Inflammatory
Response. A number of strategies exist to reduce circulating
LPS levels or to minimize the response to LPS [32]. Elimina-
tion of LPS using polymyxin columns is troublesome because
of the unproven benefit, significant costs, and potential risks
[33]. Neutralization of LPS using antibodies reduced the LPS
induced inflammatory response [32]. Currently, vaccination
strategies to increase the elimination of pathogens are under
investigation [34]. None of these antiendotoxin strategies
reached wide clinical acceptance.

Minimizing the response to LPSwas explored by blocking
different pathways. Blockade of the interaction between LPS
and TLR4 signal pathway decreased TNF-𝛼 levels in LPS
induced SIRS model and E. coli induced sepsis model [35].
The intracellular signal transduction cascade can be blocked
to prevent the excessive induction of proinflammatory
cytokines. However, clinical trials using TNF-𝛼 antibodies
were not promising [36].

Recently TLR4 blockade gained increasing attention [37].
The TLR4 signaling pathway leading to LPS-mediated NF-
kappa B activation constitutes an important therapeutic
target for sepsis therapy. Various molecules are involved in
regulating TLR4-expression on the cell membrane and act as
new adjuvant therapies that are able toweaken the deleterious
effects of exaggerated host response to infection [38].

Eritoran tetrasodium is a nonpathogenic endotoxin ana-
log that antagonizes inflammatory signaling via the immune
receptor TLR4 [39]. Therefore, eritoran tetrasodium (E5564)
was investigated as promising molecular candidate to treat
sepsis [40]. Christ et al. proposed that E5531, a slightly
different analogue, would antagonize LPS activity at its cell-
surface receptor leading to inhibition of transmembrane sig-
nal transduction [41]. E5531 protected mice from lethal doses
of LPS and from viable E. coli infections in combination with
antibiotics. However, E5531 did not affect bacterial counts. In
contrast, additional administration of antibiotic dramatically
decreased blood bacterial counts, but plasma endotoxin levels
were concomitantly increased in these animals.

5.3. LBP Blockade Is a Novel Strategy to Reduce LPS Induced
Inflammatory Response. Our previous study indicated that
G-CSF pretreatment induced upregulation of LPS binding
protein (LBP) [27]. LPS binding protein (LBP) is an acute
phase plasma protein with a molecular weight of 60KD
that can be detected in the acute phase serum of different
species such asmice, rabbits, and human [42].The serumLBP
binds to the lipid A component of bacterial endotoxin and
facilitates its transfer to the CD14 antigen, which is needed
for triggering the inflammatory response via TLR4-NF𝜅B
signaling pathway [43].Martin et al. reported that the binding
between LBP and LPS increased the bioactivity of LPS by
100 to 1000 times [44], playing an important role in trigger-
ing the inflammatory response in adult respiratory distress

syndrome patients and rabbit, respectively [45]. However,
upregulation of LBP, in turn, did augment the inflammatory
response [46, 47]. It has been shown in different models that
upregulation of LBP prior to an LPS challenge potentiates the
inflammatory response which may largely contribute to LPS
toxicity in sepsis [46].

Minimizing the inflammatory response to LPS can be
achieved by interfering with the interaction of LPS and LBP.
The inflammatory response to endotoxin can be decreased
by reducing circulating endotoxin levels or by reducing the
response of the organism to circulating endotoxin. Experi-
mental strategies include using LBP inhibitory peptide [35],
or LPS analogues [48], or using LBP deficient mice [47,
49]. Knapp et al. reported [50] that LBP(−/−) mice were
associated with diminished early tumor necrosis factor alpha,
interleukin-6, cytokine-induced neutrophil chemoattractant,
andmacrophage inflammatory protein production and atten-
uated recruitment of polymorphonuclear leukocytes to the
site of infection, indicating that acute inflammation was
promoted by LBP. However, LBP(−/−) mice were highly sus-
ceptible to E. coli peritonitis, as indicated by increased mor-
tality, earlier bacterial dissemination to the blood, impaired
bacterial clearance in the peritoneal cavity, and more severe
remote organ damage.

Le Roy et al. demonstrated that neutralization of LBP
accomplished by blocking either the binding of LPS to LBP
or the binding of LPS/LBP complexes to CD14 protected the
host from LPS induced toxicity [51]. Araña et al. showed that
application of the LBP inhibitory peptides blocked the LBP-
LPS interaction efficiently and prevented death of animals
in an endotoxin shock model by suppressing the TNF-𝛼
response to an LPS challenge [35]. This was confirmed in
another publication usingCLP-19, a synthetic peptide derived
from Limulus (anti-LPS factor) [52].

6. Outcome of Sepsis Was Improved by
Modulating Neutrophil Function and
Inflammatory Response

The role of G-CSF pretreatment and subsequent LBP upreg-
ulation was investigated in a SIRS model and a sepsis
model. Interestingly, In the SIRS model, G-CSF pretreatment
enhanced and accelerated the uptake of LPS by the liver.
Subsequently, G-CSF pretreatment caused an overwhelming
inflammatory response to LPS leading to the death of all
animals in response to an otherwise sublethal dose of LPS.
This response could at least be partially attributed to the
upregulation of LBP prior to the LPS challenge, as blocking
of LBP using an inhibitory peptide abrogated the effects of
G-CSF pretreatment [27].

In contrast, in the sepsis model, G-CSF pretreatment was
associated with an increased survival rate when compared
with an untreated control group [53]. This was paralleled
by a reduced inflammatory response. Of note, this response
could also be at least partially attributed to the upregulation
of LBP prior to the septic insult, as blocking of LBP using
an inhibitory peptide abrogated the effect of G-CSF pre-
treatment. Moreover, LBP upregulation during the infection
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Figure 2: Balanced modulation of LBP-effect by LBP blockade and G-CSF pretreatment in sepsis. (a) on one hand, LBP promotes bacterial
clearance, but on the other hand, it contributes to the sensitization of inflammatory response via activation of NF-𝜅B signaling pathway. (b)
Interfering with the LBP-mediated inflammatory response by LBP blockade reduces the inflammatory injury and improves outcome after
septic insult.

has seemingly a dual function. Yang et al. found that LBP
deficient mice showed delayed neutrophil influx in case
of a peritoneal infection [54]. This led to the idea that
LBP might have a dual role: augmenting the inflammatory
response to bacterial toxin such as LPS and contributing
to bacterial elimination via the associated and enhanced
neutrophil infiltration (Figure 2). These two functions might
help to explain that either LBP blockade or G-CSF treatment
alone was not useful in the therapy of patients with severe
sepsis.

7. Conclusion

Theseeming contradictory results above support the idea that
augmenting the neutrophil response via G-CSF treatment
is a two-edged sword. Elimination of bacteria by increasing
the innate immunity seemed improved via the mobiliza-
tion of neutrophils, whereas LPS response was augmented
via upregulation of LBP [47]. Therefore, these evidences

suggest that the therapeutic strategies by combining the
increased bacterial elimination via improving the innate
immunity and decreasing the inflammatory injury could be
a worthwhile therapeutic strategy for sepsis. Further G-CSF-
based therapeutic strategies should be designed to potentially
combine with effects of increasing bacterial elimination via
mobilization of neutrophil and decreasing the inflammatory
response by blocking the LPS response.
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