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Few studies have assessed the patterns of parasite populations of rodents over a

longitudinal gradient in Chile. In this work, the gastrointestinal helminthic fauna of

invasive rodents in Chile was examined to assess the association between their

presence/absence and abundance with latitude, host sex, and host body condition,

and to assess the coexistence and correlation of the abundance between parasite

species. Rodents were obtained from 20 localities between 33 and 43◦S. Helminths

were extracted from the gastrointestinal tract and identified morphologically. Overall,

13 helminth taxa were obtained. The most frequently identified parasite species was

Heterakis spumosa, and the most abundant was Syphacia muris, while Physaloptera

sp. was the most widely distributed. No locality presented with a coexistence that was

different from that expected by chance, while the abundance of five helminthic species

correlated with the abundance of another in at least one locality, most likely due to

co-infection rather than interaction. Host sex was associated with parasite presence

or abundance, and female sex-biased parasitism was notably observed in all cases.

Body condition and latitude presented either a positive or negative association with the

presence or abundance of parasites depending on the species. It is notable that the

likely native Physaloptera sp. is widely distributed among invasive rodents. Further, gravid

females were found, suggesting spillback of this species to the native fauna. The low

frequency and abundance of highly zoonotic hymenolepid species suggest that rodents

are of low concern regarding gastrointestinal zoonotic helminths.
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INTRODUCTION

Invasive rodents, mainlyMus musculus, Rattus rattus, and Rattus
norvegicus with a worldwide distribution, and Rattus exulans
with a Pacific distribution, have been recognized as they perform
several roles ecologically (1) and epidemiologically (2). From
an ecological standpoint, invasive rodents not only directly
impact native communities by predation or competition (3), but
they also indirectly impact communities by both introducing
allochthones parasites or amplifying native ones (4). From
an epidemiological and public health standpoint, rodents are
important reservoir hosts of several zoonotic helminths (5–9),
and, although several rodents can harbor zoonotic parasites (10–
12), most of the reported zoonotic parasites have been found in
invasive rodents (Rattus spp. andMus spp.) (13).

In Chile, some studies have assessed the parasitism of rodents
by helminths at the parasite level, at the host population level,
and the host community level. Thus, respectively, those studies
have described new species (14, 15), component populations,
and communities (16, 17), and they have assessed the sharing
of parasites among different host populations within a host
community (18, 19); however, few have focused merely on the
parasites of an invasive rodent species. Existing research has
explored parasites in reduced geographical areas (20–22), while
another included invasive rodents in a host community-level
study (19). Studies focused on zoonotic helminths in invasive
rodents mostly focused on a single parasite species, Trichinella
spiralis (23, 24), even though many zoonotic helminths that
were reported in rodents in Chile are parasites introduced with
invasive rodents (13).

Studies focused on the ecology of helminths in these
invasive rodents have assessed the sharing of helminths with
native rodents (19). Little information is available about what
happens within component communities, and no studies have
examined the factors affecting the presence and abundance of
these parasites. It is known that the coexistence of parasite
infrapopulations could lead to either increased loads (synergism)
or reduced loads (antagonism), given that different causes lead
to direct interaction or immune-mediated interactions (25).
Although the coexistence or lack of coexistence can be caused
by interactions, they can be also caused by similar or different
infection routes, respectively, among other factors (26), and their
study is worthy. Thus, the objective of this study was to describe
the gastrointestinal helminthic fauna of introduced rodents in
Chile along a latitudinal gradient, to assess the association
between the occurrence (presence/absence) of parasites and their
abundance with latitude, and to host sex and host body condition.
Further, this study also assessed the coexistence and association
between the abundance of parasite species.

MATERIALS AND METHODS

The Rattus rattus (n = 159), R. norvegicus (n = 30), and Mus
musculus (n = 91) included in this study were obtained from
previous studies, which had other objectives (19, 24, 27, 28);
the trapping and euthanasia by an overdose of anesthesia of
those rodents were described in those articles. In addition to

ethic and/or legal authorizations provided for these articles,
new samplings were approved by the Comité de Bioética of
the Facultad de Ciencias Veterinarias (CBE-34-2019) of the
Universidad de Concepción. Several localities were included in
the study (Table 1), most of which were visited once; however,
some localities were visited two or three times. Therefore, we
defined a study unit (SU) as a set of host specimens obtained
from a single locality over<31 days. Thus, two SUs from the
same locality were not expected to represent the same parasite
community given the expected temporal variation of the presence
and abundance of parasites (29). A total of 27 SUs were studied
between the Coquimbo and Los Lagos regions (see the localities
in Figure 1). The gastrointestinal tract was examined for the
presence of helminths under a stereomicroscope. Nematodes
were cleared with lactophenol or ethanol–glycerin, and cestodes
were stained with carmine–HCl, and they were identified under
a light microscope following the keys of Anderson et al. (30) and
Khalil et al. (31).

The prevalence (95% confidence interval [CI] with the
Clopper–Pearson method), mean abundance (95% CI estimated
by the bootstrapping method) (32), variance-to-mean range (V-
M), Poulin’s discrepancy index (D), and k parameter from a
negative binomial distribution (33) were estimated by parasite
population within the host species and SU. Species richness
was estimated with the Chao2 method (34) by SU when the
presence of frequent and rare species enabled the estimation of
confidence intervals. Confidence intervals were obtained using
the Quantitative Parasitology online application, QPweb (34).

Patterns of species co-occurrence at the component
community, defining it at the SU level, were also examined. For
this, we used the EcoSim version 7.0 (35) software to test for non-
random patterns of species co-occurrence for each locality with
the C-score index (36). We selected SUs that had at least 12 hosts
with at least three parasite species with two of them presenting
prevalence higher than 20%. The C-score measures the average
number of “checkerboard units,” i.e., no co-occurrence, among
all possible species pairs. We used the fixed–fixed model with
5,000 iterations. When the observed C-score index is higher
than the simulated C-score, it indicates that the helminth
species co-occur less frequently than by chance. Conversely, an
observed C-score lower than the simulated score suggests that
the helminth species co-occur more frequently than expected by
chance. On the other hand, if the observed C-scores do not differ
statistically from the simulated C-scores, then random patterns
of species co-occurrence are observed (37). In addition, given
that the abundance of parasites reflects the number of infection
events, two species that co-occur are expected to have correlated
abundance; therefore, we also tested whether the abundance of a
species was associated with the abundance of the other species,
between pairs of parasite species within SUs with more than 10
hosts, using Spearman correlation tests.

Finally, we assessed the association between the occurrence
(presence/absence) and abundance of parasite species with the
latitude, body condition, and sex of the host using multifactorial
logistic and binomial negative regressions, respectively. In the
case of the variable sex, “female” was considered as a basal
level and “male” as a dummy variable, latitude was measured
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TABLE 1 | Abundances of helminths in allochthonous rodents in Chile by host species and study unit.

SU* Locality Host

species*

Sample

size

H.s.* S.spp.*,*** A.t.* T.m.* N.b.* Ph.sp.* Pt.sp.* Hy*,**** Pr.sp.* G.n.* Ca.*

MA*,** MA MA MA MA MA MA MA MA MA MA

1 Sotaquí R. r. 1 0 0 0 0 0 0 0 0 0 0 0

2 Sotaquí R. r. 1 0 n = 1 0 0 0 n = 1 0 0 0 0 0

3 Monte Patria R. r. 3 0 n = 2 0 0 0 n = 1 0 0 n = 1 0 0

4 Illapel R. r. 6 0 0 0 0 0 0 0 0 0 0 0

5 Illapel R. r. 5 n = 5 0 0 0 0 n = 1 0 n = 3 0 n = 1 0

6 Putaendo R. n. 3 0 n = 3 0 0 0 0 0 n = 1 0 0 0

6 Putaendo R. r. 3 0 n = 8 0 0 0 0 0 0 0 0 0

7 Maipú 1 R. r. 1 0 n = 106 0 0 0 0 0 0 0 0 0

7 Maipú 1 M. m. 1 0 n = 15 0 0 0 0 0 0 0 0 0

8 Maipú 1 R. n. 1 0 n = 1,358 0 0 0 0 0 0 0 0 0

8 Maipú 1 R. r. 1 0 0 0 0 0 n = 5 0 0 0 0 0

9 San Ramón R. r. 5 0 0 n = 11 0 0 0 0 0 0 0 0

10 Maipú 2 R. r. 3 n = 3 n = 43 0 0 n = 1 n = 7 0 n = 1 0 0 0

10 Maipú 2 R. n. 12 25.8 3.42 0 0 2.08 0.58 0.25 0.33 0 0 18.3

10 Maipú 2 M. m. 13 0 5.85 0 0 0 0.08 0 0 0 0 0

11 Maipú 2 R. r. 3 n = 2 0 0 0 0 n = 7 0 0 0 0 0

11 Maipú 2 M. m. 16 0 74.8 0 0 0 1.9 0 0 0 0 0

12 La Pintana R. n. 6 0 n = 44 0 0 0 0 0 n = 2 0 0 0

12 La Pintana M. m. 27 0 2.07 0.07 0 0 0.04 0 0 0 0 0

13 La Pintana R. r. 1 0 0 0 0 0 0 0 0 0 0 0

13 La Pintana M. m. 9 0 n = 358 n = 2 0 0 n = 1 0 0 0 0 0

14 La Pintana M. m. 18 0.78 27.8 0 6.78 0 0 0 0 0 0 0

14 La Pintana R. r. 1 0 0 0 0 0 0 0 0 0 0 0

15 Calera de tango R. n. 1 0 0 0 0 0 0 0 0 0 0 0

16 Talagante R. n. 1 0 0 0 0 0 0 0 0 0 0 0

17 Talagante R. n. 1 n = 1 0 0 0 0 0 0 0 0 0 0

17 Talagante R. r. 8 0 n = 431 n = 1 n = 1 0 0 0 0 0 0 0

18 Chillán R. r. 16 0 0 0 0 0 0 0 0 0 0 0

19 Nueva Aldea R. r. 8 n = 20 n = 1 0 0 0 n = 8 n = 1 0 n = 3 0 n = 1

20 Pinto R. r. 14 7.43 0 0 0 26.3 0.571 0.36 1.14 2.2 0 0

20 Pinto R. n. 1 0 0 0 0 0 0 0 0 0 0 0

21 El Carmen R. r. 6 n = 1 0 0 0 0 0 0 0 0 0 0

22 Pemuco R. r. 20 0 0 0 0 0 0 0 0 0 0 0

22 Pemuco R. n. 3 0 0 0 0 0 0 0 0 0 0 0

23 Carahue M. m. 7 0 0 0 0 0 0 0 0 0 0 0

23 Carahue R. r. 21 2.1 84.4 0 0 3.29 0.14 0 0 0 0 0

24 Collico R. r. 6 n = 20 n = 146 0 0 n = 154 n = 2 0 0 0 0 0

25 Puerto Saavedra R. r. 2 n = 32 n = 109 0 0 n = 13 n = 5 0 0 0 0 0

26 Alerce Costero National

Reserve

R. r. 10 0 0 0 0 0 0.2 0.3 0 0 0 0

27 Castro R. r. 14 3.3 5.36 0 0 0 0 0 0 0 0 0

27 Castro R. n. 1 n = 3 0 0 0 0 0 0 0 0 0 0

*SU, Study Unit; MA, mean abundance; R. r., Rattus rattus; R. n., Rattus norvegicus; M. m., Mus musculus; H.s., Heterkis spumosa; S., Syphacia; A.t., Aspiculuris tetraptera;

T.m., Trichuris muris; N.b., Nippostrongylus brasiliensis; Ph, Physaloptera; Pt., Pteryogodermatites; Hy., Hymenolepididae; Pr., Protospirura; G.n., Gongylonema neoplasticum;

Ca., Capillariidae.

** In small sample size SU n = X indicates the abundance instead of MA.

***Syphacia spp. are S. obvelata in M. m. and S. muris in Rattus sp.

****SU 5: one parasite specimen is the sole Rodentolepis nana found in the study. The rest were Hymenolepis diminuta.
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FIGURE 1 | Map of Chile with the localities included in the study: 1 = Sotaquí, 2 = Monte Patria, 3 = Illapel, 4 = Putaendo, 5 = Maipú 1, 6 = San Ramón, 7 = Maipú

2, 8 = La Pintana, 9 = Calera de Tango, 10 = Talagante, 11 = Chillán, 12 = Nueva Aldea, 13 = Pinto, 14 = El Carmen, 15 = Pemuco, 16 = Carahue, 17 = Collico,

18 = Puerto Saavedra, 19 = Alerce Costero National Park, and 20 = Castro.
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as degree and decimals, and body condition was calculated with
Fulton’s index (K = mass/lenght3). To select the best model,
we began with the full model containing the three independent
variables. The P-value of the variables was only considered as
a criterion that was used to select the variable to remove in
each step, with the variable with the highest P-value being
the variable to remove. Likelihood ratio tests (LR tests) were
used to choose the best model, where the removal of any
variable implied a significant loss of likelihood and took place
with a model P-value of ≤ 0.05. In addition, in the case of
logistic regressions, goodness-of-fit (GOF) tests were performed
to assess the selected models. If the observed parasite presence
did not fit the expected model, the variable was not considered
to be associated with the occurrence. Regressions, LR tests,
GOF tests and, correlation tests were performed using Stata/BE
17 (StataCorp LLC). The significance level of the models and
tests was P = 0.05. Only significant associations are reported
in the results.

RESULTS

Overall, the observed species richness was 13 species, and the
estimated richness was 14 (95% CI: 14.1–27.1). The taxa found
herein were: Heterakis spumosa, Syphacia obvelata, Syphacia
muris, Aspiculuris tetraptera, Trichuris muris, Nippostrongylus
brasiliensis, Physaloptera sp., Protospirura sp., Pterygodermatites
(Paucipectines) sp., Gongylonema neoplasticum, Capillariidae,
Hymenolepis diminuta, and Rodentolepis nana. The most
frequently found parasite among examined animals was H.
spumosa with 25.4% (CI 19.4–32.2. Mean abundance: 3.03; CI
1.91–5.13), identified among Rattus spp. hosts and was found in
12 SUs. Syphacia muris was the second most frequently found
with a 17.5% (CI 12.3–23.6) prevalence rate among Rattus spp.,
but it presented the highest mean abundance among Rattus
sp. (21.9; 9.6–50.6) and was present in 14 SUs. Physaloptera
sp., with an overall 9.6% prevalence rate and 0.225 mean
abundance, was the most widely distributed species, present in
17 SUs, including the northernmost and southernmost studied
localities. Conversely, the rarest taxa were A. tetraptera and
Capillariidae, which were found in only four individuals each.
When considering parasites with an aggregation index measured
in more than one SU, S. muris presented the highest average
V-M = 197, with a maximum of 520 in a single SU, followed
by H. spumosa which presented an average V-M = 14.6 with
a maximum of 33.9. Conversely, Physaloptera sp. presented the
highest average D-index, 0.85 (maximum 0.93), followed by S.
muris, 0.82 (max. 0.85). Syphacia obvelata presented the lowest
k parameter, 0.11, followed by Physaloptera sp., 0.21; however,
this parameter was not obtained in many samples given that
the maximum likelihood estimate of k could not be computed,
which may be due to a lack of fitness with the negative binomial
distribution given the small local sample size or its very low
local prevalence. The abundances by host species and SU are
given in Table 1. The details of the prevalence, mean abundance,
and aggregation indices by host species and SU, as well as the
estimated richness by SU, are given in Supplementary Table 1.

We analyzed the co-occurrence between parasite species in
three-component communities, which showed a C-score similar
to that expected by chance, indicating that the parasite species
co-occur as frequently as expected (Supplementary Table 2).

On the other hand, among 45 pairwise correlation tests of
abundance between parasite populations, only five significant
associations were found, all of which were positive: H. spumosa–
S. muris (ρ = 0.45; P = 0.04), H. spumosa–N. brasiliensis (ρ =

0.55; P= 0.01) and S. muris–N. brasiliensis (ρ = 0.6; P < 0.01) in
Carahue; andH. spumosa–N. brasiliensis (ρ = 0.63; P= 0.02) and
Physaloptera sp.–Protospirura sp. (ρ = 0.73; P < 0.01) in Pinto.
The details of all pairwise tests with their ρ and P-values are given
in Supplementary Table 3.

Finally, sex was associated with the presence of H. spumosa
[odds ratio (OR) = 0.37], N. brasiliensis (OR = 0.16), and H.
diminuta (OR =0.67) and was associated with the abundance of
T. muris (coefficient = −3.88), N. brasiliensis (coef. = −5.18),
and Physaloptera sp. (coef. = −1.36); the presence was more
frequent and/or the abundance was higher in females than in
males in all cases. Body condition was negatively associated with
the occurrence of H. spumosa (OR = 0.67) and Physaloptera
sp. (OR = 0.41), negatively associated with the abundance of
H. spumosa (coef. = −1.2) and positively associated with the
abundance of S. obvelata (coef. = 1.83). Latitude was positively
associated with the occurrence (OR = 1.21) and abundance
(coef. = 0.47) of H. spumosa, and negatively associated with
the occurrence of H. diminuta (OR = 0.67) and the abundance
of Physaloptera sp. (coef. = −0.32) and Capillariidae (coef.
= −1.62). The details of the selected models are given in
Supplementary Tables 4–13. When the P-value of the variable
was higher than 0.05, the LR-test output that the remotion of the
variable caused a significant loss of likelihood. In each selected
model, the likelihood of the model was significantly higher than
the null model (see the P-value of the log-likelihood).

DISCUSSION

A total of 13 gastrointestinal helminth species were found;
however, the richness estimation suggests that additional work
is necessary to better determine parasite richness and to identify
all parasite species inhabiting the gastrointestinal tracts of rats
and mice in Chile. Two of the helminth species reported herein,
H. diminuta and R. nana, have been frequently reported to
infect humans elsewhere (38–40); however, they were found
with low frequency and abundance in the present study. Other
zoonotic species, S. obvelata, and S. muris, were more prevalent
and abundant in their hosts, M. musculus and Rattus spp.,
respectively, but there are only a few reports of them infecting
humans (41, 42). Finally, T. muris has also been seldomly
reported to infect humans, and was scarcely found in this study.
Thus, the results suggest that, regarding helminthic infections,
invasive rodents in Chile are of a minor, but not null, concern
from a public health standpoint since their cycles are maintained
by these invasive rodents. This aligns with the lack of reports of
Syphacia infection in Chilean people coupled with the decreasing
prevalence of hymenolepids (43).
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In addition to the five mentioned helminthic species, H.
spumosa, A. tetraptera, N. brasiliensis, and G. neoplasticum
have been reportedly found in Rattus spp. and M. musculus
elsewhere in both laboratory and feral specimens (8, 42, 44–
47). The enemy release hypothesis states that invasive animals
present with fewer parasite species than in their original territory
(48) given the small sample size of translocated animals, the
loss of parasites during the translocation process, and/or the
adaptation of the parasite to the new territory (49). Thus, the
number of parasite species reported herein is larger than expected
since it is similar to the richness reported in the Palearctic
(50, 51), but higher than in other invaded territories (52). This
suggests that there have been several introduction processes, i.e.,
processes of translocation of rodents from overseas to Chile,
that favor the sampling of different parasite species in each
introduction process. The low prevalence and abundance of
many parasite species may favor the process of invasion by these
allochthones rodents. Conversely, some parasites reported herein
have not been reported in Rattus spp. and Mus musculus with
worldwide distribution; rather, they seem to be native parasites
from Neotropical rodents. Physaloptera sp. and Protospirura sp.
are parasite genera frequently reported in native rodents in
Chile (16, 19, 53, 54), and in both cases, gravid females were
found, which supports the hypothesis that there is a spillback of
parasites (55–57); however, new temporal studies are necessary to
determine whether the parasitic loads increase in native rodent
populations after the arrival of invasive rodents. In the case of
Pterygodermatites sp., although the species was not identified
given the low availability of males worms, species found in native
rodents in Chile (19) are morphologically different from that
reported herein, at least in terms of the distance of the first
cuticular projection and the anterior end, as well as and the
number of cuticular projections, suggesting that it could be a
co-introduced species. Pterygodermatites spp. have been reported
previously in Rattus spp. in Taiwan (58) and Thailand (46), with
P. tani and P. whartoni being the reported species.

The positive associations between parasites agree with the
fact that they have similar cycles. Thus, S. muris, H. spumosa,
and N. brasiliensis, which co-abound in Carahue, have a direct
cycle, suggesting that the correlation of their abundance could
be due to similar transmission methods. On the other hand,
Physaloptera sp. and Protospirura sp. have an indirect cycle, with
Orthoptera, Coleoptera, and Dictyoptera insects being reported
as intermediates hosts of Physaloptera sp. (59), and Dermaptera
insects being reported as intermediate hosts of Protospirura sp.
(60). In addition, both helminthic taxa seem to have native
rodents as part of their reservoir, insofar as their coexistence
with native rodents and their predatory behavior on insects are
factors that favor the infection of both parasites by the same
host. Therefore, although correlated abundances do not seem to
be the general rule, which agrees with the lack of significant co-
occurrence, the results suggest that if they do exist, they can result
from co-infection rather than interspecies interactions between
parasite species.

Sex is reportedly a significant factor affecting the presence and
abundance of parasites; however, female sex-biased parasitism
is rare in the literature (61), as males are usually more likely

to be parasitized than females (29, 62–64). Some factors,
such as pregnancy and lactation, have been mentioned in
the literature as weakening the resistance of female mammals
to parasitic infection (65–67); however, in this study, the
pregnancy or lactation conditions of female rodents were not
recorded transversally, and this factor could not be assessed.
Behavioral factors, such as feeding, have also been assessed,
with female bank voles more likely to be exposed to spirurid
parasites given their higher proportion of invertebrate animal
consumption (61, 68). However, this differential behavior should
be assessed in invasive rats, and might only explain the
association between sex, the presence of H. diminuta, and
the abundance of Physaloptera sp., which are transmitted by
invertebrate intermediate hosts.

There were no common patterns of variation related to the
body condition-associated parasitism, as most cases were not
significantly associated. Significant associations may have been
because the larger host’s body could offer more resources to
the parasite (69), that larger hosts could have offered greater
opportunities for parasite infection (70) (positive association)
or that parasitism could result in damage to the host (negative
association) (70, 71). It is not easy to explain that the body
condition is positively associated with the infection with S.
obvelata and negatively associated with the infection with
H. spumosa, given that both parasites present a direct cycle.
Thus, results suggest that H. spumosa is more pathogenic
than S. obvelata. However, this difference could be influenced
by the host, since S. obvelata is mainly a parasite of M.
musculus whileH. spumosa parasitize mainly Rattus spp. Further
studies are necessary to test these hypotheses. On the other
hand, the negative association of Physaloptera sp. infection
with the body condition suggests a damage to the host by
the parasite, which is in agreement with previous records in
other species (72, 73).

Heterakis spumosa was more prevalent and abundant in the
south, which suggests that cold and humid climates favor the
persistence of infecting stages of this parasite in the environment.
Conversely, H. diminuta and Physaloptera sp. were more
prevalent or abundant to the north, which suggests that warmer
or drier climates favor their intermediates hosts. Capillariidae
was also more abundant to the north, but further studies are
needed to determine the species and the life cycle of this taxa
to understand this association. The contrasting associations
between latitude and parasitic rates suggest that the persistence of
free-living parasites, or the intermediate host stages of parasites,
could explain these associations. More studies assessing these
hypotheses are necessary to establish a cause.

CONCLUSION

In this work, we reported 13 gastrointestinal helminth species
of R. rattus, R. norvegicus, and M. musculus. Although some of
these parasites reportedly infect humans, the low prevalence and
abundance of these parasites suggest that they are of low concern
for public health. The presence of gravid females of native
parasites in invasive rodents supports the spillback hypothesis,
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but more studies are needed to test this hypothesis. Coinfection
and correlated abundances are not frequent among helminth
communities of rodents. The host’s sex was the factor that is
most frequently associated with parasitism, notably with female
sex-biased parasitism observed in all cases.
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