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Abstract: The presence of leaky vasculature and the lack of lymphatic drainage of small structures
by the solid tumors formulate nanoparticles as promising delivery vehicles in cancer therapy.
In particular, among various nanoparticles, the mesoporous silica nanoparticles (MSN) exhibit
numerous outstanding features, including mechanical thermal and chemical stability, huge surface
area and ordered porous interior to store different anti-cancer therapeutics with high loading capacity
and tunable release mechanisms. Furthermore, one can easily decorate the surface of MSN by
attaching ligands for active targeting specifically to the cancer region exploiting overexpressed
receptors. The controlled release of drugs to the disease site without any leakage to healthy tissues
can be achieved by employing environment responsive gatekeepers for the end-capping of MSN.
To achieve precise cancer chemotherapy, the most desired delivery system should possess high loading
efficiency, site-specificity and capacity of controlled release. In this review we will focus on multimodal
decorations of MSN, which is the most demanding ongoing approach related to MSN application in
cancer therapy. Herein, we will report about the recently tried efforts for multimodal modifications of
MSN, exploiting both the active targeting and stimuli responsive behavior simultaneously, along
with individual targeted delivery and stimuli responsive cancer therapy using MSN.

Keywords: mesoporous silica nanoparticles; tumor targeting; stimuli responsive; multimodal
decorations; targeted and controlled cargo release; cancer therapy and diagnosis

1. Introduction

Cancer is one of the most devastating diseases worldwide, characterized by unregulated cell
division and cell growth, a fundamental aberration in cellular behaviors [1]. Consequently, the utmost
ongoing challenge for the researchers is to restrain this dreadful disease. Even though, over the
past decades, several therapeutic advances have been implemented in cancer treatment, including
increases in survival rates [2], the metastasis and invasion associated with the malignant phenotype and
heterogenic behavior of this disease still demands new therapeutic strategies [3]. Conventional methods
for the treatment of cancer include chemotherapy, surgery and radiation therapy. Unfortunately,
surgery and radiation therapy are limited for the treatment of cancers localized to one area of the
body (solid cancers) [4]. On the other hand, although chemotherapy is widely used for the systemic
treatment of advanced or malignant tumors, most of the chemotherapeutic agents are associated with
severe side-effects of destroying the normal healthy cells and limited by cancer cell induced multidrug
resistance (MDR) [5,6]. Therefore, developing efficient targeted cancer therapeutic strategies to reduce
side-effects and overcome resistances is gaining increasing importance. Herein, researchers start to
exploit the enhanced permeability and retention (EPR) effect of solid tumors [7]. Due to the presence of
leaky vasculature and the lack of lymphatic drainage of small structures by solid tumors, nanoparticles
can easily accrue in the tumor and represent promising delivery vehicles [8–10].
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An ideal targeted nanoparticle delivery system should possess (i) the high loading capacity of
multiple diverse chemotherapeutics, (ii) efficiency to protect the cargo until reaching the final destination,
(iii) circulation stability in blood for prolonged periods without degradation and excretion, (iv) specificity
toward target cancer cells to achieve off-target zero-delivery, (v) the ability of intracellular release and to
facilitate controlled delivery of the cargo, and (vi) good biocompatibility and low toxicity [11–13]. Over
the past decades, various types of organic and inorganic nanoparticles have been proposed as delivery
vehicles to address those criteria [14–16]. Among the organic nanoparticles, liposomal-based drug
delivery becomes one of the most promising approaches because of its high biocompatibility, flexibility
in preparing various formulations, and easy synthesis to incorporate targeting moieties [17–19].
Furthermore, there are some already FDA-approved liposomal formulations; several polymeric and
micelle based organic nanoparticles are also in clinical trials for use in cancer therapy [20,21]. However,
the liposomal formulations and the polymer-based nanocarriers are limited, due to their invariant size
and shape, inadequate loading efficiency, uncontrolled release of the cargo, and change in size and
stability by changing loading parameters [22].

There are various inorganic materials developed so far as delivery systems trying to overcome the
loading inefficiency, leakage and the uncontrolled release of the cargo, e.g., metal oxide nanoparticles,
carbon nanotubes, and mesoporous silica nanoparticles (MSN) [23–27]. Few among the metal oxide
nanoparticles are already in process for cancer therapy and diagnosis. A clinical (early phase I) study is also
conducted with targeted MSN for image-guided operative sentinel lymph node mapping [28]. Particularly,
in comparison to other nanoparticles, the MSN exhibit numerous outstanding features, including good
biocompatibility, mechanical thermal and chemical stability, and most importantly, immense loading
capacity of various cargos and their possible time-dependent release, thanks to the large surface area, high
pore volume and narrow distribution of the tunable pore diameters of MSN [29,30]. For example, because
of comprising large surface area one can load nearly a 1000-fold higher amount of doxorubicin in MSN
compared to in the FDA-approved liposomal formulation Doxil® [31]. Moreover, silica is recognized by
FDA as safe to be used in cosmetics and as a food-additive [32].

A comparative discussion about the pros and cons of MSN with other well-known nanomaterials
for bio-applications was excellently provided by Chen et al. [33] and thus is discussed no further here.

In this review, we will discuss the efficacy of mesoporous silica-based systems for cancer therapy,
the surface modification of MSN for passive and active targeting cancer therapy, and the modification of
MSN for environment-responsive cancer therapy. Importantly, we will focus on multimodal decorations
of MSN, which is the most demanding ongoing approach with respect to the present perspectives,
and challenges related to MSN application in cancer therapy. Many reviews have summarized the
synthesis of MSN, active targeting and environment-responsive drug delivery using MSN, whereas
fewer involved in reporting the multimodal decorations of MSN for exploiting both the tumor targeting
and stimuli responsive delivery of therapeutics simultaneously. Herein, we will review the multimodal
approaches, including both the targeted delivery and stimuli responsive delivery simultaneously,
along with individual targeted delivery and stimuli responsive delivery using MSN. As well, we will
include the plausible applications of MSN in cancer diagnosis.

2. MSNs as Delivery Vehicles in Cancer Therapy

Despite the increasing numbers of anti-cancer drugs presented in the market and their ability to
create potent and lethal interaction with cancer cells, their therapeutic efficacy remains affected by
their low aqueous solubility and eventually not reaching a high enough concentration in the site of
absorption, i.e., gastrointestinal (GI) lumen [34,35]. As for an example, camptothecin (CPT) is very
effective at killing cancer cells in vitro, however, its clinical application has been limited due to poor
water solubility. Additionally, researchers have tried to modify CPT as water-soluble salts to make
intravenous injection possible, but this modification has altered its physicochemical characteristics and
hampered its antitumor activity [36]. Another potent anti-cancer drug, paclitaxel, is also limited in vivo
by its insolubility in aqueous systems, although it is very effective against various cancer cell lines [37].
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With the aim to improve the drug solubility and oral bioavailability, a growing number of novel
drug delivery systems, particularly nanostructures, have been developed [38,39]. The two foremost
parameters determining the efficacy of a drug delivery system are the loading capacity and drug release
profiles. To this end, with excellent features, including huge surface area and ordered porous interior,
MSN can be used as reservoirs to store different anti-cancer drugs with high loading capacity and tunable
release mechanisms [40,41]. As a promising drug delivery system, the pore size of MSN can be customized
to selectively load either hydrophobic or hydrophilic anticancer agents, and their size and shape can be
maintained to have the maximum cellular internalization [41,42]. There are mainly two ways that have
been used to load the drug molecules into pores of MSN. One can load either in situ during synthesis or
by the adsorption of cargo onto the pores of MSN (by physisorption or chemisorption). The adsorption
method is the most widespread approach for the loading of therapeutic molecules, especially for poor
water-soluble drugs [31,43]. During soaking of the MSN in a drug solution, the silanol groups present on
the surface of MSN play the key role as adsorption sites. As the surface of MSN is negatively charged in
the absence of any adsorbent under physiological conditions, the electrostatic adsorption method can be
applied for the cargo having positive charge, as well as the lodging of water-soluble therapeutic agents
into the pores of MSN. Moreover, the functionalization of MSN will increase the adsorbed amount of this
group of cargo having additional interactions between adsorbate and adsorbent [44]. Pore size of MSN is
another main controlling parameter to increase the extent of adsorption of hydrophobic molecules from
organic solvents, if the molecular size of the cargo is in the range of the pore size of MSN [43,45]. Up
until today, there have been various studies reported in favor of using MSN as efficient drug delivery
nanosystem in cancer therapy. He et al. have reported the enhanced solubility of paclitaxel after loading
into MSN [37]. Lu et al. have performed cytotoxicity assay with camptothecin (CPT)-loaded MSN and
showed the clear growth inhibition of pancreatic cancer-cell lines (Capan-1, PANC-1, AsPC-1), stomach
cancer-cell line (MKN45) and colon cancer-cell line (SW480) [36]. It was also reported that transplatin,
a less potent anticancer drug (an inactive isomer of cisplatin), when loaded in MSN, became effective
exhibiting enhanced cytotoxicity compared to that of cisplatin [46].

In this context we should also discuss about the protein adsorption and efficient protein delivery
by MSN. The poor solubility and large sizes of the therapeutic proteins and their enzymatic and
chemical degradation in the gastrointestinal tract commonly compromise their efficacy in cancer therapy.
Additionally, the co-delivery of therapeutic proteins along with other therapeutic molecules is a big
challenge for the conventional drug delivery systems, as the physicochemical properties of proteins,
such as size, surface charge, stability, and susceptibility are very different than the other therapeutic
molecules [47]. Herein, MSN are of special interest for protein delivery due to their possible easily
tunable pore sizes, facile surface multi-functionalization, and enormous interior and exterior particle
surface [48]. To expand the pore size of MSN depending on the sizes of the protein, generally two
ways have been employed, exploiting polymers/surfactants with longer carbon chains/co-surfactants
as templates, or the addition of suitable organic swelling agents to enlarge the sizes of surfactant
templates [49]. There are variety of reported additives used as pore size expanding agents, such as
N,N-dimethylhexadecylamine (DMHA), trimethylbenzene (TMB), aromatic hydrocarbons, auxiliary
alkyl surfactant, and long-chain alkanes [50]. Moreover, positively charged amino silyl reagents or
polymers have been widely used to compensate negative charges of the proteins, such as lysozyme,
bovine serum albumin and myoglobin [51]. Protein loading amount in MSN can also be increased
utilizing suitable surface functionalization, having strong electrostatic interaction between proteins and
the pore channels. In this regards, Slowing et al. have first employed MSN for the intracellular delivery
of native cytochrome c, a small protein, into human cervical cancer cells (Hela cells) [52]. There are
several other reports about the cytochrome c delivery in cancer cells using MSN [53,54]. Zhang et al.
have reported the high protein loading capacity of hollow silica vesicles and demonstrated cancer cell
inhibition by the intracellular delivery of RNase A [55]. Besides, Niu et al. have modified MSN by
employing hydrophobic C18-functionalization and Yang Y.N. et al. have utilized benzene bridged
MSN for the effective intracellular delivery of RNase A [56,57]. Nonetheless, Yang and collaborators
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have reported multi-shell dendritic mesoporous organosilica nanoparticles to deliver protein antigens
for cancer immunotherapy [58].

Along with efficient loading capacity, MSN have been used for controlled release of a variety of
pharmaceutical drugs (e.g., DOX, TPT, and CPT) and therapeutic proteins/peptides [59,60]. It can be
possible to release the cargo in a controlled manner, without any leakage before reaching the target
destination, with the help of “gatekeeper” entities that can seal the pores of MSN. There are infinite
gatekeepers reported for the end-capping of MSN to reside the drug molecules in the reservoir of
MSNs, e.g., biomolecules, peptides, lipids, polymers, dendrimers, macrocyclic compounds, etc. [61–63]
As reported below, we will discuss the gatekeeper systems to be used for controlled drug release.

3. Surface Modification of MSN for Passive and Active Targeting Cancer Therapy

Localizing MSN specifically into the cancer environment is one of the milestones to avoid
side effects and damage to healthy cells. Several efforts have been executed to target the MSN to
specific tissues, both through passive and/or active targeting [64]. At the beginning, MSN has been
developed as anticancer drug delivery systems, mainly based on their efficacy to store high amount of
chemotherapeutics into pores and exploit EPR effect for passive targeting to tumor tissues. In this part
of the review, we will discuss the EPR effect and passive targeted cancer therapy using MSN. Later
on, MSN surface modifications by conjugating targeting ligands have been introduced to enhance the
uptake of MSN in targeted cells. Different targeting moieties have been employed to the surface of
MSN, e.g., small molecules, aptamers, short peptides, antibodies and antibody fragments, etc. [31,65].
In the following part, we will review the targeted cancer therapy using MSN.

3.1. Passive Targeting

Since the beginning, the foremost important goal in chemotherapy is to achieve the tumor-specific
delivery of chemotherapeutics. In this regard, most nanoparticles including MSN can passively target
solid tumor tissue due to the EPR effect. In general, the body has its own pre-existing circulation
network for the supply of food, nutrients and oxygen to the small primary tumor until the diameter
exceeds 1–2 mm. Beyond this size, the tumor growth needs angiogenesis, i.e., the sprouting of new
blood vessels from pre-existing vessels around the tumor, in order to supply food, nutrients, oxygen,
survival factors etc. [66,67] Angiogenesis generates irregular blood vessels displaying a discontinuous
and single thin layer of flattened endothelial cells with an absence of the basal membrane. Hence,
nanoparticles having a diameter of at least 10 nm, which is the threshold of renal clearance, can leave the
blood vessels and penetrate into the adjacent tumor tissue through the discontinuous leaky membrane.
This effect is not applicable in normal tissue [68]. The penetrated nanoparticles remain longer in
the tumor tissue without being cleared by the immune system, as the solid tumors commonly lack
effective lymphatic drainage [69]. Moreover, particles having a diameter smaller than 4 nm can diffuse
through the leaky endothelium back to the blood circulation and be reabsorbed, but the nanomaterials
do not naturally return to the blood vessels, accumulating in the perivascular tumoral space [70].
In the nanomedicine field, this phenomenon is popularly known as the enhanced permeability and
retention effect, or the “EPR” effect. To avail the efficient passive targeting particle size, the morphology
and surface modifications of MSN have been considered. It is observed that the MSN should be at
least 10 nm in diameter and have an optimal size of 100–200 nm to avoid the renal clearance of the
particles [65]. To this end, Lee and co-workers have shown proficient cell death by the passive targeting
of MSN loaded with doxorubicin (DOX) to the tumor site in a melanoma model [71]. Importantly,
surface modifications of MSN also have a major influence to achieve efficient passive targeting by
prolonging the circulation time of MSN in blood and subsequently reducing the renal clearance [72].
It has been reported by Zhu and colleagues that introducing PEGylation on hollow MSN improves
cellular uptake in cervical cancer cells and mouse embryonic fibroblasts, compared to that of naked
particles [73]. Huan and colleagues have demonstrated efficient biodistribution, accomplishing an 8%
of the EPR effect at the tumor site in vivo of MSN functionalized with polyethyleneimine/polyethylene
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glycol (PEI/PEG), encapsulating doxorubicin together with P-glycoprotein siRNA [74]. With regard
to passive targeting, another important factor is the 10 to 40 fold elevated interstitial fluid pressure
(IFP) in solid tumors compared to normal tissue [75]. This pressure gradient may influence reduced
nanoparticle distribution in tumor site. Actually, the necrotic tissues that are often present in the larger
tumors and metastatic regions are highly hypovascularized, due to slower angiogenesis compared
to tumor growth. As a result, the IFP becomes very high and the delivery of nanoparticles to this
tumor region by passive targeting is hardly possible. Herein, the active targeting of nanoparticles
including MSN is gaining increasing importance and we will discuss the advantage of active targeted
drug delivery using MSN in the next part of the review.

3.2. Active Targeting

To deliver potent chemotherapeutics selectively to tumor environment, substantial progresses
have been made by exploiting tumor cell-specific or tumor-associated cell-specific receptors [76].
A receptor highly expressed on tumor cells or tumor associated cells (compared to the normal cells) is
a sensible target receptor for tumor specific drug delivery. If the surfaces of nanoparticles, including
MSN, are decorated with ligands able to interact selectively with those overexpressed receptors, the
specific retention and uptake of those nanoparticles by tumor cells will be enhanced. To design the
targeting ligands grafted to MSN, various receptors over-expressed on the surface of tumor cells or
tumor associated cells have been exploited (Figure 1) and we will discuss the decorated MSN mediated
active targeted cancer therapy in this part of the review. Usually, the decorated MSN are taken up by
the cancer cells via a receptor-mediated endocytosis process. Active targeting allows efficient particle
uptake by the tumor cell and tumor microenvironment [77].
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Figure 1. Plausible surface modifications of mesoporous silica nanoparticles (MSN) for active targeting
to the over-expressed receptors in cancer microenvironment.

3.2.1. Targeting Folate Receptor

One of the most exploited targeting ligands, folic acid, has been employed to decorate MSN for
targeting folate receptor, overexpressed in many tumors compared to healthy tissues [78,79]. The
folate receptors are four glycopolypeptide members (FRα, FRβ, FRγ and FRδ), among which the
alpha isoform, folate receptor α (FRα) is a glycosylphosphatidylinositol anchored cell surface receptor
and has been reported to be overexpressed in solid tumors, such as ovarian, cervical, lung, breast,
kidney, colorectal, and brain tumors [80]. In mostly 80–90% of epithelial ovarian cancers, other
gynecological cancers, lung cancers and breast cancers, the FRα is highly overexpressed and gaining
increasing importance to be exploited for targeted cancer therapy [81]. Considering this fact, several
research groups have reported the enhanced specific cellular uptake of MSN in various cancer cells,
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having overexpressed folate receptors by modifying MSN surface with folic acid [82–86]. Nonetheless,
using two different human pancreatic cancer xenografts on different mouse species, Lu et al. have
also shown dramatic improvements in tumor-suppression effect by using folic acid functionalized
camptothecin-loaded MSN in comparison with unfunctionalized MSN [87]. Moreover, along with
using folic acid, López et al. have decorated MSN with triphenylphosphine (TPP), in order to target
tumor cells, as well as the mitochondria of the tumor cells [88]. Conversely, instead of using folic acid,
Rosenholm et al. have used methotrexate (MTX) as both a targeting ligand and a cytotoxic agent for
cancer therapy, due to its high affinity for folate receptors and showed enhanced cancer-cell apoptosis
by treating MTX incorporated MSN relative to free MTX [89].

3.2.2. Targeting Transferrin Receptor

There are two subtypes of transferrin receptors (TFRs), TFR1 and TFR2, which complexes with iron
to facilitate iron metabolism in cells. Hence, the dysregulated expression of any subtype disorders can
impair iron metabolism and eventually induce tumorigenesis and cancer progression [90]. It has been
reported that TFR1 is abundantly expressed in many cancer types, e.g., liver, breast, lung, pancreatic,
and colon cancer cells [90,91], and thus can be exploited as an important target for drug delivery.
In order to improve the tumor specific delivery of MSN carrier, transferrin (Tf) which is a ligand of
TFR1, has been widely exploited in surface modification of MSN [92]. As evidenced by the available
studies targeting TFR1, Tf-modified MSN exhibit enhancement in nanoparticle uptake by Panc-1 cancer
cells [93]. Additionally, Montalvo-Quiros et al. have used MSN as nanovehicles decorated with Tf to
provide a nanoplatform for the nucleation and immobilization of silver nanoparticles (AgNPs) and
demonstrated that only the nanosystem functionalized with Tf can transport the AgNPs inside the
human hepatocarcinoma (HepG2) cells overexpressing Tf receptors [94]. Nevertheless, Tf-decorated
MSN have been exploited for sorafenib delivery in thyroid cancer therapy [95]. Importantly, the
overexpression of TFRs on the brain capillary endothelial cells (BCECs) of the blood-brain barrier (BBB)
and glioblastoma multiforme (GBM) provides a route to allow effective chemotherapeutic penetration
to the site of brain tumor [96]. Herein, few research groups have developed Tf-conjugated MSN to
deliver the chemotherapeutics to glioma cells across the BBB [97,98].

3.2.3. Targeting Integrin Receptor and Nuclear Targeting

Integrin receptors, the α/β heterodimeric transmembrane glycoproteins, are overexpressed on
angiogenetic endothelial cells and certain tumor cells, whereas they are absent (or present in basal
levels) in pre-existing endothelial cells and normal tissues [19,99]. This makes integrins, especially
αvβ3 integrin receptors, a promising target in cancer therapy and RGD (arginine-glycine-aspartic
acid) based peptides have found widespread exploitations for targeting chemotherapeutics to both
tumor and tumor vasculatures via the overexpressed integrin receptors [100]. Therefore, peptides
including the RGD motif have been widely used in surface decoration of MSN for targeted cancer
therapy [101–106]. Moreover, Pan et al. have shown the in vivo efficacy of doxorubicin-loaded MSN
grafted with RGD-motif. The same research group has further determined better tumor accumulation
and reduced tumor size by coupling cell-penetrating and nuclear-targeting TAT peptide to the MSN
along with RGD. Additionally, side effects of bare MSN to accumulate in liver and spleen have been
distinctly minimized by treating RGD/TAT-MSN [107].

3.2.4. Targeting EGF Receptor and HER2 Receptor

Epidermal growth factor receptor (EGFR or ErbB1), a tyrosine kinase receptor, is a key factor
in epithelial malignancies, in terms of enhancing tumor growth, invasion, and metastasis [108].
Overexpression of EGFR has been widely observed in many cancers including lung (especially
non-small-cell lung carcinoma), colon, ovary, head and neck and breast cancers [109]. As EGFR has
emerged as an attractive target for anti-lung cancer drug research, its ligand or antibody has been
extensively employed in capping moiety for the active targeting of MSN in lung cancer cells. For
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example, She et al. have used amine functionalized MSN to conjugate with EGFs (epidermal growth
factors) for targeting EGFR positive cells [110]. Sundarraj et al. have shown elevated accumulation of
EGFR-MSN-cisplatin drug delivery system in EGFR overexpressed lung adenocarcinoma cells (A549) than
that in normal lung cells (L-132). They have also used the non-small cell lung cancer nude mice model
to determine the increased and prolonged cisplatin intratumoral distribution and enhanced tumor-cell
apoptosis by treating EGFR-MSN-cisplatin [111]. On the other hand, Wang et al. have used cetuximab,
a monoclonal antibody of EGFR as a capping agent of MSN loaded with anti-cancer drugs including
doxorubicin and gefitinib, to specifically target lung cancer cells exploiting EGFR overexpression [112].

In addition to the EGFR, human epidermal growth factor receptor 2 (HER2)/ErbB2 is another
member of the ErbB family of type-1 tyrosine kinases and a proto-oncogene, with a vast role of ErbB
receptors in malignant transformation [113]. The overexpression of HER2 receptor in breast cancer
alongside lungs, ovary and gastric/gastroesophageal cancers plays a major role in the angiogenic
process and makes HER2 an important target in cancer therapy [114]. Furthermore, it has been reported
that HER2 specific antibodies or antibody-fragments (e.g., trastuzumab) have been used in the surface
modification of MSN for the selective targeting of breast cancer cells [115].

3.2.5. Targeting VEGF Receptor

The vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) play a critical role in
tumor angiogenesis and metastasis. Among the three receptors (VEGFR1, VEGFR2, VEGFR3), VEGFR2
is widely explored as a direct stimulator of angiogenesis [116]. In addition to its constitutive expression
on angiogenic endothelial cells, VEGFR2 is found to be overexpressed on several cancer cells such
as breast cancer, lung cancer, pancreatic cancer, glioblastoma, gastrointestinal cancer, hepatocellular
carcinoma, renal cell carcinoma, ovarian cancer, bladder cancer, and osteosarcoma cells [117]. To target
VEGFR2, Weibo and co-workers have used VEGF121, a natural VEGFR ligand which has a high binding
affinity for VEGFR2 and observed a strong, specific binding of the MSN surface coated with VEGF121

in HUVEC (VEGFR+), but not in 4T1 cells (VEGFR−) [118]. The same group has also demonstrated
delivery of the MSN encapsulating the anti-cancer drug, sunitinib in a significantly higher amount to
the U87MG tumor by targeting VEGFR exploiting VEGF121 ligand in comparison with the non-targeted
delivery [119]. Moreover, Zhang et al. have shown increased targeting ability and retention time of
anti-VEGFR2 targeted MSN in anaplastic thyroid cancer tumor-bearing mouse [120]. Bevacizumab or
related antibodies have been also exploited for targeting VEGF receptors.

3.2.6. Targeting Mannose Receptor and C-Type Lectin Receptor

Tumor-associated macrophages (TAMs) that exist in the tumor microenvironment promote
tumor immunosuppression, angiogenesis, metastasis, and relapse. TAMs expressing the multi-ligand
endocytic receptor mannose receptor (CD206/MRC1) have been suggested as a promising therapeutic
target for cancer therapy [121]. It has been reported that MSN coupled with mannosylated
polyethylenimine (MP) can target macrophage cells and enhance transfection efficiency through
receptor-mediated endocytosis via mannose receptors [122]. Moreover, the C-type lectin receptor is
also expressed exclusively by macrophages and exploited for cancer treatment. Lectin-functionalized
MSN have recently been experimented in a mouse colon cancer model [123].

3.2.7. Other Active Targeted Delivery

There are several other receptors that have also been exploited for targeted delivery using
surface-modified MSN. The overexpression of the insulin-like growth factor (IGF) receptor in
ovarian cancer has been employed for the efficient targeted delivery of doxorubicin entrapped
in surface modified MSN [124]. Quan et al. have developed lactosaminated MSN (Lac-MSN) for
asialoglycoprotein receptor (ASGPR) targeted anticancer drug delivery and showed the effectively
inhibited growth of HepG2 and SMMC7721 cells by treatment with docetaxel (DTX) loaded in
Lac-MSN [125]. The surface of the MSN has also been functionalized with the ligands of somatostatin
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receptors [126] and also with hyaluronic acid to target CD44 receptors [127]. Furthermore, Chen et al.
have shown the significantly larger tumor uptake of vasculature targeting anti-CD105 antibody (TRC105)
conjugated MSN, compared to untargeted nanoparticles in a murine breast cancer model [128]. The
same group has employed a TRC105 antibody fragment (Fab) for the surface modification of MSN to
target tumor vasculature [129]. Besides, Sweeney et al. have attached a bladder-cancer specific peptide
named Cyc6 to MSN for active targeting [130]. Apart from small molecules, peptides and antibodies,
the synthetic single-stranded DNA or RNA oligonucleotides (aptamers) have been used to decorate
MSN for targeting cancer cells [131,132]. Moreover, Nguyen et al. have shown the Toll-like receptor 9
mediated delivery of mesoporous silica cancer vaccine (antigen) to the dendritic cells (the body’s most
professional antigen presenting cells) [133].

4. Stimuli-Responsive Drug Delivery Using MSN

Although vast efforts have been devoted to active targeting therapy using MSN, the delivery
efficacy still needs to be strengthened. During the blood circulation and penetration into the tumor
matrix, anticancer drugs may leak from mesopores of MSN, leading to insufficient drug concentration
at the tumor site. To overcome this obstacle, “smart” MSNs-modified with environment-responsive
gatekeepers were designed. As the characteristics of tumor microenvironment differ from that of normal
tissues (e.g., acidic pH, high concentration of glutathione, etc.), MSN can be modified introducing
the moiety sensitive to the tumor microenvironment and release the cargo specifically at the tumor
site [134,135]. There are internal and external stimuli that have been exploited for the controlled drug
release (Figure 2). In this part of the review, we will discuss the pH, redox and enzyme internal
stimuli responsive gatekeepers and also the magnetic, light and ultrasound external stimuli responsive
gatekeepers frequently used to prepare stimuli responsive MSN.
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the cancer site.

4.1. PH-Responsive Gatekeepers

One of the most promising internal stimuli that has been employed for controlled drug release in
cancer therapy is to exploit the lower pH values in most of the tumors in comparison with healthy
tissues [136]. Actually, in cancer cells, because of high glycolysis rate, the production of lactic acid
is high, thus eventually reducing the pH value in the tumor region. There are various reports in the
literature regarding the pH-controlled delivery of chemotherapeutics by surface-engineered MSN in
cancer therapy. Besides, there are mainly two ways in which they have been used to decorate the MSN
for exploiting the pH sensitivity of tumor cells. One approach is to incorporate the pH responsive
linkers in between MSN and the capping moiety usually used for blocking the pore entrances of MSN.
There are several linkers that have been reported for the intracellular pH-responsive controlled delivery
of anti-cancer drugs e.g., acetal linkers [137], boronate ester linkers [138], ferrocenyl linkers [139],
aromatic amines [140], imine bonds [141] hydrazine linkers [142], acid labile amide bond [143], etc.

Another widely used approach is to modify the MSN surface with pH sensitive capping moiety,
so that the MSN will only open up at acidic pH, release the cargo only in tumor environment and
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avoid any premature release of drugs on healthy tissues [144,145]. Yang and co-workers have reported
that the MSN coated with pH-responsive chitosan/polymethacrylic acid polymer is more efficient
to deliver doxorubicin in HeLa cells compared to the uncoated MSN [146]. The modification of the
MSN surface using pH-sensitive self-immolative polymers, poly(acrylic acid), nanovalves, such as
pseudorotaxane encircled by β-cyclodextrin, tannic acid, lipid coatings and many other nanoparticles
have been reported [147–150]. Zhu and coworkers have used a pH-sensitive nanovector for the
dissolution of ZnO nanoparticles functionalized onto the surface of MSN for the efficient delivery of
doxorubicin in HeLa cells [151]. Moreover, pH degradable calcium phosphate coated MSN and gelatin
capped MSN have also been described for intracellular acid-triggered drug delivery [152,153]. In a
recent report, the MSN surface was modified with poly (styrene sulfonate) (PSS), which can act as a
“nano-gate” for the pH responsive controlled release of curcumin [154].

4.2. Redox-Responsive Gatekeepers

Similar to the pH parameter, redox factor can also be exploited to achieve the controlled drug
release from MSN specifically to the tumor environment. In general, glutathione (GSH) acts as a
biological reducer and can cleave the redox-cleavable groups and trigger the bioactive agents. It has
been observed that the GSH concentration in cancer cells is higher than that in normal cells [155].
Moreover, the intracellular concentration of GSH is in the range of 2–10 mM which is quite a bit higher
than that in the extracellular part (2–20 nM); this concentration difference can allow the release of cargo
from redox-responsive nanocarriers upon entering into the cytoplasm [156,157]. To take advantage of
the high GSH concentration in cancer cells, the MSN surface has been decorated either with disulfide
linkers or by incorporating any redox-cleavable group in capping moiety for the efficient release of
cargo in cancer cells. As for an example, Kim et al. have used disulfide bonds as a linker in between
MSN and the surface capping β-cyclodextrin moiety, and reported efficient doxorubicin toxicity in
lung adenocarcinoma cells [158]. Moreover, Bräuchle and Bein research groups have reported cystein
residues with disulfide linkers to modify the MSN surface [159]. Additionally, Wu et al. have used
poly-(β-amino-esters) to seal the MSN pores and reported the intracellular reduction of disulfide
linkers present between MSN and poly-(β-amino-esters) capping moiety [160]. The cargo release
kinetics upon degradation of MSN can be further controlled by tuning the hindrance of disulfide or
tetra-sulfide groups into the silica framework [161–163]. Besides, polymers cross-linked by cystamine,
poly (propylene imine) dendrimer and polyethylenimine (PEI) via intermediate disulfide linkers are
utilized to close the pores of MSN for a redox-responsive release of the chemotherapeutics by the
degradation of polymeric networks in reducing the environment of the tumor site [164,165].

4.3. Enzyme-Responsive Gatekeepers

MSN drug release can also be modulated by the enzymatic cleavages of ester, peptide, urea, and
oxamide bonds decorated on the MSN surface. Several enzymes such as esterase, protease, galactosidase,
amylase, lipase, etc. have been exploited for enzyme responsive controlled drug release [166]. In
this regard, Patel et al. have introduced ester bonds between MSN and the adamantine capping
moiety, to employ the enzymatic role of porcine liver esterase for the controlled release of cargos [167].
Mondragón et al. have exploited protease cleavable ε-poly-l-lysine moiety to seal the camptothecin
encapsulated MSN and reported the reduced viability of human cervix epitheloid carcinoma cells upon
treatment of that nanosystem [168]. They have also reported some enzyme-responsive hydrolyzed
starch products as saccharides to be used for controlled drug release [169]. There are various
other protease-responsive moieties that have been used to cap the MSN pores and improve the
drug release, e.g., protease-responsive biotin-avidin [170], arginine-rich protamine proteins [171],
matrix metalloproteinase (MMP) degradable gelatin [172], avidin with MMP9-sensitive peptide linker
(RSWMGLP) [173], poly (ethylene glycol) diacrylate moiety with protease-sensitive peptide linker
(CGPQGIWGQGCR) [174]. Furthermore, cyclodextrin gatekeepers and HRP-polymer nanocapsules
have also been employed on the MSN surface for enzyme-responsive drug release [175,176].
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4.4. Magnetic Responsive Delivery System

One of the effective ways to exploit external stimuli is to exert the magnetic field on MSN, either
to have magnetic guidance by applying the permanent magnetic field, or to increase the temperature
by applying an alternating magnetic (AM) field [177,178]. In this regards, iron oxide has been widely
exploited as the required magnetic component. There are mainly two ways that have been used to
conjugate iron oxide with MSN, either using iron oxide core coated with mesoporous silica or MSN
capped with iron oxide nanoparticles [179,180]. The most employed strategy consists on encapsulating
superparamagnetic iron oxide nanoparticles (SPIONs) of ca. 5–10 nm within the MSN network during
their synthesis [181,182]. These SPIONs are able to convert the magnetic energy into heat and can
increase the local temperature of the system upon application of the AM field. If the surface of
MSN has already been coated with temperature responsive moieties acting as gatekeepers, e.g., poly
(N-isopropylacrylamide), pore opening and drug release from MSN can be triggered by applying an
AM field [183]. Taken together, upon application of an AM field, SPIONs encapsulated in MSN can
increase the local temperature up to a certain point, to change the conformation of the temperature
responsive gatekeepers and open the pore entrances to release the anti-cancer drugs efficiently without
having any premature leakage. There are several reports showing the controlled release of anti-cancer
therapeutics by applying a magnetic stimulus [180,184,185]. Moreover, there are a few FDA-approved
SPIONs for using as imaging agents and EU-approved iron oxide nanoparticles to use in glioblastoma
therapy; these can be further exploited in magnetic responsive drug delivery [20].

Another strategy for the design of the magnetic responsive delivery system consists of the
functionalization of drug-loaded MSN with a single DNA strand and then mixing this with SPIONs
functionalized with the complementary DNA strand, to allow DNA hybridization that can act as a
capping agent [186]. The reason behind selecting the DNA sequence is its melting temperature of 47 ◦C.
Thus, upon application of an AM field, SPIONs encapsulated into the MSN network can increase the
local temperature that subsequently trigger the double-stranded DNA melting and open the pores of
MSN to release the drug. Interestingly, when the magnetic field is switched off, the DNA hybridization
occurs again, thus closing the pores and stopping the drug release. This mechanism smartly provides
the chance of exploiting the on-off drug release mechanism.

4.5. Light-Responsive Delivery System

The surface of MSN can be decorated introducing photo-cleavable linkers for triggering the
cargo release from MSN, by applying lights with different wavelengths (ultraviolet, visible or
near-infrared) [187,188]. Among all, as ultraviolet (UV) radiation has the highest power to easily
break the bond, it has been the most commonly used light stimulus for the controlled drug release from
MSN [187]. It has been reported that MSN coated with photo-responsive azobenzene-modified nucleic
acid can trigger the drug release under UV light radiation [189]. However, the biomedical application of
the UV light becomes restricted due to its toxicity and low tissue penetrability [190,191]. As an alternate,
visible (Vis) light can be employed, as it is less harmful and has a higher tissue penetrability. Few Vis
light-triggered MSN drug delivery systems have been reported [192,193]. For example, light responsive
porphyrin nanocaps have been used to decorate the MSN. Porphyrin nanocaps are anchored via reactive
oxygen species (ROS)-cleavable linkages, so that in response to the Vis light singlet oxygen molecules will
be generated to break the sensitive linker and trigger the drug release by opening the pore of MSN [193].

Even though there are several advantages of using light (such as its easy application, non-invasiveness,
low toxicity and precise focalization in the desired place), light-responsive delivery is restricted by its low
tissue penetration capability (only a few millimeters). It has been observed that the best wavelengths for
satisfactory tissue penetration are within the biological spectra, typically 800–1100 nm [134]. Likewise,
Guardado-Alvarez et al. have exploited photolabile coumarine-molecules in the capping moiety of MSN
surface to control the cargo release upon two-photon excitation at 800 nm [194]. Furthermore, Croissant
and colleagues have shown that they can control drug release via a photo-transducer from mesoporous
silica nanoimpellers in human cancer cells using two-photon light [195].



Pharmaceutics 2020, 12, 527 11 of 33

4.6. Ultrasound Based Delivery

Ultrasound (US) is an efficient stimulus to be used for controlled drug delivery, because of its
advantage of being non-invasive, the absence of ionizing radiations in it and its capability to penetrate
deep into living tissues by tuning the parameters, such as frequency, duty cycles and exposure
times [171,196]. To exploit the US stimulus, the surface of the MSN has been decorated by employing
US sensitive components in capping moiety to prevent the premature release of drugs in healthy
tissues, e.g., 2-tetrahydropyranyl methacrylate. A hydrophobic monomer with a US-sensitive group
can be transformed to hydrophilic methacrylic acid under US stimulus and this phase change can
trigger the drug release from MSN pores [197,198]. Shi and co-workers have reported US responsive
perfluorohexane encapsulated MSN to be exploited for drug delivery [199,200]. Moreover, Vallet-Regí
and co-workers have decorated the MSN surface by using ultrasound-responsive copolymer (poly
(2-(2methoxy-ethoxy) ethylmethacrylate-co-2-tetrahydropyranyl methacrylate) [201]. In fact, certain
parts of the copolymer having chemical bonds that are cleavable under US radiation can change the
hydrophobicity of the copolymer after their US-triggered cleavage, leading the conformational changes
in polymer to open the pores of MSN and release the cargo at the target site [201].

5. Effective Combination of Active Targeting Therapy and Stimuli-Responsive Therapy Using
MSN in Cancer Therapy

We have already discussed the various advantages of using MSN for drug delivery. Taken together,
MSN exhibit large surface area, porous interior and tunable pore size to act as an excellent reservoir
for different drug molecules and other materials of interest. Moreover, the various MSN syntheses
approaches, mainly simple and adjustable, offer an ease optimization for sizes and shapes to maximize
cellular uptake [202–204]. Importantly, one can easily decorate the surface of MSN by attaching small
molecules, antibodies, aptamers, carrier proteins or peptide ligands for active targeting specifically to
the cancer region, exploiting overexpressed receptors. Meanwhile, the controlled release of drugs to
the disease site without any leakage to healthy tissues can be achieved by employing gatekeepers for
the end-capping of MSN, triggered by various internal or external stimuli, such as pH, redox, enzyme
activity, heat, light or magnetic field [205,206]. To achieve the precise chemotherapy of cancer, the
most desired drug delivery system should possess high drug loading efficiency, site-specificity and the
capacity of controlled drug release [207]. Hence, in this part of the review, we will report about the
recently tried efforts for surface modification of MSN, exploiting both the active targeting and stimuli
responsive behavior simultaneously (Figure 3), to obtain high efficacy with low dosage and minimize
the off-target side effects of chemotherapy. Table 1 summarizes these simultaneously employed active
targeting and stimuli responsive strategies developed up to date for MSN.Pharmaceutics 2020, 12, 527 12 of 34 
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Table 1. Simultaneously employed active targeting and stimuli responsive strategies using MSN in various cancer types.

Active Targeting Stimuli Responsive Delivery
Cancer Therapeutics Cancer Type Outcome Ref.

Ligand Receptor Stimulus Linker/Moiety

Folic acid Folate pH poly(ethylene imine) (PEI) - cervical cancer
significantly higher number of

particle internalization in cancer cells
than normal cells

[208]

Folic acid Folate pH poly(ethylene imine) (PEI) Curcumin colon cancer
suitable loading of fat-soluble

antineoplastic drugs for
sustained release

[209]

Folic acid Folate pH polydopamine Doxorubicin cervical cancer higher antitumor efficacy of
MSNs@PDA-PEG-FA in vivo [210]

Folic acid Folate Thermo/pH-coupling poly[(N-isopropylacrylamide)-co-(methacrylic
acid)] Cisplatin laryngeal carcinoma higher cellular uptake, excellent drug

release, greater cytotoxicity [211],

Folic acid Folate Thermo/pH-coupling poly[(N-isopropylacrylamide)-co-(methacrylic
acid)]

siRNA against ABCG2 +
cisplatin/5-fluorouracil

(5-Fu)/paclitaxel
laryngeal carcinoma

down-regulation of ABCG2
significantly enhanced efficacy of
chemotherapeutic drug-induced

apoptosis of cancer cells

[212]

Folic acid Folate Redox disulfide bonds Curcumin breast cancer
good biocompatibility, low toxicity,
precise targeting and tumor growth

inhibition
[213]

Folic acid Folate pH chitosan-glycine Colchicine (COL) colon cancer enhanced anticancer effects and
reduced toxicity of free COL [214]

Folic acid Folate pH benzimidazole and β-cyclodextrin valproic acid (VPA) glioblastoma enhanced effectiveness of
radiotherapy [215]

Folic acid Folate Magnetic field iron oxide nanoparticles (IONPs) Doxorubicin breast cancer
effective active targeting and

MRI-guided stimuli-responsive
chemotherapy

[216]

Folic acid Folate pH and NIR light polydopamine (PDA) Doxorubicin liver cancer improved antitumor effect combining
Dox-loaded MSN and NIR light [217]

Folic acid Folate Enzyme (cathepsin B) GFLG tetrapeptide linker organotin-based cytotoxic
compound breast cancer

enhanced tumor growth inhibition
with reduced hepatic and renal

toxicity
[218]

Folic acid Folate Redox (Ascorbic acid) cisplatin(IV) prodrug cisplatin(IV) prodrug cervical cancer delivering cisplatin into cytosol,
inducing DNA adducts and cell death [219]

Transferrin Transferrin pH chitosan or poly(d,l-lactide-co-glycolide)
(PLGA) Gemcitabine pancreatic cancer improved uptake of NPs by cancer

cells, inhibition of cancer cell growth [220]

Transferrin Transferrin pH and surface enhanced
Raman scattering (SERS)

chitosan/poly(methacrylic acid) (CS-PMAA)
and SERS reporter tagged Ag-NPs Doxorubicin cervical cancer

pH-responsive drug release,
SERS-traceable characteristics and

cancer cells targeting
[221]
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Table 1. Cont.

Active Targeting Stimuli Responsive Delivery
Cancer Therapeutics Cancer Type Outcome Ref.

Ligand Receptor Stimulus Linker/Moiety

Transferrin Transferrin Redox disulfide bonds Doxorubicin liver cancer
biocompatible system, potential in

site-specific and controlled
drug release

[222]

Transferrin Transferrin UV radiation (366 nm) avidin, streptavidin and biotinylated
photocleavable cross-linker Doxorubicin

exposed tumors (skin,
stomach and
oesophagus)

efficient phototriggered drug delivery
in accessible tumors and very high

tumor cytotoxicity effect
[223]

Cetuximab EGFR photo zinc phthalocyanine ZnPcOBP pancreatic Cancer
cell-line dependent photo-killing

correlates well with EGFR
expression levels

[224]

Trastuzumab HER2 pH poly(ethylene imine) (PEI) siRNA against human HER2
oncogene breast cancer

high batch-to-batch reproducibility,
excellent

safety profile, ready for clinical
evaluation

[225]

HApt aptamer HER2 pH benzimidazole and β-cyclodextrin Doxorubicin and
biotherapeutic agent HApt breast cancer

synergistic cytotoxic effects of
chemotherapeutics in HER2-positive

cancer cells
[226]

D-galactose galactose
receptor pH chitosan 5-fluorouracil (5-FU) colon cancer high drug loading capacity, possessed

higher cytotoxicity on cancer cells [227]

lectin concana-
valin A (ConA)

glycans, sialic
acids (SA) pH polyacrylic acid capping, acetal linker Doxorubicin bone cancer

increased antitumor effectiveness and
decreased toxicity towards

normal cell
[228]

cyclic RGDfC αvβ3 integrin photons gold nanorods - breast cancer enhanced radiosensitization of
triple-negative breast cancer [229]

cyclic RGDfC αvβ3 integrin Glutathione thiol-functionalization arsenic trioxide
(ATO) breast cancer superior therapeutic ability of

ATO-MSNs-RGD [230]

RGD αvβ3 integrin
Glutathione β-Cyclodextrin, disulfide linker

Doxorubicin
MMP-rich tumor

(colorectal and head
and neck cancer)

tumor-triggered targeting drug
delivery to cancerous cells [231]

matrix metallop- roteinase
(MMP) PLGVR peptide

RGD and
Tat48–60 peptide

Integrin and
nuclear

targeting
Glutathione disulfide linker Doxorubicin cervical cancer

facilitated active targeting delivery
and enhanced intracellular

drug release
[232]

RGD αvβ3 integrin pH α-amide-β-carboxyl group Doxorubicin glioblastoma diversified multifunctional
nanocomposites [233]

(RGDWWW)2KC αvβ3 integrin Glutathione disulfide linker Doxorubicin and
therapeutic peptide glioblastoma

tumor targeting and synergism of
anticancer drug and therapeutic

peptide
[234]
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Table 1. Cont.

Active Targeting Stimuli Responsive Delivery
Cancer Therapeutics Cancer Type Outcome Ref.

Ligand Receptor Stimulus Linker/Moiety

K8(RGD)2 αvβ3 integrin pH acid-labile amides Doxorubicin glioblastoma electrostatic repulsion induced
nanovalve opening and drug release [235]

RGD αvβ3 integrin pH peptide-based amphiphile (P45) Doxorubicin Lung and breast cancer targeted drug delivery and controlled
drug release by the nanovalves [236]

RGD αvβ3 integrin pH/NIR laser gold nanostars (Au NSs) Doxorubicin glioblastoma
improved therapeutic efficacy
combining chemotherapy and
photothermal therapy (PTT)

[237]

cRGD and
CREKA

αvβ3 integrin
and fibronectin radiofrequency (RF) iron oxide core Doxorubicin brain tumor remarkable increase in intratumoral

drug levels [238]

Asn-Gly-Arg
(NGR)

cluster of
differen- tiation

13 (CD13)
pH polydopamine (PDA) Doxorubicin neovascular endothelial

and glioma

greater BBB permeability, higher
accumulation in intracranial tumor

region
[239]

EpCAM
aptamer

Epithelial cell
adhesion
molecule
(EpCAM)

pH citrate-capped gold nanoparticles 5-fluorouracil (5-FU) hepatocellular
carcinoma

preferential accumulation in tumor
cells in vitro and in vivo [240]

aptamer
(Cy5.5-AS1411)

nucleolin
(NCL)

laser irradiation (NIR
light) graphene oxide Doxorubicin breast cancer synergism of chemotherapy and PTT [241]

galactose (Gal)
and TAT peptide

Asialoglycoprotein
receptors and

nuclear
targeting

pH and Redox poly(allylamine hydrochloride)-citraconic
anhydride (PAH-Cit) and cysteine groups

Doxorubicinand
VEGF-siRNA hepato-carcinoma

effective and safe vector, sustained
release, synergistic effect of

chemodrugs and therapeutic genes
[242]

Phenylboronic
acid (PBA) sialic acid (SA) MMP-2 PVGLIG peptide Doxorubicin liver cancer tumor growth inhibition, minimal

toxic side effects [243]

YSA-BHQ1 and
TAT- FITC

EphA2 receptor
and nuclear

targeting
pH citraconic anhydride (Cit) Doxorubicin breast cancer

successfully developed anticancer
drug delivery and imaging

nanosystem
[244]

peptide
CSNRDARRC

Targeting
bladder cancer pH polydopamine (PDA) Doxorubicin bladder cancer

significantly superior antitumor
effects of loaded nanocarriers than

free drug
[245]

galactose (Gal)
ligands and TAT

peptide

Gal receptors
and nuclear

targeting
pH poly(allylamine

hydrochloride)-citraconic anhydride Doxorubicin hepato-carcinoma improved tumorous distribution and
potent therapeutic efficacy [246]
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Table 1. Cont.

Active Targeting Stimuli Responsive Delivery
Cancer Therapeutics Cancer Type Outcome Ref.

Ligand Receptor Stimulus Linker/Moiety

oligosaccharide
of hyaluronic
acid (oHA)

CD44 Glutathione disulfide linker 6-mercaptopurine (6-MP) colon cancer
increased stability and

biocompatibility, efficient drug
release in tumor cell

[247]

hyaluronic acid CD44 Magnetic field superparamagnetic Fe3O4 nanoparticles Doxorubicin breast cancer active targeting to tumor cells and
reduced off-target side effects [248]

hyaluronic acid CD44 NIR light indocyanine green (ICG) Doxorubicin breast cancer synergetic effect of chemotherapy and
PTT [249]

hyaluronic acid CD44 Enzyme (MMP-2) gelatin layer Doxorubicin breast cancer successful bienzyme-responsive
targeted and optimal drug delivery [250]

hyaluronic acid CD44 pH DMMA (2,3-dimethylmaleic anhydride) Doxorubicin lung cancer
synergistic effect of active

targeting and charge reversal in drug
delivery

[251]
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Besides, there are few reports that have used dual or multimodal response systems to improve
the controlled release of the cargo. For example, Lu et al. have developed a pH/redox/near infrared
(NIR) multi-stimuli responsive MSN to achieve efficient chemo-photothermal synergistic antitumor
therapy [252]. Zhou et al. have also reported UV-light cross-linked and pH de-cross-linked
coumarin-decorated cationic copolymer functionalized mesoporous silica nanoparticles for the
improved co-delivery of anti-cancer drug and gene [253]. Moreover, Xu et al. have prepared a
pH and redox dual-responsive (MSN)-sulfur (S)-S- chitosan (CS) controlled release drug delivery
system [254]. Besides, a redox- and pH-sensitive dual response MSN system has been developed
by Li and colleagues using ammonium salt to seal the pores [255]. Yan et al. have fabricated a
pH/redox-triggered MSN nanosystem, for the codelivery of doxorubicin and paclitaxel in cancer
cells [256]. Additionally, Anirudhan et al. have exploited both temperature and ultrasound sensitive
gatekeepers for the surface modification of MSN [257].

6. MSN as Cancer Theranostics

Possible early detection and diagnosis is one of the most desired objectives to provide appropriate
and extra real treatment for cancer. In order to overcome this hurdle along with the targeted and
controlled delivery of chemotherapeutics, MSN have also been widely exploited for medical imaging
and in situ diagnostics [258,259]. When both functions, i.e., therapy and diagnosis, are combined
together, they are referred to as “theranostics” [260]. Herein, in this part of the review, we will discuss
about various applications of MSN in cancer diagnosis such as exploiting MSN as imaging contrast
agents, and utilizing MSN for proteomic analysis and fluorescent optical imaging.

Among the imaging technologies, magnetic resonance imaging (MRI) and ultrasound (US) have
been mostly employed for cancer diagnosis due to their low-cost, low radioactivity and real-time
monitoring properties [261]. There are various reports about the application of MSN decorated
with specific targeting moiety as hyperpolarized, highly sensitive MRI agents having longer nuclear
relaxation time [262,263]. As an example, Matsushita et al. have developed an MRI contrast agent
comprising a core micelle with liquid perfluorocarbon inside the MSN for early cancer detection and
diagnosis [264]. Additionally, a few research groups have systemically applied functionalized MSN
to confer sufficient mean pixel intensity, to generate the higher quality US imaging of tumor bearing
mice [265,266]. With imaging guidance from MRI or US, suspected cancerous tissues can be detected
through biopsy. Furthermore, mesoporous silica-based chips with specific pore size provide a promising
platform for proteomic analysis by mass spectrometry and chromatography, allowing the separation of
low molecular weight proteins in serum from the higher weight proteins [267]. An analysis of mass
spectrometry can identify unique protein signatures pertaining to various stages of cancer development,
demonstrating plausible early cancer detection and therapy [268,269]. In addition, introducing metal
ions or other functional groups enhances the selectivity and sensitivity of mesoporous silica chips to
concentrate the low molecular weight proteins, analyze post-translational modifications in the human
proteome and identify proteomic biomarkers in various cancers [270,271]. Importantly, fluorescent
optical imaging exploiting MSN is gaining increasing attention in imaging-based therapy and cancer
diagnosis [272,273]. The encapsulation of fluorescent dyes and bioluminescent proteins in MSN
can overcome the associated limitations, such as rapid degradation, inadequate photo-stability and
unpredictable toxicity of the fluorescent probes [274]. There are mainly two types of fluorescent MSN
that have been reported for optical imaging, one is dye-doped MSN, prepared by incorporating
fluorescent organic dye into pores of MSN and other one is combining QDs with MSN [275].
Yin et al. have synthesized folic acid-conjugated dye-entrapped MSN for in vivo cancer targeting
and imaging [276]. Moreover, in contrast to the conventional organic dye, QDs appear more effective in
optical imaging, due to possessing size-tunable wavelength absorption and emission, broad excitation
wavelength, narrow emission bandwidth and a long fluorescent lifetime [277]. Functionalized
QD-embedded MSN with high quantum yield have been largely exploited for selective tumor imaging
in vivo, as well as for cancer cell imaging and detection in vitro by the intracellular internalization
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of QDs [278,279]. Recently, Zhao et al. have reported the synthesis of fluorescent Carbon Dot-MSN
nanohybrids [86]. Nevertheless, Cheng et al. have reported tri-functionalized MSN, effectively
decorated to be used in the field of theranostics coordinating the trio of target, imaging, and therapy in
a discrete entity [280].

7. Challenges Regarding MSN Application in Cancer Therapy

Despite the recent advances of developing surface decorated MSN as an efficient carrier for the
delivery of cancer chemotherapeutics, there are several challenges that need to be addressed for their
further development. In particular, the scale up of MSN synthesis is one of the major issues limiting
its commercial applications. On a small scale, the reproducibility on the synthesis of MSN can be
maintained, but at the large scale, especially at an industrial level, it is very difficult to control batch to
batch synthesis, as there are various different factors that need to be taken into account during the
synthetic process. Hence, the clinical translation of MSN is taking a longer time than expected, as the
therapeutic efficacy is not the only criteria for this [281].

In terms of the biological point of view, the clinical application of MSN is limited, because of
the rapid clearance of nanoparticles by immune and excretory systems after administration [282,283].
Recent investigations have shown that MSN may be excreted, either in an intact or a degraded form,
through hepatic or renal clearance [72,284]. However, the exact mechanism of the clearance is not
known yet. Hence, the detailed in vivo analysis of pharmacokinetic and pharmacodynamic studies,
possible immunogenicity and rigorous biodistribution of MSN-based systems should be employed
before aiming to translate clinically [285,286]. A few reports highlighting half-life and biodistribution
studies have demonstrated that in vivo biodegradation, systematic absorption and excretion, especially
liver distribution and urinal excretion, are highly dependent on the physicochemical characteristics of
MSN, such as geometries, porosities, surface chemistry, crystallinity, and different bio-nano interface
interaction conditions [287–289]. For example, He et al. have evaluated the biodistribution and
excretion of spherical MSN having various size ranges (80–360 nm) and pegylation (PEG-MSN) by
fluorescence spectroscopy, and revealed accumulation of all the formulations in liver and spleen. They
have also determined that, with a decrease in size and the pegylation of MSN, there is a reduction
of the excretion rate from 45% to 15%, 30 min after administration [72]. In another study, Dogra et al.
have shown that the increasing particle size of MSN from 32 to 142 nm results in a monotonic
decrease in systemic bioavailability, along with accumulation in liver and spleen in healthy rats [290].
Furthermore, Sun et al. have completed a pharmacokinetic study of bevacizumab release from
MSN-encapsulated bevacizumab nanoparticles in C57B/L mice and determined a significantly greater
half-life, along with the sustained and slow release of MSN-encapsulated bevacizumab nanoparticles
for a longer period of time than that of bevacizumab alone [291]. Additionally, Kong et al. have
performed a biodistribution and pharmacokinetic study of Cy5-loaded hollow MSN in C57BL/6 mice
and demonstrated gradual distribution in tumor and highest accumulation of MSN at 36 h after
administration using fluorescence imaging. They have used the same MSN to deliver the cancer
therapeutics (doxorubicin and interleukin-2) in the tumor microenvironment [292]. Regarding the
limitation associated with bio-nano interface interactions, upon administration of MSN in the body
and exposure to blood, proteins from blood serum and plasma adsorb onto the MSN surface and form
a protein corona, which can eventually block the pores and decrease the release of cargo from the
pores of MSN [293]. The protein corona formation is highly dependent upon the geometry of the MSN.
Visalakshan et al. have shown a significantly lower amount of protein attaching from both plasma and
serum on the spherical MSN, compared to the rod-like particles [294].

To address the biological limitations, a few research groups have started to introduce a lipid
bilayer as gatekeeper and platform for surface modifications of MSN [295–298]. The advantages of
using a lipid bilayer are its high biocompatibility, low immunogenicity, flexible formulation, and
easy to incorporate targeting ligands and stimuli responsive moiety. For example, Brinker and
co-workers have demonstrated MSN core for drug loading and a lipid bilayer as a gatekeeper to convey
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an EGFR-antibody for targeting leukemic cells efficiently in vitro and in vivo [299,300]. Samanta
et al. have followed a similar approach of exploiting lipid bilayer around MSN to assist folate
receptor targeted drug delivery in ovarian cancer [301]. Several other efforts have also been reported,
exploiting organic/inorganic hybrid nanocarriers, L-tartaric acid, mucoadhesive delivery systems,
organosilica-based drug delivery systems, to improve the biocompatibility of MSN [302–305]. Besides,
cancer cell membranes have been utilized to coat MSN to improve immunocompatibility [306,307].
Moreover, an immunocompatible issue can be further resolved by replacing the commercially available
lipids with the lipids derived from autologous extracellular vesicles (EVs) [308].

In conclusion, considering the various advantages of using MSN as a nanocarrier, along with the
convincing preclinical results, it can be expected that, with the way out of related issues, MSN-based
formulations may make exciting breakthroughs in cancer therapy.
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