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Abstract

In this paper, we propose the reproductive stress hypothesis that describes the pregnant females response to reproductive events 
based upon the activation of the hypothalamic–pituitary–adrenal axis and sympathetic adrenomedullary system. The main 
components of the reproductive stress hypothesis can be summarized as follows: (1) events unique to reproduction including 
empathema, pregnancy, parturition and lactation cause non-specific responses in females, called active reproductive stress; (2) the 
fetus is a special stressor for pregnant females where endocrine hormones, including corticotropin-releasing hormones and fetal 
glucocorticoids secreted by the fetus and placenta, enter the maternal circulatory system, leading to another stress response referred 
to as passive reproductive stress and (3) response to uterine tension and intrauterine infection is the third type of stress, called fetal 
intrauterine stress. Appropriate reproductive stress is a crucial prerequisite in normal reproductive processes. By contrast, excessive 
or inappropriate reproductive stress may result in dysfunctions of the reproductive system, such as compromised immune function, 
leading to susceptibility to disease. The novel insights of the reproductive stress hypothesis have important implications for 
deciphering the pathogenesis of certain diseases in pregnant animals, including humans, which in turn may be applied to preventing 
and treating their occurrence.
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Introduction

The concept of stress was first introduced to the field 
of medicine and biology by the pioneer Hans Selye 
in 1936, where it was defined as ‘the non-specific 
response of the body to any demand’. Stress is a bodily, 
psychological or emotional factor that causes physical 
or mental tension. Any stimulation including external 
(environmental, psychological or social) or internal 
(disease or medical procedures) can induce stress. 
During times of heightened stress, the body activates 
the hypothalamic–pituitary–adrenal (HPA) axis (Smith 
& Vale 2006) and sympathetic adrenomedullary 
system (SAS) (Carter et al. 2015) in response to either 
real or perceived threats. This results in a cascade 
of hormone releases including adrenocorticotropic 
hormone (ACTH), corticotropin-releasing hormone 
(CRH), cortisol, epinephrine (E) and norepinephrine 
(NE) (Chrousos 2000). Once the stress response is 
activated, behavioral and physiological changes adjust 
homeostasis to increase the chances of survival (Van 
de Kar & Blair 1999). In general, reproduction is a 
physiological process in mammals and regarded as 
a special stressor. At the symposium on the Internal 

Medicine of Domestic Animals of the Chinese 
Association of Animal Husbandry and Veterinary 
Medicine in 2006, we put forward the first iteration of 
a reproductive cycle hypothesis. For over 10 years, we 
have supplemented and improved this hypothesis and 
its application which are reviewed herein.

Theoretical basis of the reproductive 
stress hypothesis

As a Chinese saying goes, ‘It is a matter of life or death 
when a mother faces delivering a baby after ten months 
of pregnancy’. Indeed, the reproduction process is 
life or death for the mother. Reproduction is a special 
stressor that overcomes the effect of routine external 
forces, activating a stress response that we refer to as 
reproductive stress. Herein, we define reproductive 
stress as the non-specific response of the body to 
reproductive activities including the estrous cycle, 
pregnancy, parturition and lactation. According to 
our hypothesis, reproductive stress includes active 
reproductive stress, passive reproductive stress and 
fetal intrauterine stress (Fig. 1).
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Active reproductive stress

The reproductive stress that activates the maternal HPA 
axis and SAS is designated as active reproductive stress 
in our hypothesis. Basal HPA activity varies with the 
fluctuation of the estrous cycle (Viau & Meaney 1991, 
Atkinson & Waddell 1997) and is highest at the end of the 
follicular phase or at the beginning of the luteal phase in 
human beings (Altemus et al. 2001). This is because both 
ACTH and cortisol as well as hypothalamic CRH content 
are increasing (Atkinson & Waddell 1997). Additionally, 
during proestrus, catecholamines increase rapidly before 
ovulation. This suggests that estrous can be a stressor. 
The enhanced HPA activity during proestrus may serve 
as a protective mechanism for successful reproductive 
activity during estrous phases (Viau & Meaney 1991).

To provide an appropriate intrauterine environment 
for the developing fetus, the maternal HPA system 
undergoes crucial alterations (Oyola & Handa 2017, 
Gilles et al. 2018). Although some studies have reported 
a plateau in total plasma cortisol concentrations and 
alleviation in HPA axis stress responses during late 
pregnancy (Russell et  al. 2008), other studies have 

demonstrated that the HPA axis and SAS are continually 
activated during pregnancy and parturition (Jung et al. 
2011, Gilles et  al. 2018). The maternal serum cortisol 
concentrations increase to 3-times the nonpregnant level 
throughout pregnancy in parallel to the rise in plasma 
corticosteroid-binding globulin (CBG) (Jung et al. 2011). 
The elevation of glucocorticoids and CRH in maternal 
and fetal plasma is closely associated with parturition 
(McLean et  al. 1995), an indicator that parturition is 
an important event that leads to reproductive stress in 
pregnant females. Moreover, plasma levels of several 
components of the rennin-angiotensin-aldosterone 
system are increased during normal pregnancy (August 
et  al. 1995). Notably, placental production of CRH, 
which is stress sensitive (Christian 2012), can influence 
the timing of parturition, namely preterm, normal term 
or post-term labor (McLean et al. 1995, Mastorakos & 
Ilias 2000, Hobel et al. 2008).

In formulating the reproductive stress hypothesis, we 
consulted a large body of work to compare changes 
in maternal hormones related to general stress and 
reproductive stress (mainly pregnancy and childbirth) 
(Table 1). The results show that the changes in stress 

Figure 1 Mechanisms of regular stress and 
reproductive stress. ① Hypothalamus; ② 
pituitary; ③ locus coeruleus; ④ thyroid; ⑤ 
thymus; ⑥ adrenal cortex; ⑦ adrenal medulla; 
⑧ islet; ⑨ ovary; ⑩ fetus; ⑪ placental barrier 
and ⑫ maternal circulatory system. Regular 
stress includes hypothalamic–pituitary–adrenal 
(HPA) axis and sympathetic adrenomedullary 
system (SAS), as illustrated with black symbols. 
Reproductive stress includes active 
reproductive stress, passive reproductive stress 
and fetal intrauterine stress. Active 
reproductive stress: the fetus and the processes 
of pregnancy, parturition and lactation act as 
stressors, triggering the HPA axis and the SAS, 
as illustrated with blue symbols. Passive 
reproductive stress: fetal and placental 
corticotropin-releasing hormone (CRH) and 
corticosterone (CORT) are secreted into the 
maternal circulatory system, the CRH inhibits 
the hypothalamus-secreted CRH and 
stimulates the secretion of adrenocorticotropic 
hormone (ACTH). The free CORT immediately 
acts on target organs through the maternal 
circulatory system, as illustrated with red 
symbols. Fetal intrauterine stress: during 
pregnancy, the placental CRH/CORT, 
infections, changes in intrauterine 
environment, as well as inappropriate 
maternal behaviors are stressors for the fetus, 
as illustrated with green symbols.
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hormone levels during reproductive stress are consistent 
with those during general stress, where the levels of 
E, NE, CRH, ACTH and glucocorticoids in plasma 
are increased. The changes in other major hormones, 
inflammatory mediators and C-reactive proteins in the 
body are also similar. However, reproductive stress is 
different from general stress when considering certain 
hormones. For example, levels of both insulin and 
glucagon rise in late gestation (Saudek et al. 1975), but 
a reduction of insulin sensitivity is observed in normal 
pregnancy (Valsamakis et al. 2017).

This accumulating evidence indicates that 
reproductive activities, especially estrus, pregnancy and 
parturition are important stressors that can lead to a state 
of active reproductive stress.

Passive reproductive stress

The fetoplacental unit is an essential, special stressor 
that causes the secretion of endocrine hormones 
including CRH and glucocorticoids. During gestation, 
CRH production in the placenta (mainly in humans 
and other anthropoid primates), decidua and fetal 
membranes are responsible for the dramatic rise in 
circulating maternal immunoreactive CRH from the 
first trimester of pregnancy (Mastorakos & Ilias 2003), 
keeping pace with the maturing fetus during the second 
and third trimesters. In addition to the maternal sources, 
the mature fetus can also produce CRH, which causes 
the maternal CRH to peak during labor (Chen et  al. 
2010). The responsiveness of the mother to the fetus is 
termed passive reproductive stress in our hypothesis. It 
is distinct from active reproductive stress that involves 
maternal activation of the HPA axis and SAS. CRH acts 
on the fetal pituitary through CRH receptors, which can 
activate the fetal HPA axis. This leads to the release of 
ACTH, which acts on fetal adrenal glands and produces 
large amounts of cortisol and DHEAS (Ravanos et al. 

2015). High cortisol concentration promotes fetal lung 
maturation and gene expression of CRH, prostaglandin 
and oxytocin in the placenta. Moreover, fetal CRH is 
regulated by fetal CRH-binding protein (CRH-BP) and 
glucocorticoids. CRH-BP can prevent placental CRH 
from overstimulating the pituitary gland, which may 
be one of the reasons for the mild elevation of ACTH 
levels in maternal blood (Thomson 1998).

Fetal intrauterine stress

Within the uterus, the fetus is vulnerable and exposed 
to many forms of stressors, including uterine tension, 
oligohydramnios, and potential intrauterine infection 
derived from disease, smoking or alcohol in the 
bloodstream. The responsiveness of the fetus to these 
stressors is called fetal intrauterine stress. Activation of the 
HPA axis is the main adaptive response of fetal intrauterine 
stress (Maršál 2018). However, the feedback of CRH by 
cortisol in intrauterine tissue is significantly different from 
that of the adult HPA axis (Menon et al. 2016). The former 
is a positive feedback loop, which produces exponential 
glucocorticoids before parturition, synchronizing with 
delivery and fetal organ maturation. However, premature 
birth occurs if the intrauterine environment is too extreme 
for fetal survival (McLean & Smith 1999).

The sequence of events between mother and fetus 
that trigger parturition in humans has not been fully 
elucidated. The promulgated theories include fetal 
membrane senescence (Menon et al. 2016), progesterone 
withdrawal, maternal CRH release, fetal HPA axis 
activation, inflammatory and mechanical factors 
(Ravanos et  al. 2015). Our hypothesis posits that fetal 
intrauterine stress is the prime instigator of normal labor. 
According to the hypothesis, it is therefore predictable 
that multiple gestations will result in premature birth 
with the risk in triplets higher than for twins. Indeed, 
numerous reports confirm this response. In pregnant 

Table 1 Comparison of predominant hormones between regular stress and reproductive stress.

Hormones Regular stress Pregnancy or parturition References

E/NE Increase Increase Hydbring et al. 1999, Chrousos 2000, Gilles et al. 2018
CRH-ACTH-Glucocorticoid Increase Increase McLean & Smith 1999, Mastorakos & Ilias 2003, Jung et al. 

2011, Valsamakis et al. 2019
Renin-Angiotensin-Aldosterone Increase Increase August et al. 1995, Lumbers & Pringle 2014, Verdonk et al. 2014
Dopamine Increase Increase Ben-Jonathan & Maxson 1978, Tombeau Cost et al. 2017
Prolactin Increase Increase Baan et al. 2008, Wagenmaker & Moenter 2017
Prostaglandin Increase Increase Challis et al. 1997, Wagenmaker & Moenter 2017
Glucagon Increase Increase Saudek et al. 1975, Harp et al. 2016
Insulin Decrease Increase with insulin 

resistance
Saudek et al. 1975, Kamba et al. 2016, Valsamakis et al. 2017

Testosterone Decrease Decrease Carlsen et al. 2003, Oyola & Handa 2017
LH Decrease Decrease Baan et al. 2008, Wagenmaker & Moenter 2017
GnRH Decrease Decrease Sorem et al. 1996, Raftogianni et al. 2018
Progestation Decrease Decrease or functional 

withdraw
Mitchell & Taggart 2009, Oyola & Handa 2017

ACTH, adrenocorticotropic hormone; CRH, corticotropin-releasing hormone; E, epinephrine; GnRH, gonadotropin-releasing; NE, 
norepinephrine.
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marmoset models, scientists have showed that maternal 
peak and mean values for circulating CRH are correlated 
with fetal number. For example, pregnant females with 
triplets have higher CRH values than those with twins 
and those carrying a single fetus have the lowest value 
(Power et al. 2006). At present, premature birth risk is 
predicted by measuring plasma CRH concentrations. An 
overwhelming amount of data have demonstrated that 
the preterm delivery rate for multiple gestations is several 
times higher than for singletons (Heino et  al. 2016, 
Vogel et  al. 2018). One-third of triplets are delivered 
before 32 weeks of pregnancy (Papageorghiou et  al. 
2006). One study reported that the risk of preterm birth 
was nine-fold higher in multiple births than in singletons 
(Heino et al. 2016). An analysis of national data from 
19 European countries (2004–2008) found that the 
increased prematurity rates in most countries was driven 
by higher rates of multiple births, as well as higher rates 
of prematurity among multiple births (Zeitlin et al. 2013). 
In some instances, these risks have resulted in selective 
reduction, called multifetal pregnancy reduction (from 
three to two fetuses in the case of triplets), in order to 
reduce the risk of severe preterm birth and high risk of 
miscarriage (Papageorghiou et  al. 2006). In addition, 
the timing of parturition was significantly disrupted in 
experimental anencephaly (functional hypophysectomy) 
of the rhesus fetus, resulting in 30% preterm and 40% 
post-term delivery (Novy 1977), which strongly supports 
the importance of fetal intrauterine stress on initiation 
of parturition. In addition, fetal adrenal glands are large 
relative to adult adrenals (Mastorakos & Ilias 2003, 
Bronstein et  al. 2015), providing a powerful engine 
for childbirth.

Physiological consequences of reproductive stress

Obviously, reproductive stress plays a significant role in 
human and animal reproduction processes. It exerts a 
wide array of physiological consequences in maternal 
hematologic, metabolic, endocrine and immune 
systems and plays a key role in events underlying 
fetal organ development. Maintenance of elevated 
serum aldosterone and cortisol concentrations during 
pregnancy is essential for the normal gestational 
increase in uterine blood flow (Jensen et  al. 2005, 
Charkoudian et  al. 2017). Physiologically, plasma 
volume increases by 10–15% at 6–12 weeks of gestation 
and then increases rapidly until 30–34 weeks (Whittaker 
et al. 1996, Jwa et al. 2015). It is believed that this is 
an adaptive mechanism to expand the plasma volume 
allowing for appropriate utero-placental perfusion and 
indirectly supports fetal arterial oxygen tension, blood 
pressure and development of the HPA axis (Jensen 
et  al. 2002). Thus, reduction in maternal aldosterone 
and cortisol levels can disrupt both maternal and fetal 
homeostasis (Jensen et  al. 2002). This may result in a 
compromised maternal state of intrauterine growth 

restriction (West et al. 2014) and contribute to premature 
birth and neonatal morbidity (Schneiderman et al. 2017, 
Brue et al. 2018). Glucocorticoids are the determinants 
of cell proliferation inhibition, terminal differentiation 
stimulation and a basic switch for fetal organ maturation 
(Miranda & Sousa 2018). The most well-known function 
is to stimulate differentiation and functional development 
of the lungs (Busada & Cidlowski 2017), the primary 
adaptative feature of aerobic life (Wood & Walker 2015). 
Mothers showing signs of premature labor are widely 
administered antenatal glucocorticoids to accelerate 
fetal lung development and prevent respiratory distress 
syndrome in preterm infants (Brownfoot et  al. 2013, 
Busada & Cidlowski 2017). Historically, maternal 
tolerance of a semiallogeneic fetus was thought to be 
achieved through immunosuppression (Racicot et  al. 
2014). It is now well recognized that the maternal 
immune system not only adapts during pregnancy, but 
also actively participates in all stages of the reproductive 
process. While glucocorticoids have been suggested to 
regulate reproductive function through gonadotropin 
(Gore et  al. 2006) and glucocorticoid receptors (GRs) 
(Whirledge et al. 2015), recent studies have shown that 
female mice lacking GRs specifically in the uterus are 
subfertile, exhibiting defects in embryo implantation 
and subsequent decidualization related to inadequate 
remodeling of the endometrial stroma (Whirledge et al. 
2015). In addition to their effect on lung development 
and the reproductive system, glucocorticoids play an 
essential role in accelerating the development of several 
other organ systems, such as the fetal cardiovascular 
system (Unno et  al. 1999, Rog-Zielinska et  al. 2014), 
gastrointestinal tract (Lebenthal et  al. 1999), liver 
(Fowden et al. 2011) and brain (Buss et al. 2012) for the 
transition to extrauterine life. Late fetal glucocorticoids 
also regulate metabolic functions, including thyroid 
hormone secretion, glycometabolic enzyme activity 
in the liver and fat reserve mobilization for the brain 
and liver during the first postnatal days (Wood & 
Walker 2015).

Reproductive stress syndrome

However, reproductive stress is a sustained and 
prolonged process for pregnant females, potentially 
resulting in alteration of neuroendocrine events, 
changes in metabolism (Parisi et al. 2019), impairment 
of immune function and possible dysfunction of the 
reproductive system, which we designate as reproductive 
stress syndrome. Its clinical symptoms are complex 
and particular to reproductive activities but can be 
summarized into three categories.

First, an important clinical manifestation of 
reproductive stress syndrome is the abnormality of bone 
metabolism, which may result in osteoporosis over 
time. This can happen when maternal nutrition supply 
is insufficient or reproductive tasks are aggravated, 
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especially during the third trimester when the rate of 
fetal bone accretion is increasing. The maternal stress 
mechanism mobilizes the body to store nutrients to 
ensure the needs of offspring (Hacker et  al. 2012). To 
ensure fetal growth and lactation, mobilization of body 
reserves is needed to accelerate the loss of nutrients such 
as calcium (Eisman 1998, Kovacs & Ralston 2015). On the 
other hand, excess glucocorticoids have harmful effects 
on the proliferation and differentiation of osteoblasts 
as well as the survival of osteoblasts and osteocytes, 
leading to the acceleration of the apoptosis and/or 
autophagy of osteoblasts (Komori 2016). Meanwhile, 
large amounts of endogenous glucocorticoids decrease 
bone strength via interconnected decrements in bone 
angiogenesis, vasculature volume and osteocyte–
lacunar–canalicular fluid in osteoblasts and osteocytes 
(Weinstein et al. 2010).

A second clinical symptom of reproductive stress 
syndrome is reproductive disorders including sexual 
dysfunction in postpartum women (Khajehei et  al. 
2015) and the delay or absence of estrus. During the 
prepartum period, the reproductive stress mechanism is 
characterized by HPA axis activation and hypothalamic–
pituitary–gonadal axis suppression (Mitchell et al. 2005, 
Grachev et  al. 2014). High levels of CRH or arginine 
vasopressin secreted by the hypothalamus suppresses 
gonadotropin-releasing hormone and/or lutenizing 
hormone secretion (Dobson et al. 2003, Ciechanowska 
et al. 2018). Moreover, undernutrition or a large amount 
of body reserve loss results in the body’s negative 
energy balance, which induces persistently low levels 
of insulin (Lucy 2008) and decreases the expression of 
growth hormone receptors in the liver and the secretion 
of insulin-like growth factor-1 (IGF-1). This negatively 
impacts reproduction as insulin and IGF-1 are unable 
to synergize with the gonadotrophins on ovarian cells, 
preventing the dominant follicle from ovulating and 
delaying the resumption of the estrous cycle, thereby 
inhibiting reproductive function (Walsh et al. 2011).

A third clinical aspect of reproductive stress 
syndrome is the potential decrease in immune function 
resulting in increased disease during pregnancy and 
parturition. Pregnancy and the postpartum period 
are marked by high glucocorticoids levels, as the end 
products of reproductive stress, and may result in 
autoimmunity, chronic infections, major depression or 
atherosclerosis through a dysregulation of the pro/anti-
inflammatory and T helper (Th) 1/Th2 cytokine balance 
(Calcagni & Elenkov 2006). Free glucocorticoids and 
catecholamines systemically induce an inhibition of 
cytokines produced by antigen-presenting cells and Th1 
cells, like interleukin (IL)-12, interferon (IFN)-γ, IFN-α 
and tumor necrosis factor (TNF)-α and to an upregulation 
of cytokines produced by Th2 cells, such as IL-4, IL-10 
and IL-13 (Elenkov & Chrousos 1999, Elenkov 2003). 
Moreover, high maternal cortisol levels can suppress 
T-cell proliferation and reduce lymphocyte sensitivity to 

glucocorticoids via binding on GRs (Vianna et al. 2011). 
These changes negatively affect the immune system 
and anti-inflammation effects throughout the process of 
reproductive stress.

The important application of reproductive 
stress hypothesis

Novel insights into human diseases from the 
reproductive stress hypothesis perspective

The reproductive stress hypothesis can be used to predict 
the risk of emerging maternal diseases and pathogenesis 
of commonly seen diseases, such as pregnancy-induced 
hypertension syndrome (PIH) and gestational diabetes 
mellitus (GDM).

Cushing’s syndrome during pregnancy

Prolonged hypersecretion of free cortisol can induce 
Cushing’s syndrome (Bronstein et al. 2015, Caimari et al. 
2017). The presence of free cortisol can explain some 
of the maternal phenotypic changes associated with 
pregnancy such as light concentric obesity, moon face, 
fluid retention, supraclavicular fat pads (Wallace et al. 
1996), feeling nervous and agitated, as well as antenatal 
and postpartum depression (Kammerer et  al. 2006). 
Appreciation for this potential relationship emphasizes 
the importance of proper maternal care for successful 
health outcomes, especially for multiple pregnancies.

Various causes of CBG deficiency can aggravate 
Cushing's syndrome during pregnancy. The level 
of CBG is regulated by several relevant hormones, 
such as estrogen, and CBG decreases in the case of 
hyperthyroidism (Agbaht et  al. 2014). Thus, there is 
ample reason to suspect that hyperthyroidism and 
impaired liver function pose an increased risk of 
Cushing’s syndrome onset.

Maternal postnatal adrenocortical hypofunction 
syndrome, the significance of natural labor and the risk 
of cesarean

Fetal CRH and cortisol, exogenous hormones for the 
mother, are transferred to the maternal circulatory 
system and induce passive reproductive stress. 
Because of the negative feedback loop, high levels 
of free cortisol inhibit the secretion of CRH and 
ACTH, which may result in hypot halam ic–pi tuita 
ry–ad renoc ortic al hypofunction. A sudden withdraw 
of the exogenous hormones during labor may cause 
hypoadrenalism and may cause serious adrenal crisis 
in the pregnant woman. The stimulation of labor pain 
reactivates the HPA axis, which may be important for 
preventing the adrenal crisis and may also reduce 
the incidence of postpartum depression. Thus, 
spontaneous labor among women and animals has 
important clinical consequences.
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Currently, cesarean section (CS) is prevalent 
worldwide and it is a global concern. China stands 
out as one of the countries with the highest rates with 
about 50.0% of deliveries (Lumbiganon et  al. 2010, 
Wang et  al. 2017). Concomitantly, the number and 
rate of multiple births have dramatically risen, mainly 
attributable to reproductive technology such as in vitro 
fertilization. The CS rate for multiple pregnancies has 
also increased, largely due to the perception that CS can 
improve neonatal outcomes. Based on the reproductive 
stress hypothesis, at least two risks associated with CS 
can be predicted and prevented. The first is that CS may 
increase the risk of postpartum depression. Secondly, 
multiple gestations result in severe reproductive stress, 
particularly passive reproductive stress, which may lead 
to severe hypofunction of HPA that presents as shock, 
coma and/or death.

PIH and GDM

PIH and GDM are the main contributors to adverse 
maternal and fetal outcomes worldwide, especially 
maternal and fetal death. Indeed, PIH and GDM, 
both important components of metabolic syndrome 
(Veerbeek et al. 2015), are driven by similar determinants 
(Guariguata et  al. 2014) including biological and 
genetic history, depression, short stature, older maternal 
age and obesity or undernutrition (Werner et al. 2015, 
Dolin & Kominiarek 2018, Mizushiri et  al. 2018). 
Hypertensive pregnancy disorders, particularly GDM, 
are closely (Leng et  al. 2015), and possibly directly, 
linked with subsequent cardiovascular morbidity (Lykke 
et al. 2009). A survey of women delivering in Denmark 
from 1978 to 2007 showed that mothers with PIH have 
a 3.12-fold greater risk of type 2 diabetes (Lykke et al. 
2009). Another study reported the PIH-related morbidity 
among pregnant women in Simao City, Yunnan 
Province of China, was 3.6%, while the morbidity 
among impoverished immigrant women was 57.5% 
due to malnutrition (Li et al. 2006 in Chinese). Similar 
results were found for women with GDM. According 
to the global prevalence data of GDM (aged 20–49 
years) in 2013, the highest prevalence was found in 
Southeast Asia (25.0%) compared with 10.4% in North 
America and the Caribbean (Guariguata et al. 2014). It 
is estimated that about 90% of cases of GDM occur in 
low- and middle-income countries (Guariguata et  al. 
2014, Goldenberg et al. 2016).

The pathogenesis of PIH and GDM is not very clear, 
but the reproductive stress hypothesis may provide an 
explanation. Incremental levels of free CRH and cortisol 
can cause severe passive stress, resulting in elevated 
blood pressure and blood sugar during pregnancy. The 
passive reproductive stress is regulated by CRH-BP and 
fetal free cortisol. Approximately 90% of the cortisol in 
circulation is bound to proteins (CBG and albumin) that 
are inactivated (Lewis et  al. 2005) and the remaining 

unbound fraction is biologically active. If the CBG is 
low or has impaired function and albumin is low, the 
free cortisol increases markedly, thereafter affecting 
the HPA axis (Lewis et al. 2005). Theoretically, factors 
that can lower immunoreactive CBG and albumin as 
well as increase free CRH and cortisol levels, such as 
malnutrition, negative nitrogen balance, liver diseases 
and kidney dysfunction during pregnancy, may lead to 
PIH and GDM. Consequently, the activated HPA axis 
and SAS should be considered as a fundamental cause of 
PIH and GDM, inducing the increased risk for elevated 
blood pressure and diabetes (O’Keeffe & St-Onge 2013, 
Hayase et al. 2014).

Numerous studies have confirmed this hypothesis. 
With PIH for example, maternal malnutrition, 
encompassing being overweight, obesity and 
undernutrition (especially protein restriction), affects 
the HPA axis by reducing the function of placental 
11β-hydroxysteroid dehydrogenase type 2 enzyme 
(11β-HSD2). 11β-HSD2 is the fetoplacental barrier to 
maternal glucocorticoids, which oxidizes bioactive 
cortisol into bio-inactive cortisone (Salvante et al. 2017). 
This in turn increases fetal exposure to maternal cortisol, 
suggesting that maternal malnutrition may have an 
impact not only on nutritional programming, but also 
on fetal stress response (Micali & Treasure 2009), thus 
resulting in passive reproductive stress. Studies have 
shown that changes in 11β-HSD2 protein activity, which 
is expressed in the kidney, significantly affects blood 
pressure levels in healthy adults (Ferrari et  al. 2001). 
Hypermethylation of the 11β-HSD2 promoter leads to 
higher levels of cortisol relative to cortisone through 
decreasing 11β-HSD2 synthesis, eventually facilitating 
the hypertensive phenotype (Ferrari et  al. 2001, 
Argentieri et  al. 2017). Meanwhile, high levels of free 
cortisol can affect the regulation of the kidney's sodium 
uptake, alongside aldosterone, and can therefore have 
a direct impact on salt-induced hypertension (Hunter 
et  al. 2014). Accordingly, it is acceptable to presume 
supplementation of albumin and CRH-BP, nutritional 
enhancement or reducing the levels of free cortisol may 
prevent PIH and GDM.

Malnutrition is a broad term that includes many different 
manifestations of nutritional deficiencies, including 
undernutrition and obesity. Its main characteristic is 
unbalanced energy intake and consumption. It is said 
that many low- and middle-income countries bear the 
double burden of malnutrition, with stunted growth, lack 
of essential nutrition, along with obesity in the national 
population and families (Black et al. 2013). In the past 10 
years, the nutritional health of pregnant women in China 
has been greatly improved, and undernutrition has been 
reduced, but the prevalence of relative malnutrition in 
pregnant women has increased. The fetus is developing 
rapidly over time and needs a lot of nutrients in the 
third trimester and may result in relative undernutrition. 
To meet the needs of the fetus, mothers mobilize their 
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nutritional storage (such as calcium), which easily leads 
to negative nitrogen balance and aggravated stress. 
This may subsequently induce HIP, GDM and other 
complications. Especially in China in 2015, following 
the implementation of the two-child policy, the situation 
became serious because of the increasing number of 
advanced-age pregnant females.

Prevention of reproductive stress syndrome

To reduce the negative effects of reproductive stress 
syndrome, certain measures may be taken to (1) ensure 
maternal nutrition supply is sufficient, especially balanced 
protein-energy supplementation to avoid the negative 
nitrogen balance during pregnancy and parturition; (2) 
modulate the level of CRH and free cortisol to avoid 
excessive stress; (3) improve the immune ability of the 
pregnant female and take preventative measures for 
osteoporosis; (4) ensure that all pregnant women have 
access to skilled care, including mental health services, 
during pregnancy, childbirth and the postpartum period; 
(5) use glucocorticoids with caution in the treatment of 
reproductive stress syndrome because of side effects that 
lower maternal immunity, or even worse, restrict the fetal 
development and growth as evidenced by reduced birth 
weight and impaired neuronal development reported 
for these fetuses (Newnham et  al. 1999). However, a 
replacement of glucocorticoids may be recommended 
for therapy of hypoadrenalism after parturition.

Conclusions

In summary, we presented the reproductive stress 
hypothesis describing the physiological responses to 
stress in pregnant females during reproductive events. 
Reproductive stress is a double-edged sword. On the one 
hand, appropriate reproductive stress is a prerequisite for 
performing successful reproductive processes. On the 
other hand, inadequate or excessive reproductive stress 
may impair reproductive functions and result in a number 
of complications. The reproductive stress hypothesis 
is helpful to account for the onset of parturition and to 
predict some diseases using a novel framework. Necessary 
interventions should be taken for preventing the negative 
consequences of reproductive stress syndrome.
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