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Simple Summary: Diffusion-weighted magnetic resonance imaging (DW-MRI) is a widely
used noninvasive technique for the characterization of tumor cellularity in head and
neck cancers (HNC). The new vendor-provided Low Variance (LOVA) apparent diffusion
coefficient (ADC) gradient nonlinearity correction (GNC) technique improves the accuracy
of the ADC values. This GNC method was initially tested for breast cancer patients. The
present study aimed to investigate the performance of the LOVA GNC method for HNC
patient ADC. The GNC-corrected mean ADC values of primary tumors and metastatic
neck nodes were lower than the uncorrected ADC values. The shift in ADC histograms for
primary tumor and metastatic nodes was observed with and without the application of
GNC. The results showed that implementing GNC improves the ADC measurements.

Abstract: Background/Objectives: This work prospectively evaluates the vendor-provided
Low Variance (LOVA) apparent diffusion coefficient (ADC) gradient nonlinearity correction
(GNC) technique for primary tumors, neck nodal metastases, and normal masseter muscles
in patients with head and neck cancers (HNCs). Methods: Multiple b-value diffusion-
weighted (DW)-MR images were acquired on a 3.0 T scanner using a single-shot echo
planar imaging (SS-EPI) and multi-shot (MS)-EPI for diffusion phantom materials (20%
and 40% polyvinylpyrrolidone (PVP) in water). Pretreatment DW-MRI acquisitions were
performed for sixty HNC patients (n = 60) who underwent chemoradiation therapy. ADC
values with and without GNC were calculated offline using a monoexponential diffusion
model over all b-values, relative percentage (r%) changes (∆) in ADC values with and
without GNC were calculated, and the ADC histograms were analyzed. Results: Mean
ADC values calculated using SS-EPI DW data with and without GNC differed by ≤1% for
both PVP20% and PVP40% at the isocenter, whereas off-center differences were ≤19.6%
for both concentrations. A similar trend was observed for these materials with MS-EPI.
In patients, the mean r∆ADC (%) values measured with SS-EPI differed by 4.77%, 3.98%,
and 5.68% for primary tumors, metastatic nodes, and masseter muscle. MS-EPI exhibited a
similar result with 5.56%, 3.95%, and 4.85%, respectively. Conclusions: This study showed
that the GNC method improves the robustness of the ADC measurement, enhancing its
value as a quantitative imaging biomarker used in HNC clinical trials.
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1. Introduction
Diffusion-weighted (DW)-MRI-derived apparent diffusion coefficient (ADC) mea-

surement has shown promise in head and neck cancer (HNC) [1–5]. Since the freedom of
motion of water molecules is hindered by interactions with other molecules and cellular
barriers, water molecule diffusion abnormalities can reflect changes in tissue organization
at the cellular level [6–9]. These tissue diffusion properties can be quantified with the mo-
noexponential modeling of the DW-MRI signal decay as a function of diffusion sensitivity
(b-value). Microstructural changes affect the (hindered) motion of water molecules and
consequently alter the water ADC [10–13]. ADC, a surrogate of tumor cellularity, allows
the evaluation of treatment response in HNC [14–19]. Vandecaveye et al. found that the
ADC changes (∆ADC) between pretreatment and after the chemoradiation therapy (CRT)
of lesions with later tumor recurrence were significantly lower than lesions with complete
remission for both primary lesions (p < 0.0001) and adenopathies (p = 0.003) [16]. Paudyal
et al.’s HNC study results exhibited an increasing trend in ADC at each intra-treatment
week when compared with pretreatment in the complete response group (p < 0.003) who
received CRT [20]. For quantitative ADC application, the measured changes need to be
analyzed with respect to confidence intervals determined by precision and bias [21–23].

Previous studies have demonstrated that the ADC measurement can be biased by
spatially-dependent b-value due to gradient nonlinearity (GNL) [24–27], particularly for
anatomy offset from the MRI scanner’s isocenter. The scientific yield of imaging tri-
als has been diminished by the confounding presence of significant platform-dependent
heterogeneity and systematic spatial bias in DW-MRI [28,29]. This instrumental bias is
patient-independent and predictable through gradient system parameters but is distinct
from geometric distortions routinely corrected by MRI vendors. Because this bias is depen-
dent on system gradient design, it increases technical variability across scanners [27,30].
A method has been developed and implemented across three dominant MRI vendors to
eliminate platform-dependent GNL bias in ADC for clinical DW-MRI applications [31].
This GNL correction (GNC) is tailored to DW-MRI acquisition based on three orthogo-
nal gradient directions and has allowed improvements in both absolute accuracy and
multiplatform ADC reproducibility [31].

The feasibility and effectiveness of a retrospective GNC implementation in the clinical
setting were tested with quantitative quality control phantom and in vivo for subjects from
the ACRIN 6698 breast cancer therapy response trial scanned on different MRI systems
using single-shot (SS) echo planar imaging (EPI) DW-MRI [32]. The GNC ADC correction
was applied to trace DW-MRI using system-specific gradient-channel fields derived from
vendor-provided spherical harmonic tables. Across studied trial subjects, GNC improved
the accuracy of ADC histogram metrics. Recently, the GNC method has been implemented
on clinical scanners via an academic-industry partnership with the three predominant
MRI vendors. The ongoing GNC integration with advanced DW-MRI acquisition methods,
including multi-shot (MS)-EPI, that are increasingly implemented on clinical scanners
requires validation [33–36]. Previous studies have emphasized that implementing GNC is
crucial for improving the accuracy of ADC, ensuring consistent ADC values across different
imaging sessions and scanners. This is particularly important in longitudinal studies, where
consistent and precise measurements are essential for evaluating treatment responses over
time. In the present study, we aimed to prospectively evaluate the vendor-provided Low
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Variance (LOVA) ADC GNC technique and integrate it with the clinical study workflow
to improve the accuracy of the ADC values measured for primary tumors, neck nodal
metastases, and normal masseter muscles in patients with HNC.

2. Materials and Methods
2.1. ADC Phantom Data Acquisition and Analysis

GNC was initially tested for the monoexponential diffusion phantom materials
polyvinylpyrrolidone (PVP) in water within the reference phantom with calibrated ADC
values [37]. The 20% and 40% PVP material vials (20 mL scintillation glass) were placed in
a 1 L jar filled with water (in a stack with a 2.0 cm offset from the center) [37]. The phantom
jar included an alcohol thermometer to record the temperature (20 ± 0.2 ◦C). The scans
were performed at ambient temperature on a 3.0 T MRI (Elition, Philips Healthcare, Best,
The Netherlands) using a 16-channel head coil with a phantom jar placed at a magnet
isocenter and off-center (12 cm). DW-MRI images of the phantom were acquired using
single-shot echo planar imaging (SS-EPI) and multi-shot (MS) (2-shot)-EPI sequences with
nine b-values (i.e., b = 0, 100, 200, 500, 800, 1000, 1500, 2000, and 2500 s/mm2) and the
following parameters: repetition time (TR) = 5000 ms, echo time (TE) = minimum (61 ms),
number of averages (NA) = 1, SENSE = 2, acquisition matrix = 128 × 128, field of view
(FOV) = 230 mm2, number of slices (NS) = 20, slice thickness = 4 mm, with diffusion
encoding in 3 orthogonal directions. The total acquisition time for the multiple b-value
DW-MRI data acquisition was ~3–4 min.

For real-time processing, the LOVA ADC GNC technique was applied during acquisi-
tion. This study generated two DW-MRI datasets with and without GNC options. On both
ADC maps, a 200 mm2 region of interest was placed on PVP20% and PVP40% phantom
vials using ITK-SNAP. These two PVP reference solutions represent ADC in human tissue
ranges and are also available in the Diffusion “NIST/QIBA” Phantom, with ADC values
reported in previous studies [37].

2.2. HNC Patient

The institutional review board approved this prospective study, which was compli-
ant with the Health Insurance Portability and Accountability Act. We obtained written
informed consent from all 60 eligible HNC patients (Table 1) who underwent pretreatment
MRI scans between December 2021 and March 2024 and were treated with definitive CRT.

Table 1. Patient characteristics.

Characteristics n (%)

Age
Median(range) 60 (39–87 years)

Sex
Male 56 (93.3%)
Female 4 (6.7%)

Clinical stage
I 5 (8.3%)
II 19 (31.7%)
III 16 (26.7%)
IV 20 (33.3%)

Primary tumor location
Oropharynx 58 (96.6%)
Larynx 2 (3.4%)
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2.3. HNC DW-MRI Data Acquisition

MRI protocol consisted of clinical standard-of-care (SOC) T1/T2 weighted (w) imaging
followed by a multi-b-value DW-MRI on a 3.0 T scanner (Elition, Philips Healthcare, Best,
The Netherlands) using a neurovascular phased-array coil. The multiple b-value DW
images were acquired using SS-EPI and MS-EPI sequences. SS-EPI was acquired for
all 60 patients and MS-EPI for a subset of 29 HNCs. The data acquisition parameters
were as follows: field of view (FOV) = 20–24 cm, matrix = 128 × 128, slices = 10–12,
slice thickness = 5 mm, number of excitation (NEX) = 2, and 10 b-values = 0, 20, 50, 80,
200, 300, 500, 800, 1500, and 2000 s/mm2. For SS-EPI, TR/TE = 4000/80 (minimum) ms,
and, for MS-EPI, TR/TE = 3000/66 (minimum) ms; other parameters were the same as
mentioned above.

2.4. HNC Regions of Interest Contouring and Data Analysis

A neuro-radiologist delineated regions of interest (ROI) for SS-EPI and MS-EPI acqui-
sitions on primary tumors (n = 38 and 19), neck nodal metastases (n = 55 and 28), and the
normal masseter muscle (n = 44 and 24) on the DW image (b = 0 s/mm2) using ITK-SNAP.
The primary tumors and neck nodal metastases were evaluated prospectively on T2w
images and the highest b = 2000 s/mm2 before contouring on DW images. All DW-MRI
data analysis was performed using in-house software MRI-QAMPER v3 (Quantitative
Analysis Multi-Parametric Evaluation Routines) written in MATLAB v2023 (MathWorks,
Natick, MA, USA) [38]. ADC values were calculated, and ADC maps were generated using
a monoexponential model [39], including all b-values, as follows:

Sb = S0e−b×ADC (1)

where Sb and S0 are the signal intensities with and without diffusion weighting, and b is
the diffusion-weighting factor (s/mm2). Both with and without the GNC DW-MRI-signal
intensities data were used for calculating ADC values.

The relative percentage (r (%)) change (∆) in mean ADC values with and without
GNC was calculated as follows:

r∆ADC (%) = (ADC − ADCGNC)/ADCGNC × 100 (2)

where ADCGNC and ADC represent the ADC values measured with and without GNC,
respectively.

ADC histogram analysis was conducted using the ADC maps generated from the ROI
defined for the primary tumor, neck nodal metastases, and masseter muscle.

2.5. Statistical Analysis

ADC mean, standard deviation (SD), skewness, and kurtosis values with and without
the LOVA ADC GNC were reported and compared using a Wilcoxon matched-pairs signed-
rank (WSR) test for the SS-EPI and MS-EPI techniques. Bland Altman analysis assessed
the agreement between ADC measurements with and without GNC for both SS-EPI and
MS-EPI. A p-value < 0.05 was considered statistically significant.

3. Results
3.1. Phantom

ADC values for reference vials PVP20% and PVP40% measured with SS-EPI and
MS-EPI are given in Table 2. Mean ADC values calculated using SS-EPI data with and
without GNC differed by ≤1% for PVP20% and PVP40% at isocenter, whereas off-center
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differences were ≤18.8% for both concentrations. A similar trend of ≤1% and ≤19.6% was
observed for PVP20% and PVP40% with MS-EPI, respectively.

Table 2. ADC values (mean ± SD) from PVP Phantom with SS-EPI and MS-EPI.

Method

PVP
[%]

Isocenter

|∆ADC| ×
10−3 mm2/s 1

|r∆ADC|
(%) 2

Off-Center (12 cm)

|∆ADC| ×
10−3 mm2/s 1

|r∆ADC|
(%) 2

ADC × 10−3

(mm2/s)
with GNC

ADC × 10−3

(mm2/s)
Without

GNC

ADC × 10−3

(mm2/s)
with GNC

ADC × 10−3

(mm2/s)
Without

GNC

SS-
EPI

40 0.595 ± 0.024 0.598 ± 0.024 0.003 ± 0.001 0.5 ± 0.1 0.622 ± 0.070 0.505 ± 0.060 0.117 ± 0.010 18.8 ± 14.3

20 1.132 ± 0.055 1.142 ± 0.056 0.010 ± 0.001 0.9 ± 1.8 1.193 ± 0.105 0.992 ± 0.088 0.201 ± 0.017 16.8 ± 16.2

MS-
EPI

40 0.625 ± 0.062 0.628 ± 0.062 0.003 ± 0.001 0.5 ± 0.1 0.616 ± 0.042 0.546 ± 0.040 0.070 ± 0.002 11.4 ± 4.8

20 1.196 ± 0.013 1.199 ± 0.014 0.003 ± 0.001 0.3 ± 7.7 1.227 ± 0.038 0.986 ± 0.040 0.241 ± 0.002 19.6 ± 5.3

1 |∆ADC| = |(ADC − ADCGNC)|; 2 |r∆ADC| (%) = |(ADC − ADCGNC)/ADCGNC| × 100.

3.2. Patient

The ADC histograms in Figures 1 and 2, acquired using SS-EPI and MS-EPI, illustrate
the effect of LOVA ADC GNC on the ADC measurements for ROI, i.e., primary tumors and
neck nodal metastases from two representative patients with HNC. All voxels within the
tumors were used for the histogram plots. In Figure 1, narrower ADC histograms were
observed for both the primary tumor and node after GNC, while, without GNC, there was
a significant broadening of the respective histograms using SS-EPI.

 

Figure 1. Examples of diffusion-weighted images (b = 0 s/mm2) acquired using single-shot echo
planar imaging and apparent diffusion coefficient (ADC) maps of primary tumor (green arrow), and
metastatic lymph node (orange arrow) with and without gradient nonlinearity correction (GNC) from
a representative head and neck cancer patient (53-year-old male). The ADC maps exhibiting lower
ADC values after GNC both in primary tumor and lymph node and the histograms were narrower
for both.
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Figure 2. Example of diffusion-weighted- images (b = 0 s/mm2) acquired using multi-shot echo
planar imaging and apparent diffusion coefficient (ADC) maps of primary tumor (green arrow), and
metastatic lymph node (orange arrow) with and without gradient nonlinearity correction (GNC)
from a representative head and neck cancer patient (55-year-old male). The ADC histograms were of
similar width and with minimal shift for both.

In Figure 2, the ADC histogram exhibits comparable width and minimal shift before
and after GNC for both the primary tumor and metastatic node using MS-EPI. In addition,
MS-EPI (Figure 2) exhibited enhanced spatial resolution and image quality compared
to SS-EPI (Figure 1), particularly in regions with complex tissue structures in the head
and neck.

A comparison of representative ADC histograms from ADC maps of the masseter
muscle with and without GNC for MS-EPI is shown in Figure 3 from the same patient in
Figure 2. All voxels within the ROI in the representative slice were used for the histogram
plots. ADC histograms exhibited similar widths and minimal shift before and after GNC.
A similar trend was observed for the masseter muscle with SS-EPI.

Table 3 summarizes the ADC mean (Figure 4), SD, skewness, and kurtosis values
measured in HNC patients at pretreatment for primary tumors, nodes, and masseter muscle
using SS-EPI and MS-EPI. For SS-EPI, mean ADC values with and without GNC exhibited
significant differences for three ROI, i.e., primary tumors, metastatic nodes, and masseter
muscle (p < 0.05). Mean ADC values obtained with MS-EPI data acquisition exhibited a
similar trend for these three ROI (p < 0.05). The mean r∆ADC (%) values measured with
SS-EPI differed by 4.77%, 3.98%, and 5.68% for primary tumors, metastatic nodes, and
masseter muscle. MS-EPI exhibited a similar trend of 5.56%, 3.95%, and 4.85%, respectively.
The ADC kurtosis and skewness depict the changes in the peakedness and the tails of the
ADC histograms. For example, the mean ADC skewness measured using SS-EPI changes
by 13.3%, 7.1%, and 11.1% for the primary tumors, metastatic nodes, and masseter muscle,
respectively, and a similar trend was observed for MS-EPI.
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Figure 3. Example of diffusion-weighted MR images (b = 0 s/mm2) acquired using multi-shot echo
planar imaging (EPI) and apparent diffusion coefficient (ADC) maps of masseter muscle (rectangle in
a yellow color) with and without gradient nonlinearity correction (GNC) from a representative head
and neck cancer patient (55-year-old male). The ADC maps exhibiting slightly lower ADC values
after GNC. The histograms were of similar width and with minimal shift.

 

Figure 4. Box plots comparing the mean apparent diffusion coefficient (ADC) values with and
without gradient nonlinearity correction (GNC) for primary tumors, metastatic nodes, and masseter
muscle obtained from the single-shot (SS) echo planar imaging (EPI) and multi-shot (MS) EPI. The
horizontal line in box represents the median. Significant differences were found between with and
without GNC for three regions of interest. ADC values with and without from both SS-EPI and
MS-EPI techniques were significantly different (p < 0.05).
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Table 3. ADC values (mean ± SD, skewness, and kurtosis) were obtained from single-shot (SS) echo planar imaging (EPI) and multi-shot (MS)-EPI data acquisition
methods from HNC patients.

Method Primary Tumor Metastatic Lymph Nodes Masseter Muscle

SS
-E

PI

Number of patients (n) 38 55 44

with GNC Without GNC with GNC Without GNC with GNC Without GNC

(Mean ± SD) × 10−3 (mm2/s) 0.71 ± 0.14 0.75 ± 0.16 *** 0.84 ± 0.35 0.87 ± 0.37 *** 1.06 ± 0.36 1.15 ± 0.41 ***

Skewness 0.15 ± 0.44 0.17 ± 0.45 * 0.42 ± 0.74 0.45 ± 0.74 * −0.27 ± 0.78 −0.24 ± 0.81

Kurtosis 3.44 ± 1.04 3.48 ± 1.02 * 4.45 ± 1.39 4.47 ± 1.45 4.12 ± 1.50 4.10 ± 1.50

M
S-

EP
I

Number of patients (n) 19 28 24

(Mean ± SD) × 10−3 (mm2/s) 1.00 ± 0.32 1.06 ± 0.34 ** 1.04 ± 0.27 1.08 ± 0.28 *** 1.04 ± 0.27 1.09 ± 0.27 ***

Skewness 0.59 ± 0.55 0.61 ± 0.62 0.35 ± 0.71 0.40 ± 0.66 * −0.13 ± 0.56 −0.08± 0.56 *

Kurtosis 3.94 ± 1.70 3.83 ± 1.76 3.88 ± 1.03 3.83 ± 0.90 3.61 ± 1.64 3.72 ± 1.58
Note: Wilcoxon matched-pairs signed-rank test: significantly different (*** p < 0.0001, ** p < 0.001, and * p < 0.050).
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Figures 5 and 6 show the Bland–Altman plots and the mean percent difference (bias)
of ADC measurements for primary tumors, metastatic nodes, and masseter muscle, which
were 3.4%, 3.2%, and 5.8% with SS-EPI. Meanwhile, for MS-EPI, biases were 5.4%, 3.9%,
and 5.0%, respectively (Table 4).

 

Figure 5. Bland–Altman plot exhibiting agreement between the measurements of mean apparent
diffusion coefficient (ADC × 10−3 mm2/s) values obtained with and without gradient nonlinearity
correction (GNC) from single-shot echo planar imaging (EPI) for primary tumors, metastatic lymph
node, and masseter muscle. The dash lines (red) are the 95% limits of agreement.

 

Figure 6. Bland–Altman plot exhibiting agreement between the measurements of mean apparent
diffusion coefficient (ADC × 10−3 mm2/s) values obtained with and without gradient nonlinearity
correction (GNC) from multi-shot echo planar imaging for primary tumors, metastatic lymph nodes,
and masseter muscle. The difference between the two measurements’ ADC values with and without
GNC are on the y-axis, and the mean ADC values are on the x-axis. The dashed lines (red) are the
95% limits of agreement.

Table 4. Mean ADC values’ bias and bias 95% confidence interval limit for SS-EPI and MS-EPI.

Method Region
Bias

(Mean ± SD)
× 10−3 (mm2/s)

Bias (95% CI)

SS-EPI

Primary tumors 0.034 ± 0.070 [0.17, −0.10]

Metastatic lymph nodes 0.032 ± 0.062 [0.15, −0.09]

Masseter muscle 0.058 ± 0.036 [0.13, −0.01]

MS-EPI

Primary tumors 0.054 ± 0.071 [0.19, −0.09]

Metastatic lymph nodes 0.039 ± 0.035 [0.11, −0.03]

Masseter muscle 0.050 ± 0.054 [0.16, −0.06]
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4. Discussion
DW-MRI is primarily used for lesion detection and characterization in HNC [4,40].

The ADC is a quantitative imaging biomarker used for CRT response assessment in HNC,
reflecting changes in the tumor cellularity [1,5,41,42]. Utilizing DW-MRI as a diagnostic
tool in clinical trials and response monitoring without correcting the spatial variation of b-
value introduces confounding bias in ADC measures for large anatomical variations across
patients and during longitudinal MRI exams [28,29]. Thus, it is necessary to implement
and optimize DW-MRI sequence parameters as well as new practical correction methods of
DW bias, such as GNC across the multisite and MR scanners for reliable and reproducible
ADC measurement [32,43]. The phantom results in this study indicated that the ADC
values with both SS-EPI and MS-EPI data acquisition techniques were similar; however, the
phantom’s location caused spatial variation in b-values, affecting ADC calculations. In the
representative figures, the HNC patient ADC histograms were narrower after GNC with SS-
EPI, while the histograms showed comparable width and minimal shift with and without
GNC for MS-EPI. The mean ADC values for MS-EPI were slightly higher than the SS-EPI,
with comparable bias for the primary tumor and the metastatic lymph nodes. In contrast,
mean ADC values derived using both techniques were similar for the masseter muscle
with and without GNC was seen in the representative figure. These results demonstrate
that incorporating GNC-corrected ADC values into clinical practice can enhance diagnostic
accuracy and provide robust quantitative metric values for the evaluation of treatment
response, specifically reducing variability and improving the comparability of results across
the different MRI systems.

In the present study, the mean ADC values, derived from DW-MRI data acquired
using SS-EPI, were 0.75, 0.87, and 1.15 for primary tumors, metastatic nodes, and masseter
muscle without GNC, which were consistent with our previous results for HNC [33]. SS-EPI
readouts are prone to substantial image distortions near magnetic field inhomogeneities.
Advancements have been made in DW-MRI acquisition, including head and neck and many
other organs [44–49], for example, the multiplexed sensitivity-encoding (MUSE) method,
which uses the conventional sensitivity encoding (SENSE) technique [50,51] to measure
the motion-induced phase variations among multiple shots and then performs joint una-
liasing from all the shots. Konar et al. reported ADC values of 1.620 × 10−3 (mm2/s) and
1.584 × 10−3 (mm2/s) for the masseter muscle using the SS-EPI and MUSE-EPI for a paired
b-value of [0, 1000] s/mm2 derived from DW-MRI data acquired on a 3.0 T General Electric
Health Care MRI scanner [33]. The present study was performed on a Philips Healthcare
3.0 T scanner, and the ADC values for masseter muscle were 1.15 ± 0.41 × 10−3 (mm2/s)
and 1.09 ± 0.27 × 10−3 (mm2/s) for SS-EPI and MS-EPI without GNC, respectively, ac-
quired using 10 b-values. The lower ADC values could be due to the noise floor bias.
Recently, Aliotta et al. showed that MS-EPI acquisition exhibited improved geometric
distortion and that the MS-EPI sequence available on a Philips 3.0 T scanner offers an
appealing middle-ground with improved geometric fidelity but superior efficiency and
in vivo ADC quantification [52]. Reduced distortion with MS readout breaks up acqui-
sitions into multiple, shorter blocks that are individually less susceptible to distortions
or blurring [36,52,53]. Similarly, our study showed higher SNR for MS-EPI compared to
SS-EPI for HNC.

Substantial ADC bias for HNC location offset from the magnet isocenter is also ob-
served and is primarily attributed to spatially nonuniform diffusion weighting (b-value),
owing to system-dependent gradient nonlinearity [28,29]. Malyarenko et al. exhibited
the feasibility of centralized retrospective ADC correction for DW-MRI acquired as part
of a multiplatform breast cancer imaging trial [32]. The notable GNC impact on tumor
ADC histogram percentiles promises improvement in accuracy and reproducibility for
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diagnostic and prognostic thresholds sought for quantitative breast cancer treatment re-
sponse assessment [32]. Our study in HNC shows similar results for SS-EPI: the ADC
histograms with the LOVA ADC GNC method were narrower for both primary tumors
and metastatic nodes.

Our study has a few limitations. To reduce discomfort and scan time for clinical
HNC patients, the MS-EPI was performed on a subset of this population. This analysis
focused on 3.0 T imaging performed on a Philips scanner. The tradeoffs of distortion and
SNR are different for lower field strengths such as 1.5 T. While 3.0 T MRI provides higher
resolution and better SNR, it is more susceptible to artifacts, especially in areas with high
magnetic susceptibility like the neck, due to complex structures and interfaces such as bone,
skull base, and fatty tissue [54–56]. Lastly, the performance of the GNC method was not
compared between multiple MRI vendors and different field strength scanners, as this was
beyond the scope of this study.

5. Conclusions
This present study showed promising results that implementing the GNC method

improves the robustness of the ADC measurement, thereby enhancing its value as a
quantitative imaging biomarker used in HNC clinical trials.
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