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INTRODUCTION
The National Institutes of Health (NIH) established the 
Undiagnosed Diseases Program (UDP) to provide explanations 
to individuals with elusive disorders and to improve understand-
ing of rare and common disorders. Of the individuals or families 
admitted, ~15% are diagnosed with a known condition based 
on clinical evaluation.1,2 For those remaining without a diagno-
sis, the NIH UDP screens for potential genetic etiologies. The 
diagnoses have included known disorders that were previously 
unrecognized, atypical presentations of known disorders, com-
binations of several disorders, and completely novel diseases.2,3

Exome sequencing identifies thousands of exomic varia-
tions relative to the human reference sequence, and this often 
precludes generation of a tractable number of diagnostic 
hypotheses. This problem remains after filtering for predicted 
deleteriousness, conservation, and Mendelian modes of inheri-
tance.4 Many variants may even be true loss-of-function muta-
tions tolerated in the average human genome.5,6 Also, because 
the UDP often has DNA from only the proband or a few family 
members, or sometimes a few unrelated patients for each dis-
ease being studied, traditional linkage and cohort analyses are 
not possible.
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Purpose: Medical diagnosis and molecular or biochemical confir-
mation typically rely on the knowledge of the clinician. Although 
this is very difficult in extremely rare diseases, we hypothesized that 
the recording of patient phenotypes in Human Phenotype Ontology 
(HPO) terms and computationally ranking putative disease-associ-
ated sequence variants improves diagnosis, particularly for patients 
with atypical clinical profiles.
Methods: Using simulated exomes and the National Institutes of 
Health Undiagnosed Diseases Program (UDP) patient cohort and 
associated exome sequence, we tested our hypothesis using Exomiser. 
Exomiser ranks candidate variants based on patient phenotype simi-
larity to (i) known disease–gene phenotypes, (ii) model organism 
phenotypes of candidate orthologs, and (iii) phenotypes of protein–
protein association neighbors.

Results: Benchmarking showed Exomiser ranked the causal variant 
as the top hit in 97% of known disease–gene associations and ranked 
the correct seeded variant in up to 87% when detectable disease–gene 
associations were unavailable. Using UDP data, Exomiser ranked 
the causative variant(s) within the top 10 variants for 11 previously 
diagnosed variants and achieved a diagnosis for 4 of 23 cases undiag-
nosed by clinical evaluation.
Conclusion: Structured phenotyping of patients and computational 
analysis are effective adjuncts for diagnosing patients with genetic 
disorders.
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Encoding patient phenotypes using an ontology such as 
Human Phenotype Ontology (HPO) assists computational 
ranking and identification of causal variants.7–10 However, 
because only a small portion of human coding genes (~35% 
by our estimation) have been associated with disease, can-
didate variations in genes with unknown function or pheno-
typic consequences are difficult to evaluate. To address this, the 
first version of Exomiser prioritized causative variants using 
semantic comparisons of encoded mutant mouse phenotypes 
against the HPO-encoded patient phenotypes as well as vari-
ant frequency, pathogenicity, and inheritance models.10 Despite 
improving variant identification, Exomiser was still biased to 
identify causal variants in genes for which their orthologs had a 
phenotype annotated. We therefore hypothesized that querying 
human, mouse, and zebrafish mutant phenotypes together and 
the phenotypes associated with mutations of interacting pro-
teins can improve Exomiser function.

To test this hypothesis, we recorded structured phenotype 
descriptions utilizing HPO and performed Exomiser analysis 
of sequence variants from 32 UDP families (9 diagnosed and 
23 undiagnosed). This showed that ontology-based phenotype 
analysis, cross-species integration, and protein–protein asso-
ciation walking aid the prioritization of candidate variants and 
lead to more efficient diagnoses as well as to the generation of 
plausible novel disease–gene hypotheses.

MATERIALS AND METHODS
Human subjects
Patients or their guardians gave written informed consent to 
protocol 76-HG-0238, approved by the Institutional Review 
Board of the National Human Genome Research Institute. We 
analyzed 9 families diagnosed by the UDP clinicians and 23 
families whose affected members remained undiagnosed when 
we began this investigation.

Patient phenotype documentation and curation
As culled from medical records, the patient phenotype was 
recorded using the PhenoTips (http://phenotips.org)11 tool using 
HPO, curated by members of the Monarch Initiative according 
to qualitative guidelines and quantitative graph-based metrics 
(http://monarchinitiative.org/page/services), and approved by 
the attending physician.12 Positive HPO terms were exported 
from PhenoTips and used for Exomiser analysis (Supplementary 
Table S1 online); negative and onset of disease terms are not cur-
rently utilized by the algorithm. For families with phenotype 
data from multiple affected individuals, we used the intersection 
of the HPO terms. All patient data (phenotypes and exomes) 
were uploaded to the PhenomeCentral patient-matching portal 
(https://phenomecentral.org) to identify patients with similar 
phenotypes and candidate genetic mechanisms.

Exome sequencing
Exome sequencing and analysis were performed as described.13–16 
Further details are provided in the Supplementary Methods 
online.

Filtration and evaluation of exome variants
After filtering the variants for rarity, segregation, and delete-
riousness as described in the Supplementary Methods online 
(Supplementary Figure S1 online), the variants were submit-
ted to Exomiser for ranking. Note the variants are filtered sepa-
rately under compound heterozygous, homozygous recessive, 
de novo dominant, and X-linked inheritance models, and the 
output from these four models is combined before ranking by 
Exomiser. Following ranking of the variants by Exomiser, we 
reviewed the quality of alignment and genotype of the highest-
ranked variants as described in the Supplementary Methods 
online.

Ranking of variants using Exomiser
Using the data sources described in the Supplementary 
Methods online, Exomiser assesses variant candidacy by allele 
frequency, predicted pathogenicity, and inheritance model, as 
well as the likelihood of a mutation in the gene causing the dis-
ease based on the similarity of a patient’s phenotype to known 
gene-associated phenotypes in human, mouse, or zebrafish. 
Additionally, for candidate genes that have no terms that match 
the patient, the proximity of a candidate gene to another phe-
notypically similar gene via protein–protein associations is 
leveraged.

Genes were ranked for candidacy by Exomiser’s variant and 
phenotypic relevance score. The optimal method of combining 
these scores was generated by logistic regression on a training 
set of 10,000 Human Gene Mutation Database (HGMD) disease 
variants and 10,000 benign variants from the 1000 Genomes 
Project. The Weka data mining suite was used to run the logis-
tic classifier on files containing phenotype and variant scores 
for equal amounts of disease and benign variants. Ten-fold 
cross-validation was used to train and test the model (91.5% 
of variants were correctly classified in the cross-validation, κ = 
0.8296) and average parameters from the cross-validation runs 
were used to generate the final model17:

ExomiserScore
e phenotypeScore ia

=
+ − − + × + ×

1
1 13 96 11 61 11 61. . . var nntScore( )

Variant score
Exomiser’s variant score is a measure of how rare and patho-
genic the variant is. A variant frequency score between 0 and 1 
was calculated as previously optimized and described10:

Frequency score = max (0,1–0.13533e100f), where f is the 
maximal minor allele frequency seen in the 1000 Genomes or 
Exome Sequencing Project (ESP) between 0 and 1.

Predicted pathogenicity scores for missense variants (0 
[benign] and 1 [pathogenic]) were obtained by taking the max-
imum score for the variant from Polyphen2, MutationTaster, or 
1 minus the SIFT score. For other classes of variants, the patho-
genicity scores were assigned as described.10 The final vari-
ant score was the product of the pathogenicity and frequency 
scores. When no data were available from all three algorithms, 
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a default variant score of 0.6 was used. For compound hetero-
zygous pairs, the final score was the average of the final variant 
score for the two highest scoring alleles for a gene.

Phenotypic relevance score
Similarities between a patient’s HPO phenotypic profile and 
known gene–phenotype annotations in human, mouse, and 
zebrafish were scored by semantic similarity.18 This approach 
allows related, but nonexact, phenotypes to be detected and 
is used to generate a similarity score based on how alike the 
terms are and how specific the match is. Exomiser generates 
a phenotype score between 0 and 1 by pairwise comparisons 
between the HPO-annotated disease or patient and any annota-
tions present for the human (Figure 1a), mouse (Figure 1b), or 
zebrafish genes being assessed.18.

The Exomiser algorithm also compares patient phenotypes to 
the phenotypes of nearby genes in a protein–protein association 
network. The network was defined by high-confidence (>0.7) 
interactions from STRING (Search Tool for the Retrieval of 
Interacting Genes/Proteins), version 9.05. The high-confidence 
interactions include direct (physical) and indirect (functional) 
protein–protein interactions, as well as associations transferred 
by orthology from other species or obtained through text 
mining19 (Figure 1c). To score proximity to a candidate gene, 
Exomiser used a random-walk method previously optimized 
for candidate gene identification20,21: starting from the candi-
date gene, the walker moved randomly around the network 
with a restart probability of 0.7, and the final output was a prob-
ability vector summing to 1 and giving scores between 0 and 1 
depending on the proximity to the candidate gene. The prox-
imity score for that gene was used to weight each phenotypic 
relevance score. After scoring all candidate genes for variants 
obtained from a filtered exome, the network analysis scores are 
scaled to 0 to 0.6 based on their rank to give the final pheno-
typic relevance score. The maximum value of 0.6 was based on 
optimizations in the known disease variant simulations. The 
final phenotypic relevance score is the maximum score of the 
comparisons between the disease/patient phenotypes and the 
human, mouse, or fish annotations for the candidate gene or its 
neighbors in the interactome.

Code availability
Exomiser can be used online or downloaded as a command 
line tool for local use (https://www.sanger.ac.uk/resources/
software/exomiser or ftp://ftp.sanger.ac.uk/pub/resources/
software/exomiser/downloads/exomiser).

Exomiser benchmarking
Benchmarking experiments for Exomiser were performed using 
10,000 simulated rare disease exomes based on 28,516 known 
disease-causing mutations from the HGMD database (http://
www.hgmd.org, accessed 1 March 2012, RRID:nif-0000-10459) 
and 1092 whole-exome variant call format (VCF) files from 
the 1000 Genomes Project (http://www.1000genomes.org/
data, 2 May 2013 release). Ten thousand exomes were chosen 

to effectively cover the range of known disease mutations and 
phenotypes. For autosomal dominant diseases, one heterozy-
gous mutation was added; for autosomal recessive diseases, 
either one homozygous mutation or two heterozygous muta-
tions were added to the 1000 Genomes VCF file. For these 
experiments, the phenotypic (HPO) annotations for the corre-
sponding disease in OMIM were taken on 1 August 2014 from 
the annotation files of the HPO team (http://compbio.charite.
de/hudson/job/hpo.annotations/lastStableBuild).

These simulated exomes were run through the default settings 
of Exomiser, applying a 1% minor allele frequency cutoff and 
either no inheritance model or the known autosomal dominant 
or recessive model. To measure the ability of Exomiser to detect 
known disease–gene associations, we repeated the analysis with 
incomplete (maximum of five HPO annotations), noisy (two 
random HPO terms added), and imprecise (two of the HPO 
annotations replaced by the more general parent terms in the 
ontology) annotations. To measure Exomiser’s performance in 
identifying novel disease–gene associations, we repeated these 
runs but excluded from the prioritization algorithm the human 
disease–gene association being tested.

We used allele frequency data from the ESP (http://evs.
gs.washington.edu/EVS/) and the 1000 Genomes Project while 
running Exomiser on these simulated exomes. These analy-
ses were performed excluding the 1000 Genomes Project data 
as well, because using population frequency data from the 
same source as our simulated exomes provides unrealistically 
effective frequency filtration. To assess our performance, we 
measured how often the seeded HGMD causative gene and 
variant(s) were ranked first. An ordinal ranking method was 
used to resolve equivalently scored genes by assigning a unique 
rank to each of the ties; i.e., we sorted the equally scored genes 
alphabetically and assigned rank.

RESULTS
Evaluation of a phenotype-aware variant prioritization 
algorithm
To assess the performance of the enhanced Exomiser algo-
rithm, we performed a benchmarking analysis on 10,000 simu-
lated exomes (Table 1 and Supplementary Figure S2 online) 
seeded with HGMD variants according to various knowledge 
conditions and inheritance models (as described in Materials 
and Methods). Filtering to remove variants with a minor allele 
frequency above 1% was performed using either ESP and 1000 
Genome Project data or ESP data alone. The clinical pheno-
types associated with the HGMD variant were specified as HPO 
terms.

Depending on the inheritance model and frequency data, 
Exomiser ranked the causative variant as the top hit for 96–
97% of the simulated exomes. For imperfect phenotypic pro-
files (as described in Materials and Methods), Exomiser ranked 
the causative variant as the top hit for 94–96% when using all 
available frequency data and for 90–92% when using only ESP 
frequency data. In contrast, using a variant-based approach 
alone, the seeded variant was the top hit for only 20–77% of the 
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Figure 1   Semantic phenotype matching. For each variant that passed the frequency and Mendelian inheritance filters, the patient’s Human Phenotype 
Ontology terms were compared to all human diseases associated with the gene containing the variant in OMIM or Orphanet, (a) as well as any phenotypes 
associated with orthologs of the gene in mice or zebrafish (b). If there was no phenotypic match between the patient and any phenotypes associated with 
the gene, then the patient’s phenotype was compared with phenotypes associated with nearby genes in the protein–protein association network (c). When 
calculating the phenotypic score, the network considered the similarity to the patient phenotype and proximity of the matching gene to the gene in which 
the patient had a mutation.

a b

c

Table 1  Benchmarking of Exomiser on simulated samples produced by adding known disease variants from HGMD to 
unaffected 1000 Genomes Project exomes

1000 Genomes and ESP frequency data ESP frequency data only

Unknown 
inheritancea

Autosomal 
dominantb

Autosomal 
recessivec

Unknown 
inheritanced

Autosomal 
dominante

Autosomal 
recessivef

Known Full phenotype 96.8 97.1 97.1 95.8 95.8 96.5

Imperfect phenotype 94.0 94.3 96.0 90.1 90.4 92.4

Novel Full phenotype 73.6 78.8 86.6 52.3 62.9 64.2

Imperfect phenotype 61.4 68.1 78.8 37.4 47.4 48.2

Values are shown for the percentage of samples in which the causative variant was the top-ranked candidate. Known = the associated HGMD phenotype was in the 
database; novel = the associated HGMD phenotype was removed from the database; full phenotype = all HPO terms used to describe the HGMD phenotype were used; 
imperfect phenotype = incomplete, noisy, or imprecise HPO terms were used for the HGMD phenotype.

Mean number of genes after filtering (± s.d.m.): a395 ± 101; b377 ± 101; c38 ± 11; d895 ± 152; e625 ± 150; f370 ± 26.

ESP, Exome Sequencing Project; HPO, Human Phenotype Ontology.
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exomes using all available frequency data and was only 1–10% 
when using only ESP frequency data. For known disease–gene 
associations, it may have been expected that the causative gene 
would be ranked by phenotype matching as the top hit 100% of 
the time. In reality, some of the disease annotations were not 
specific enough to distinguish the seeded variants in the dis-
ease-associated gene from variants in other genes.

Having shown that Exomiser detects known disease–gene 
associations regardless of the inheritance model and with 
incomplete variant frequency data or phenotype, we tested its 
detection of novel disease–gene associations through deduc-
tion from phenotypically similar diseases, mouse and fish 
models, or protein-protein association (PPA) data. To do this, 
we removed the disease–gene association being tested from the 
underlying dataset. Exomiser ranked the causative variant as 
the top hit for 74–87% when using all available frequency data 
and for 52–64% when using only ESP frequency data.

To assess further the contribution of the human, mouse, 
and zebrafish phenotypes as well as PPA data, we used various 
combinations of each in the prioritization algorithm (Figure 2a 
and Supplementary Table S2 online). For known associations, 
the main contributor to performance was the matching of the 
clinical phenotypes to the known human disease phenotypes. 
For novel associations, looking at the individual species pheno-
type performances alone, mouse performed the best, followed 
by human, and then zebrafish. Combining human and mouse 
phenotype data with PPA data led to a significant performance 
increase relative to human or mouse alone. Combining human 
and fish phenotype data also increased performance relative to 

either alone. When we assessed the 45.4% of samples for which 
human alone was able to prioritize the variant as the top hit, we 
found that only 0.5% of these were no longer the top hit when 
mouse and fish data were added; i.e., addition of the model 
organism data does not lead to significant loss of true positives 
and increases the chances of detecting the causative variant. 
When assessing the performance of mouse or fish alone (68 
and 13%, respectively), it should be considered that only 91 and 
32% of the analyzed samples had phenotype data for the disease 
gene from mouse or fish, respectively. If one takes into account 
only samples with model phenotype data, then 75 and 41% of 
mouse or fish had the causative variant as the top hit when used 
as the only model data. To understand the contribution by the 
fish data that were added in this new version of Exomiser, we 
analyzed the 15% of simulated exomes for which using fish phe-
notypes plus PPA data ranked the causative variant as the top 
hit and found that in this dataset the human or mouse data had 
the same gene as the top hit as the fish in 78% of cases, with 
false positives from human and mouse outscoring the fish hit in 
the other 22%. Hence, the fish data currently serve as support-
ing evidence. Overall the combination of phenotype data from 
multiple species with PPA data improves detection of novel 
associations from 45% for a human phenotype–only approach 
to 74% with the combined approach.

Benchmarking on previously diagnosed families
We next assessed the performance of Exomiser when using 
the structured phenotypic descriptions and filtered VCF 
files for nine previously diagnosed families representing 11 

Figure 2  Benchmarking of Exomiser prioritization. (a) The contribution of human, mouse, and zebrafish phenotypes along with protein–protein 
association data to novel association discovery is shown for each alone and the various combinations. HGMD mutations were added to unaffected 1000 
Genomes Project exomes and run through Exomiser under conditions where the known disease–gene association was removed from the database for each 
run to simulate novel discovery. Bars show percentage of exomes in which the true variant was prioritized as the top hit. Results shown are after filtering 
to remove common (>1% minor allele frequency by Exome Sequencing Project data), synonymous, and noncoding variants. (b) Performance on previously 
diagnosed Undiagnosed Diseases Program disease variants. Shown are rankings of 11 previously diagnosed variants from nine solved families when analyzed 
under different conditions as indicated in the table below the chart: prioritization was based on the variant score alone (allele frequency and pathogenicity) 
and/or in combination with the phenotype score, and filtering was run with and without inclusion of pedigree-defined Mendelian filtering and inclusion of the 
disease–gene (D-G) association. Bars show how many of the 11 previously diagnosed variants were on the list of the top 1, 5, or 10 candidate variants. The 
Exomiser scores are reflected in the last two columns, which incorporate variant and phenotype. The best performance is observed with inclusion of a known 
Mendelian inheritance model; all 11 variants were in the top 5 or 10, with or without prior knowledge of disease–gene associations, respectively.
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disease–gene associations (Supplementary Table S5 online 
and Figure 2b). As detailed in Materials and Methods, the 
filtered VCF files contain the combined output after filtering 
for compound heterozygous, homozygous recessive, de novo 
dominant, and X-linked variants; therefore, Exomiser ranking 
is performed using this combined total; i.e., ranks are out of 
an average of 54 genes and the inheritance pattern of the diag-
nosed variant does not influence performance. The combined 
Exomiser score ranked each of the 11 disease-causing vari-
ants in the top seven hits of their respective lists, and 6 of 11 
ranked first. Five of the matches were based on known human 
disease phenotypes, one was via phenotypic similarity to the 
mouse model, and the other five were based on protein–protein 
association matches to other human diseases. For example, the 
AARS2 variants in UDP_4306 matched via the protein–protein 
association analysis to EARS2 and the disease combined oxida-
tive phosphorylation deficiency 12 (OMIM:614924).

To evaluate the effectiveness of the combined variant and 
phenotype score, we compared the Exomiser ranking to each 
component score. In the respective VCFs, the variant score 
ranked 8 of 11 disease-associated variants among the top 10 and 
1 was ranked first, whereas the phenotype score alone ranked 9 
of 11 disease-associated variants among the top 10 and 5 were 
ranked first.

To simulate prioritization of these variants as previously 
undescribed diseases, we removed the known disease–gene 
association from the Exomiser database. Exomiser prioritized 
all disease-associated variants in the top 10 of their respective 
lists (Figure 2b).

Using the parental and sibling DNA sequence facilitates the 
identification of sequence variants segregating with disease; 
however, these data often are not collected or are unavailable. 
The inability to filter variants for segregation with disease leaves 
a much larger list of plausible variants and increases the diffi-
culty of prioritizing candidate variants. To test Exomiser in this 
scenario, we compared the outcome for known causative vari-
ants when parental and unaffected sibling exome data were not 
used. Exomiser prioritized 9 of the 11 variants within the top 10 
candidates of each VCF file; of these, 5 ranked first (Figure 2b).

Exomiser prioritizes variants of undiagnosed individuals to 
aid diagnoses of known diseases
We next investigated whether Exomiser could prioritize vari-
ants and thereby suggest a diagnosis for individuals in the UDP 
cohort whose conditions had eluded clinical elucidation. Using 
VCF files filtered for Mendelian segregation and allele fre-
quency, Exomiser prioritized variants such that the clinical team 
made diagnoses for two individuals in a cohort of 21 (Table 2). 
Specifically, the diagnosis of UDP_6392 with Kufor-Rakeb syn-
drome (OMIM:606693) was based on clinical correlation with 
the biallelic ATP13A2 mutation resulting in ATP13A2 ranking 
as the top candidate of 107 genes. In addition, UDP_4964 was 
diagnosed with HARP syndrome (OMIM:607236) due to com-
pound heterozygous PANK2 mutations, with PANK2 ranking 
first of 221 genes.

Exomiser prioritizes variants with previously unknown 
disease–gene associations
To test if Exomiser could prioritize variants to allow molecu-
lar characterization of a new disease, we reviewed the results 
for the remaining 19 of the 21 families in the undiagnosed 
cohort. Exomiser analysis provided viable candidates for 17 
(Supplementary Table S3 online); most of the candidates were 
based on strong variant scores and indirect phenotype evidence 
via protein–protein associations. UDP_2058 and UDP_3478 
had no variants meeting our criteria for a deleterious mutation 
and with a gene frequency of <2% in the UDP population. For 
patients in two families affected by York platelet syndrome, a 
disorder of then unknown molecular cause, Exomiser priori-
tized mutations in STIM1 (Table 2). Subsequent study of two 
additional families with York platelet syndrome confirmed 
association with mutations in STIM1.22 PhenomeCentral inde-
pendently identified two of these patients (UDP_2542 and 
UDP_2543) as reciprocal best phenotype matches, with STIM1 
highlighted as the best-scoring shared genetic mechanism.

DISCUSSION
We show that computational comparison of patient phenotype 
to human, mouse, and zebrafish combined with PPA guilt-
by-association phenotype data improves computational pri-
oritization of exome sequencing variants. This new version of 
Exomiser was able to rank known disease-associated variants 
first in up to 97% of the HGMD spiked exomes, which is a 30% 
improvement over the original version that used mouse pheno-
types alone.10 In the clinical setting of the NIH UDP, Exomiser 
not only prioritized known disease-causing mutations with or 
without previous knowledge of these associations or the inheri-
tance model but also, when tested using data from patients 
undiagnosed by clinical evaluation, ranked a diagnostic variant 
within the top 10 for 4 of 23 cases. This latter observation sug-
gests that this computational approach at least partially over-
comes human bias to rank diagnostic sequence variants more 
efficiently. It is difficult to predict from the benchmarking pre-
sented here exactly how much Exomiser may be expected to 
increase the diagnostic rates from the 25–30% typically seen 
in exome sequencing projects. Computationally identifying a 
strong candidate is not the same as making a clinical diagnosis, 
particularly for variants found in genes not yet associated with 
human disease, and projecting performance from the 32 UDP 
patients we analyzed with their particular complexities may not 
be valid for all projects. However, we expect that the approach 
we have presented here would be useful for any group investi-
gating clinical diagnostics through exome sequencing.

Our observations also suggest that the difficulties faced in 
variant analysis due to the absence of parental genotype data 
can be overcome at least partially by deep structured pheno-
typing and the use of Exomiser. In the absence of parental 
sequence data, Exomiser ranked diagnostic variants for 9 of 11 
UDP patients within the top 10 of each VCF file. Inclusion of 
Mendelian segregation provided the most assistance in the con-
text of weaker phenotype matches; this emphasizes the need for 
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thorough structured phenotyping. To ensure such a thorough 
phenotype, we implemented both manual and computational 
quality assurance procedures to indicate the phenotype quality 
with respect to breadth and depth by comparison of all phe-
notype profiles for human diseases and model organisms (see 
Materials and Methods).

Because atypical and difficult to diagnose conditions do occa-
sionally arise from co-occurrence of genetic disorders, a test of 
the strength of a tool such as Exomiser is its ability to prioritize 
variants from each of the co-occurring conditions. When sib-
lings UDP_606 and UDP_608 were analyzed individually in trio 
analyses, Exomiser was able to rank the RAI1 and PCK1 muta-
tions as the first and third candidates for UDP_606 and PCK1 
and GRIN2B mutations as the second and fifth candidates for 
UDP_608 (Supplementary Table S4 online).2 Therefore, given 
an appropriate experimental design, Exomiser can effectively 
rank diagnostic variants of multigenic disorders.

As may be expected, Exomiser’s performance is challenged 
when the variant is in a gene not previously implicated in the 
disease. We observed a 10–41% reduction in Exomiser’s ability 
to rank known disease-associated variants as the top candidate 
when we simulated discovery of these variants through removal 
of these disease–gene associations in the benchmarking experi-
ments. There was a similar reduction in ranking for diagnos-
tic variants within the UDP cohort. Exomiser is nonetheless a 
valuable tool for generating hypotheses for undiagnosed dis-
ease because (i) the relevant variants remain highly ranked in 
a reasonably sized candidate list, (ii) known disease–gene asso-
ciations are rapidly prioritized or dismissed, and (iii) evidence 
behind each prediction is presented for evaluation.

Our benchmarking revealed that, for known associations, 
the matching of patient phenotypes to known human diseases 
was the main contributor to performance. For novel associa-
tions, human, mouse, and PPA data contributed additively to 
performance. In the vast majority of the simulated cases and 
all the positive controls we investigated, the addition of more 
species did not have an effect on the ability of Exomiser to iden-
tify the causative variant. In the 0.5% of simulated cases where 
the causative variant identified using human data was replaced 
by a false-positive model organism phenotype match, this was 
generally due to the human disease phenotypes not being very 
specific. Using model organism phenotype data alone was 
effective, with 75% (mouse) and 41% (fish) of exomes having 
the causative variant as the top hit when restricting to samples 
with existing animal models, or 68% (mouse) and 13% (fish) for 
all samples. Investigations of the exomes where zebrafish alone 
could rank the causative variant as the top hit revealed that in 
almost 80% of cases human and/or mouse matches already 
ranked it first. For nearly all the other cases, false-positive 
human and/or mouse matches outscored zebrafish. However, 
we would argue that it is currently important to include zebraf-
ish in Exomiser analyses as supporting evidence, and in the 
Exomiser output we do present evidence from all species; e.g., 
equivalent scoring human/mouse variants can be distinguished 
if one has good evidence from zebrafish as well. Future versions 

of the algorithm will formalize this by scoring the combined 
evidence from all organisms rather than the current strategy of 
taking the best score. The inclusion of zebrafish data also has 
provided valuable insight regarding how to best include addi-
tional species in future Exomiser versions. We have observed 
that there is an approximately twofold increase in phenotypic 
coverage of human coding genes in model organism orthologs 
(mouse, rat, zebrafish, fruitfly, and worm) over human genes 
alone (ClinVar, genome-wide association studies, and OMIM). 
It will therefore be important to leverage as many species as 
possible to have the deepest genotype–phenotype coverage of 
the human genome.

The diagnostic capability of the methodology considered 
herein can and should improve as the mutant model organ-
ism databases accumulate more data and as improvements are 
made to the phenotype comparison algorithm. Initiatives such 
as the International Mouse Phenotyping Consortium23 and the 
Zebrafish Mutation Project24 will greatly expand the available 
knowledge about gene–phenotype relationships. Also, incor-
poration of additional species’ phenotype data into Exomiser 
will improve its performance. Another improvement will come 
with the use of absent phenotypes. For example, the lung phe-
notype of UDP_2700 mapped well to Fraser syndrome but the 
absence of syndactyly and severe neurological symptoms was 
not considered, and thus Fraser syndrome ranked inappro-
priately high. These improvements are currently being imple-
mented in the OWLsim algorithm (http://www.owlsim.org)25 
and will be incorporated into the next version of Exomiser.

Some patients likely have genetic disorders unsolvable by 
exome sequencing and Exomiser alone. Besides the possibility 
that the initial assumption of a germline genetic basis for the dis-
ease might be invalid, exome data only cover 2% of the genome 
and are insensitive to certain types of mutations, including 
copy number variations and trinucleotide repeats. At present, 
the UDP uses single-nucleotide polymorphism chips as part 
of the standard analysis for patients. Adding these data to our 
analysis would have identified the intragenic MEGF10 deletion 
in UDP_2473.26 We have also previously shown that pheno-
typic semantic similarity analyses on copy-number variations 
help explain the genetic contribution to patient phenotypes.27 
Finally, we will need to adapt future versions of Exomiser to 
assess the significantly greater number of variations identified 
by whole-genome sequencing data and develop effective meth-
ods of prioritizing the mainly intronic and intergenic variations 
that these data provide.

Other approaches have also utilized phenotype data and pre-
dicted deleteriousness to prioritize exomic variants. PhenoVar 
is an exome analysis tool that prioritizes variants based on 
patient phenotype similarity to HPO terms associated with 
OMIM disease,9 and, as we have also observed, this compari-
son to known human phenotypes is frequently all that is nec-
essary.28 eXtasy also incorporates multiple lines of evidence, 
including clinical phenotypes to predict the deleteriousness of 
nonsynonymous mutations.29 PHEVOR compares patients and 
diseases by using an ontology propagation approach using the 
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Mammalian Phenotype ontology, HPO, and Gene Ontology 
terms.8 Although the PHEVOR method increases the number 
of genes that have phenotypic information and the amount of 
phenotypic data associated with a gene, it still requires that phe-
notype data are available for the gene containing the variant. 
Phen-Gen utilizes phenotype matching and a random-walking 
algorithm, but without taking advantage of model organism 
data;30 its benchmarking, using the same strategy with 1000 
Genome Project exomes, spiked HGMD variants and ESP 
and 1000 Genomes Project frequency data, revealed a 13–58% 
improvement over all existing prediction methods, including 
eXtasy, PHEVOR, and the previous version of Exomiser. The 
performance of the current version of Exomiser with 97% for 
both autosomal dominant and autosomal recessive disorders 
compares favorably with Phen-Gen’s performance of 92 and 
96% for dominant and recessive disorders, respectively. When 
using the same masking strategy to detect novel associations 
for autosomal dominant and recessive disorders, Phen-Gen 
performs at 56 and 89% compared to 79 and 87% for the cur-
rent version of Exomiser. Compared to the prior version of 
Exomiser, this represents an improvement in detection of novel 
associations by 4–13% and of known associations by 16–31%. 
This suggests that Exomiser is currently the optimal solution to 
detecting known and novel disease variants.

Exomiser takes advantage of cross-species phenotype data 
using semantic bridging ontologies,31 and this capability pro-
duces the increased performance we observed in our benchmark-
ing over other exome prioritization tools. This ability to stretch 
phenotypic coverage by leveraging cross-species genotype–phe-
notype data is particularly important in programs like the UDP, 
where the patients have unusual phenotypes that may be caused 
by variation in an as yet unstudied gene. We have already shown 
the utility of expanding the phenotypic matches by our ability 
to prioritize AARS2 variants in UDP_4306, GRIN2B variants in 
UDP_608, MED23 variants in UDP_2146/2156, and SMS vari-
ants in UDP_930/929 (Table 2). Interestingly, the SMS match 
is to the Sms mouse data generated by the International Mouse 
Phenotyping Consortium; no other Sms mutant mouse descrip-
tions reported the glucose and potassium abnormalities that 
were critical to identifying this variant. We therefore speculate 
that expansion of the phenotype coverage in the International 
Mouse Phenotyping Consortium database over the next few 
years will enable many more discoveries like this. The inclu-
sion of the protein–protein association data was also of particu-
lar importance for the UDP patients, where 5 of the 11 disease 
variants found in previously diagnosed families were detected 
by Exomiser via this link. In all cases, these patients were diag-
nosed with diseases known to be associated with the mutated 
gene. However, the patient’s phenotypic profile was so atypical 
that only weak matches at best were detected for these diseases. 
Instead, Exomiser detected strong phenotypic matches to pro-
tein–protein association neighbors of the mutated gene.

In summary, combining Mendelian segregation filters, pop-
ulation frequency, and variant predicted deleteriousness with 
structured phenotype data from humans and model organisms 

improves diagnostic efficiency and effectively identifies and 
prioritizes exome variants associated with known and new 
diseases. Comparing patient phenotype to human disease phe-
notype data is particularly useful to identify known human dis-
eases, whereas for those human genes currently unassociated 
with disease, increasing phenotypic coverage by using model 
organism and protein–protein association data allows genera-
tion of hypotheses for the genetic basis of a disease.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper 
at http://www.nature.com/gim
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