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Introduction
To date, the Enterobacteriaceae family contains 55 genera 
and 248 species (www.bacterio.net, September 1, 2016). 
Most of the enterobacteria live in the vertebrate intestine, 
whereas several other enterobacterial genera/species repre-
sent plant pathogens or invertebrate endosymbionts.1 Other 
enterobacteria are believed to live only in the environment, 
eg, Pragia, Saccharobacter, Obesumbacterium, Shimwellia,1 
Mangrovibacter,2 and Biostraticola.3 However, it is possible 
that their pathogenic/symbiotic potential will be revealed in 
the future, as it was for Budvicia.4,5

Pragia fontium is a gram-negative, mesophilic, rod-
shaped, motile bacterium. The genus Pragia contains only 1 
species, P. fontium, which was described in 1988.6 A total of 
18 strains were isolated in Czechoslovakia between 1982 
and 1986. All strains, except 1, were isolated from water 
wells and water pipes, whereas 1 strain was obtained from 
the stool of a healthy woman. Another set of Pragia strains 
was isolated in Ukraine between 1996 and 1997.7 They were 
mostly isolated from water (9 strains) and other environ-
mental material (5 strains), although 2 strains came  
from human clinical material; their relatedness to the 
Czechoslovakia strains varied from 84% to 95% (based on 
DNA-DNA hybridization). To date, only strains from these 
2 locations have been characterized, and the exact ecological 
niche and pathogenic potential of Pragia remains unclear.

Pragia fontium, as well as Budvicia spp. and Leminorella spp., 
is a closely related atypical enterobacterial species. Their com-
mon feature is hydrogen sulfide production, with Budvicia 

diplopodorum being the only known exception.5 These H2S-
producing enterobacteria share several metabolic features 
including reduced metabolic activity that results in utilization 
of a limited set of substrates. The optimal growth temperature 
for Pragia and Budvicia is 25°C, whereas Leminorella is capable 
of growing at temperatures up to 42°C.6 Pragia fontium can be 
differentiated from Budvicia spp. based on a positive (Simmons) 
citrate utilization test and from Leminorella spp. by its motility, 
tartrate utilization, tyrosine clearing, and inability to grow at 
42°C.6 In addition, a whole-cell protein pattern analysis of  
P. fontium, B. aquatica, and Leminorella spp. was determined 
and the data supported the delineation of these genera.8 On 
the DNA level, Pragia strains were most closely related to 
Budvicia (based on DNA-DNA hybridization, relatedness 
20%-37%) but barely related to other genera, eg, relatedness to 
Escherichia coli K12 was about 3%.9

To date, 485 completed enterobacterial genome sequences, 
covering 21 genera and 47 species, have been deposited in the 
Genomes OnLine Database (GOLD, https://gold.jgi.doe.
gov/). Attention has been focused mainly on clinically and 
agriculturally important bacteria (eg, Escherichia, Salmonella, 
Klebsiella, and Yersinia), leaving the remaining genera rela-
tively unexplored.

The whole genome sequence and the pilot assembly of P. fon-
tium 24613 were published in 2015.10 In this study, we character-
ized P. fontium based on genomic data, including the relationship 
of Pragia to other genera, and compared metabolic pathways with 
the results of phenotypic metabolic fingerprinting.
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Materials and Methods
Bacterial strains and cultivation conditions

The strains used in this study came from the collection of the 
Department of Biology, Masaryk University, Brno, Czech 
Republic (P. fontium 24613, originally stored at the National 
Institute of Public Health, Prague, Czech Republic); from the 
Czech National Collection of Type Cultures, Prague, Czech 
Republic (Budvicia aquatica CNCTC 6285T); and from the 
Czech Collection of Microorganisms, Brno, Czech Republic 
(Leminorella grimontii CCM 4003T). Pragia fontium 24613 
came from the same set of strains as P. fontium DSM 5563T6. 
Strains were cultivated in TY medium (8 g casein, 5 g yeast 
extract, 5 g sodium chloride, pH 7.5; HiMedia, Mumbai, India) 
at 30°C for 24 hours.

Pragia fontium 24613 genome sequencing and 
annotation

In our previous study, protocols for DNA extraction, whole 
genome sequencing, and annotation of P. fontium 24613 were 
described in detail.10 For additional gene mining and genome 
comparisons, annotation was manually curated based on 
results of a RAST (Rapid Annotation using Subsystem 
Technology) pipeline11 and DOE-JGI (US Department of 
Energy-Joint Genome Institute) Microbial Genome 
Annotation Pipeline.12 Detected proteins were assigned to 
Clusters of Orthologous Group (COG) categories based on 
DOE-JGI results. Methylome was characterized using 
PacBio single-molecule real-time sequencing (1× SMRT 
cell) of kinetic data collected during the genome sequencing 
process.13 SMRT analysis version 2.3, using the “RS_
Modification_and_Motif_Analysis.1” protocol, was used for 
genome-wide base modification and detection of the affected 
motifs. Regarding sequencing coverage, a default quality score 
value of 30 (corresponding to a P value of .001) was used for 
motif determination. The detected motifs were uploaded and 
further analyzed using the REBASE database.14 The com-
plete genome was also scanned for homologues of restriction-
modification system genes (using a Basic Local Alignment 
Search Tool [BLAST] search, with the BLASTX algorithm) 
against the REBASE and GenBank databases.

Phylogenetic position of P. fontium

The genome sequence of P. fontium 24613 was compared with 
other enterobacterial genera on a genome-wide level. Whole 
genome sequences were downloaded from the GOLD (https://
gold.jgi.doe.gov/); their accession numbers are listed in Table 
S1. Each genus was represented by 1 sequence (except for Pragia 
where both the type strain DSM 5563T and strain 24613 were 
used). If available, the sequence of the type strain was used. For 
genera Biostraticola, Cosenzaea, Gibbsiella, Mangrovibacter, 
Obesumbacterium, Saccharobacter, and Samsonia, no sequences 

were available. A whole genome phylogenetic analysis was built 
using PhyloPhlAn 0.99,15 which compared more than 400 
selected protein sequences conserved across bacterial domains. 
The genes were identified using an internal PhyloPhlAn data-
base by translated mapping with USEARCH 8.1.16 The topol-
ogy was computed using the neighbor-joining algorithm in 
conjunction with the Jukes-Cantor evolution model. Moreover, 
the CAT model, with gamma correction, was used to optimize 
and rescale the tree. The final tree was reconstructed, using 
FastTree 2.1,17 from protein subsequences of the genes concate-
nating their most informative amino acid positions, and each 
was aligned using MUSCLE 3.8.18 The tree was visualized in 
MEGA 6.06.19 Dot plot diagrams between genomes were con-
structed using the Integrated Microbial Genome platform.12 
The core genome of P. fontium, B. aquatica, and L. grimontii was 
determined based on orthologous clusters produced by 
OrthoVenn20 using a modified OrthoMCL heuristic approach. 
Default parameters (E-value 1e−5 and inflation value 1.5) were 
used. Metabolic pathway analysis of P. fontium 24613, 
Wigglesworthia glossinidia (acc. no. CP003315), and Buchnera 
aphidicola G002 (acc. no. CP002701) was performed using the 
KEGG PATHWAY database,21 which is part of KEGG Web 
services (http://www.genome.jp/kegg/).

Analyses of metagenomics data

Data from the Human Microbiome Project database (http://
hmpdacc.org) and EBI Metagenomics database (https://www.
ebi.ac.uk/metagenomics/) were searched with BLASTN 
2.2.2222 using a consensus sequence of 7 16S ribosomal RNA 
(rRNA) genes of P. fontium 24613. The first database contained 
a complete set of human microbiome data (associating data 
from several human sites), and the latter database covered data 
from different environmental sources.

Substrate diversity studies

The Biolog GN2 MicroPlate analysis platform (Biolog, Inc., 
Hayward, CA, USA) was used for determination of the bio-
chemical profiles of P. fontium 24613, B. aquatica CNCTC 
6285T, and L. grimontii CCM 4003T cultivated on Biolog 
Universal Growth (BUG) agar at 30°C for 24 hours. Utilization 
of 95 carbon sources was tested23 (Table S2). Media and all 
reagents were supplied by Biolog and used according to the 
manufacturer’s protocol. Plates were incubated in parallel under 
aerobic and anaerobic conditions and tests were read after 24 
hours of incubation.

Results
Genome analyses of P. fontium 24613
Complete genome sequence of P. fontium 24613.  A complete 
genome sequence for P. fontium 24613 represents a single cir-
cular chromosome with a length of 4 094 629 bp.10 The  
P. fontium 24613 genome was compared with 3 draft genomes 

https://gold.jgi.doe.gov/
https://gold.jgi.doe.gov/
http://www.genome.jp/kegg/
http://hmpdacc.org
http://hmpdacc.org
https://www.ebi.ac.uk/metagenomics/
https://www.ebi.ac.uk/metagenomics/
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of related bacteria, including the draft genome of P. fontium 
DSM 5563T (Table 1). Both the B. aquatica DSM 5075T 
genome and the L. grimontii DSM 5078Tgenome were larger 
in size and gene count compared with the complete genome 
sequence of P. fontium 24613. Moreover, the proportion of 
pseudogenes was larger in P. fontium (4.1%) than in the draft 
genomes of other H2S-producing enterobacteria (ie, 2.8% 
and 1.6% for B. aquatica and L. grimontii, respectively), sug-
gesting genome decay in P. fontium. In addition, a clearly 
higher GC content was found in the L. grimontii DSM 5078T 
(L. grimontii) genome. The draft status was likely responsible 
for the lower number of predicted rRNA and transfer  
RNA genes in the P. fontium DSM 5563T, B. aquatica, and  
L. grimontii genomes.

Phylogenetic position of P. fontium.  A whole genome phyloge-
netic approach was used to compare the genome sequence of 

P. fontium 24613 with genome sequences of other enterobac-
terial genera. The relevant part of the Enterobacteriaceae tree 
is shown in Figure 1. Strong support was found for a close 
relationship among Pragia and other atypical H2S producers, 
including Budvicia and Leminorella. The high similarity 
among genomes was also supported by a dot plot analysis of 
H2S producer genomes (Figure S1). Another related genus 
was Plesiomonas, an oxidase-positive genus recently reclassi-
fied into the Enterobacteriaceae family.24 A sister clade  
contains a cluster of genera occurring frequently in the  
(1) environment (Providencia, Moellerella, Proteus, and Mor-
ganella), (2) genera associated with nematodes (Xenorhabdus, 
Photorhabdus), and (3) endosymbionts (Arsenophonus, Buch-
nera, and Wigglesworthia). Except for the delineation of  
Proteus vs Morganella and endosymbionts Buchnera vs Wig-
glesworthia, all other branches were supported by bootstrap 
values higher than 99%.

Table 1.  Genome features of Pragia fontium 24613 in comparison with the draft genome of the type strain and the draft genomes of closely related 
hydrogen sulfide producers.

Feature P. fontium 24613 P. fontium DSM 5563T B. aquatica DSM 5075T L. grimontii DSM 5078T

Genome status Complete Draft Draft Draft

Genome size 4 094 629 bp 3 950 845 bp 5 670 930 bp 4 222 128 bp

GC content 45.38% 45.23% 45.68% 53.86%

No. of CDS 3579 3464 5130 3878

No. of rRNA genes 22 (8–7–7) 10 (2–5–3) 7 (5–2–0) 16 (8–6–2)

No. of tRNA genes 72 58 57 57

No. of pseudogenes 146 (4.1%) NA 144 (2.8%) 62 (1.6%)

No. of genes with predicted function 2809 (78.49%) 2862 (82.62%) 3896 (75.95%) 3083 (79.50%)

No. of genes assigned to COG 2601 (72.67%) 2613 (75.43%) 2601 (72.67%) 2804 (72.31%)

No. of genes assigned to KEGG 
pathways

1160 (32.41%) 1172 (33.83%) 1419 (27.66%) 1217 (31.38%)

Abbreviations: CDS, coding sequences; COG, Clusters of Orthologous Group; KEGG, Kyoto Encyclopedia of Genes and Genomes; rRNA, ribosomal RNA; tRNA, 
transfer RNA.
Accession numbers of the whole genome sequences of the type strains are listed in Table S1. Order of the rRNA genes in parentheses: 5S-16S-23S. NA—data not 
available in the GenBank and Genomes OnLine databases.

Figure 1.  Phylogenetic position of the genus Pragia based on a whole genome sequence tree. Only the relevant part of the Enterobacteriaceae tree is 

shown (the whole tree is depicted in Figure S2). All branches are supported with high bootstrap values. The tree was drawn to scale; the scale bar 

represents the estimated number of amino acid changes per site per unit of branch length.
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The core genome of enterobacterial hydrogen sulf ide producers.  The 
core genomes of P. fontium, B. aquatica, and L. grimontii con-
tain 2327 gene clusters (ie, at least 1 gene from each cluster was 
found in each genome; Figure 2). The number of gene clusters 
exclusively shared by 2 genomes was higher for the P. fontium 
and B. aquatica genomes (325) compared with the P. fontium 
and L. grimontii genomes (109), whereas there were 494 clus-
ters shared by the L. grimontii and B. aquatica genomes. These 
data indicate a higher degree of relatedness between P. fontium 
and B. aquatica compared with P. fontium and L. grimontii. A 
set of 30 gene clusters was unique for the P. fontium genome; 
these clusters encoded homologues to fimbrial genes found in  
Serratia spp. and Proteus spp. and also homologues to pyocin S3 
and its immunity protein–encoding genes. In total, 10 clusters 
encoded genes for hypothetical proteins.

Genome-based metabolic and virulence analyses
Analysis of metabolic pathways in the P. fontium genome.  Based 
on the genomic data analysis from KEGG PATHWAY and 
DOE-JGI, aerobic and facultative anaerobic metabolism of  
P. fontium 24613 was predicted. Oxidized nitrogen and sulfur 
compounds were capable of serving as alternative terminal 
electron acceptors under anaerobic conditions. Identification of 
thiosulfate reductase, responsible for H2S production, corre-
sponded to previously detected enzyme activity.6 The genes 
involved in glycolysis, citrate cycle, and pentose phosphate 
pathway could also be found in the P. fontium genome in addi-
tion to genes responsible for amino acid, fatty acid synthesis, 
lipid, and nucleotide metabolism. Pragia was found to be auxo-
trophic for l-tryptophan, l-histidine, and l-leucine and defi-
cient in biotin synthesis. Compared with Budvicia and 
Leminorella, Pragia was able to synthetize l-arginine but lacked 
the genes for fatty acid degradation. In addition, the P. fontium 
genome contained fewer genes involved in carbohydrate 

metabolism compared with the L. grimontii and B. aquatica 
genomes (Table S3).

Genome methylation pattern.  Analysis of PacBio sequencing 
data revealed 24 814 methylated positions of the m6A type, but 
only a single sequence motif (GATC) was found in all these 
modifications. More than 80% (21 735 of 26 606) of the 
GATC positions in the genome were methylated. Methylation 
type m4C was not found. Kinetic signatures of m5C were sub-
tler than signatures of m6A and m4C and harder to detect 
using PacBio SMRT sequencing25; therefore, they were not 
assessed. The results of P. fontium genome methylation were 
deposited in the REBASE PacBio database (http://rebase.neb.
com/cgi-bin/pacbiolist).14 In total, 8 different putative restriction-
modification systems, all of them type II, were predicted in the 
genome (Table S4). Seven of them consisted of only methyl-
transferases, whereas the last one modifying m5C consisted of 
methyltransferase, mismatch repair endonuclease, and restric-
tion endonuclease.

Virulence and antimicrobial genes in the P. fontium genome.  In 
silico analysis of virulence determinants of the P. fontium 
genome revealed genes involved in iron acquisition (encoding 
Fe2+ and Fe3+ transport systems), adhesion (encoding P pili and 
type I pili), secretion systems (T1SS and T6SS), and antibiotic 
resistance (encoding AmpC β-lactamase and several efflux 
pump) (see Table S5).

Production of tailocins, ie, R-type and F-type bacteriocins 
resembling phage tails, was previously detected in several 
Pragia strains.26 Gene clusters similar to the phage genes were 
described as being responsible for production of these antimi-
crobial compounds.27 A total of 6 clusters homologous to 
phage genes were predicted in the P. fontium genome, and one 
of them was likely responsible for tailocin production (see 
Table S5). The genome search also detected a gene encoding a 
colicin-like bacteriocin, a homologue of pyocin S3.

Metabolic profiling of P. fontium 24613

The carbohydrate utilization pattern resulting from the testing 
of various saccharides, carboxylic acids, alcohols, amino acids, 
aromatic compounds, and their derivatives was determined for 
P. fontium 24613, B. aquatica CNCTC 6285T, and L. grimontii 
CCM 4003T. In general, the data obtained from the Biolog 
assay revealed low levels of metabolic activity in all tested strains. 
Substrate utilization profiles differed for the 3 tested H2S pro-
ducers in 17 substrates (Table S2). Pragia fontium 24613 was 
able to utilize 15 substrates (out of 95; 16%) under aerobic con-
ditions and 22 (out of 95; 23%) under anaerobic conditions. 
Pragia utilized monosaccharides and their derivatives (α-d-
glucose, α-d-glucose-1-phosphate, d-glucose-6-phosphate, 
N-acetyl-d-glucosamine, and β-methyl-d-glucoside), mono-
carboxylic acids (d,l-lactic acid, and d-gluconic acid), dicarbox-
ylic acids (α-keto-glutaric acid, and l-glutamic acid), alcohols 
and their derivatives (glycerol, d,l-α-glycerol phosphate, myo-
inositol, and xylitol), amino acids (d-serine), and aromatic com-
pounds (uridine and thymidine). In addition to substrates 

Figure 2.  The Venn diagram represents the core genome and 

pangenome of Pragia and the closely related atypical H2S producers. 

The numbers represent the gene clusters shared by corresponding group 

of genera. The diagram shows the close relationships among those 

inside the group of atypical H2S producers.

http://rebase.neb.com/cgi-bin/pacbiolist
http://rebase.neb.com/cgi-bin/pacbiolist
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utilized under aerobic conditions, anaerobically cultivated 
Pragia utilized l-arabinose, pyruvic acid methyl ester, d-glucu-
ronic acid, bromosuccinic acid, l-aspartic acid, glycyl-l-aspartic 
acid, and l-serine. Although Budvicia utilized 16 substrates 
(17%) aerobically and 24 (25%) anaerobically, Leminorella uti-
lized only 13 substrates (14%) aerobically and 18 (19%) anaero-
bically. Budvicia and Leminorella were able to metabolize several 
amino acids and their derivatives (l-asparagine, l-aspartic acid, 
and glycyl-l-aspartic acid) as well as derivatives of organic acids 
from Krebs cycle (pyruvic acid methyl ester, bromosuccinic 
acid), which were not utilized by Pragia. The complete results of 
this assay are shown in Table S2. In most of the substrate tests, 
which differed among H2S producers, the genes encoding cor-
responding catabolic enzymes or enzymes possibly involved in 
metabolism of these compounds were found (Table S6). The 
only exception was the B. aquatica genome, where some of the 
genes responsible for catabolism of uridine were not found.

Discussion
Pragia belongs to a relatively small group of H2S-producing 
enterobacteria containing P. fontium, Budvicia spp., and 
Leminorella spp. Although all members of this small group are 
closely related and have a relatively similar biochemical profile, 
they occupy quite different ecological niches. Although 
Budvicia was originally isolated from freshwater,28 several 
other isolates have been described from the intestinal micro-
flora of insects,26,29 Diplopoda,5 and salmonids.30 A possible 
clinical relevance for B. aquatica was reported by Corbin et al4 
when this bacterium was isolated from a human clinical sam-
ple. Leminorella spp. have been exclusively isolated from 
human clinical specimens and no environmental sources have 
been reported. Although its clinical significance is unclear,1 
Leminorella spp. appear to be associated with urinary tract 
infections and other human nosocomial infections.31 In con-
trast to Budvicia and Leminorella, Pragia has been isolated 
almost exclusively from environmental sources. Only 3 isolates 
originated from human clinical samples; there is no informa-
tion on the role of these strains in infection or disease.6,7 
Because the prevalent habitat of other Pragia strains is drink-
ing water, these cases likely reflect accidental isolations. 
Inspection of metagenomics data revealed the absence of 
Pragia 16S ribosomal DNA (rDNA) in both environmental 
and host-associated data sets (data not shown). From all the 
available data, Pragia appears to be the only H2S producer 
occupying environmental niches with no association with 
humans or other hosts.

A possible interaction between Pragia and a host species 
was examined by identification and analysis of genes encoding 
virulence factors. Several common virulence factors shared by 
most enterobacterial species (even saprophytic ones) were 
detected. Genes for adhesion, antibiotic resistance, iron uptake, 
and 2 secretion systems were found. Adhesion and the ability 
to acquire iron are key factors required for colonization and 

survival in a host (animal or plant).32-34 These findings indi-
rectly support an association between Pragia and an as-yet-
unknown host. We can speculate that if a host organism exists, 
it will likely be similar to those of the closely related genus 
Budvicia, ie, nonvertebrate hosts such as insects or nematodes. 
Although the presence of Pragia has been detected in the 
intestines of freshwater salmon,35 the much more frequent 
isolation from deepwater wells6 tends to support a free-living 
lifestyle of Pragia. Both detected secretion systems, T1SS and 
T6SS, are widely distributed in gram-negative bacteria36,37 
and could mediate interaction with a host or with another 
bacterium.38 Although the contribution of T6SS to pathogen-
esis has been described for several bacteria, eg, Pseudomonas39 
and E coli,40 T6SS has also been found in saprophytic bacteria, 
where it was involved in interactions across the microbial 
community.38 Several bacteriocin types have been suggested as 
putative virulence factors, whereas the importance of others 
was demonstrated in interactions across microbial commu-
nity.41,42 Although the function of P. fontium bacteriocins 
remains unknown, both tailocins and colicin-like homologues 
were found in the Pragia genome. The GATC methylation 
motif was found in the P. fontium genome, and because the 
corresponding gene for the restriction enzyme recognizing 
this motif was not found, methylation appears to be more con-
nected to gene expression regulation43 and not to degradation 
of foreign nucleic acid molecules.

Metabolic profiling revealed a metabolic pattern for Pragia, 
Budvicia, and Leminorella, which was quite distinct from other 
enterobacteria,44 supporting the distinctness of enterobacterial 
H2S producers and also the close relationship of these bacteria 
within this group. Despite their overall similarity, H2S-
producing enterobacteria revealed several differences in their 
ability to utilize substrates. Analyses of genomic data sup-
ported the metabolic findings, with only 1 case in which some 
of the genes encoding expected enzymatic activity were not 
found. This is likely a result of an incomplete genomic 
sequence in Budvicia. Surprisingly, all species were able to 
degrade multiple substrates under anaerobic conditions sug-
gesting that alternative electron acceptors (nitrate, reduced 
sulfur compounds) could be used under anaerobic conditions. 
Nitrogen oxidation could be carried out using the “nitrite 
reduction to ammonium pathway” for which the correspond-
ing genes were found in the P. fontium genome. This pathway 
is preferred for respiration under anaerobic conditions, and it 
is common across Enterobacteriaceae and in other facultatively 
anaerobic bacteria.45

A comparative genomics approach revealed that almost 
80% of the gene clusters were shared by H2S-producing enter-
obacteria, whereas only 49% were shared when E coli K12 was 
added to the analysis. Analysis of the complete genome 
sequence of Pragia revealed that the genome contains genes 
involved in essential metabolic pathways, in nutrient metabo-
lism, and also in the synthesis of most of the amino acids. 
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However, the “fatty acid degradation pathway” is missing from 
the P. fontium 24613 genome. This pathway is present in most 
enterobacterial genomes but not in invertebrate endosymbi-
onts with a reduced genome, such as Wigglesworthia and 
Buchnera. Nevertheless, when compared with these endosym-
bionts, the P. fontium genome is relatively large and also con-
tains an additional set of genes, eg, those responsible for 
degradation of more complex polysaccharides. However,  
P. fontium 24613 has a relatively small genome in comparison 
with other enterobacteria, even in comparison with the genus 
Budvicia. In addition, the proportion of pseudogenes was 
larger in Pragia compared with other closely related bacteria 
(despite their draft status, which is prone to assembly errors). 
Larger proportions of pseudogenes have also been observed in 
bacteria that were associated with or dependent on eukaryotic 
hosts.46 Nevertheless, this analysis comes from a limited num-
ber of genome sequences per species and it is known that the 
prevalence of pseudogenes is quite variable even among closely 
related strains.47 A reduction in genome size and an increased 
number of pseudogenes are common signs of bacterial adapta-
tion to a eukaryotic host. In addition, the P. fontium genome 
contains fewer genes involved in carbohydrate utilization 
compared with other H2S producers; a large battery of degra-
dation enzymes is important mainly for free-living bacteria. 
The traces of genome decay (ie, small genome, absence of fatty 
acid degradation pathways, the small number of genes associ-
ated with carbohydrate utilization, and a larger proportion of 
pseudogenes) suggest an ongoing process of adaptation to a 
particular host organism. Although no such host has been 
identified for P. fontium, the recent progress in metagenome 
studies could help to answer this question in the near future.

Conclusions
Analysis of the complete genome sequence of P. fontium 24613 
and metabolic profiling confirmed the close relatedness of this 
bacterium to other H2S-producing enterobacteria, Budvicia 
spp. and Leminorella spp., although for each genus a different 
environmental niche has been described. Virulence gene min-
ing and the absence of Pragia 16S rDNA sequences in the 
human metagenomics data suggest limited pathogenic poten-
tial for Pragia, consistent with the previously described free-
living lifestyle of this bacterium. On the contrary, reduced 
genome size, limited number of encoded enzymes for carbohy-
drate and fatty acid degradation, and frequent presence of 
pseudogenes suggest a process of adaptation to an as-yet-
unknown host.
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