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Abstract

Background: The biological process known as post-translational modification (PTM) is a condition whereby proteomes
are modified that affects normal cell biology, and hence the pathogenesis. A number of PTMs have been discovered in
the recent years and lysine phosphoglycerylation is one of the fairly recent developments. Even with a large number of
proteins being sequenced in the post-genomic era, the identification of phosphoglycerylation remains a big challenge
due to factors such as cost, time consumption and inefficiency involved in the experimental efforts. To overcome this
issue, computational techniques have emerged to accurately identify phosphoglycerylated lysine residues. However,
the computational techniques proposed so far hold limitations to correctly predict this covalent modification.

Results: We propose a new predictor in this paper called Bigram-PGK which uses evolutionary information of amino
acids to try and predict phosphoglycerylated sites. The benchmark dataset which contains experimentally labelled sites
is employed for this purpose and profile bigram occurrences is calculated from position specific scoring matrices of
amino acids in the protein sequences. The statistical measures of this work, such as sensitivity, specificity, precision,
accuracy, Mathews correlation coefficient and area under ROC curve have been reported to be 0.9642, 0.8973, 0.8253,
0.9193, 0.8330, 0.9306, respectively.

Conclusions: The proposed predictor, based on the feature of evolutionary information and support vector machine
classifier, has shown great potential to effectively predict phosphoglycerylated and non-phosphoglycerylated lysine
residues when compared against the existing predictors. The data and software of this work can be acquired from
https://github.com/abelavit/Bigram-PGK.

Keywords: Post-translational modification, Phosphoglycerylation, Lysine residue, Computational technique,
Evolutionary information
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Background
The biological process of enzymatic change in proteins
brought about after the translation in the ribosome is
known as post-translational modification (PTM). The high
interest in PTM for various organisms have emerged as a
result of efforts in high-throughput proteomics for the
study of site-specific PTM as well as enzymes which cause
these modifications [1]. The genetic code comprises 20
amino acids and out of which, lysine is the most com-
monly modified [2, 3]. From the literature [4], some of the
major covalent modifications of lysine residues are acetyl
[5], glycosyl [6], methyl [7], succinyl [8], pupyl [9], croto-
nyl [10], and propionyl [11]. These various amino acid
modifications, as well as their regulatory enzymes, are
associated with several human diseases including heart
disease, rheumatoid arthritis, multiple sclerosis, neurode-
generative disorders, and celiac disease [12–15].
Phosphoglycerylation, which is a non-enzymatic lysine

modification, is a type of PTM that has been recently
discovered in human cells and mouse liver [16, 17]. Car-
diovascular disease, such as heart failure, is a highly
probable condition caused by phosphoglycerylation since
this chemical modification is associated with glycolytic
pathways and glucose metabolism [18, 19]. Phosphogly-
cerylation is dynamic and reversible and occurs as a re-
sult of reaction between primary glycolytic intermediate
(1,3-BPG) and lysine residue, which result in the forma-
tion of 3-phosphoglyceryl-lysine (pgK) [17]. Glycolytic
enzymes are affected by pgk. It also builds up on cells
having high exposure to glucose. As a result, potential
feedback mechanism which leads to build up and redir-
ection of glycolytic intermediates to different biosyn-
thetic pathways is established. As this PTM is relatively
new to the field, it is important to identify and analyze
its functional aspects to be able to understand the select-
ivity mechanism and its regulatory roles for better diag-
nosis and treatment of affected persons.
The method of computational techniques to identify

phosphoglycerylation sites is getting popular nowadays
[20–34] as the pure experimental methods, such as mass
spectrometry, is quite inefficient, time-consuming and at
the same time expensive [35–37]. The promising results
of computational techniques has resulted in great
confidence to identify phosphoglycerylated and non-
phosphoglycerylated sites over the traditional method.
In the recent years, there have been a number of stud-

ies involved to identify phosphoglycerylation using com-
putational technique. Phogly-PseAAC was the earliest
work to be carried out where it utilized a KNN-based
predictor to predict phosphoglycerylation using a feature
set of pseudo amino acid composition [38]. The second
work called CKSAAP_PhoglySite uses the composition
of k-spaced amino acid pairs (CKSAAP) as features and
employs a fuzzy support vector machine to predict [16].

Finally, the recent work named iPGK-PseAAC was pro-
posed and it uses a four tier amino acid pairwise coup-
ling technique alongside a SVM operation engine for
prediction [39].
The proposed predictors of phosphoglycerylation in

the literature are still limited in terms of their perform-
ance. In this regard, we are introducing a novel predictor
called Bigram-PGK which employs evolutionary
information to predict phosphoglycerylated and non-
phosphoglycerylated lysine residues. A total of 91 pro-
tein sequences were used in this work which contained
experimentally confirmed phosphoglycerylated sites and
their profile bigram was obtained from the position-
specific scoring matrix (PSSM). With the evolutionary
information of the sequences, different segment sizes for
each lysine residue was analyzed in terms of the
performance. The residue window of ±32 performed the
best on Mathews correlation coefficient (MCC) metric
when the size of ±1 to ±32 was considered (see
Additional file 1). Residue window sizes further than ±
32 could not be taken into account due to constrain of
the protein sequence length. Hence a lysine residue,
whether phosphoglycerylated or non-phosphoglycerylated,
was considered by encompassing a stretch of 32 upstream
and 32 downstream amino acids to the lysine with the
lysine residue at the center. The number of phosphogly-
cerylated residues were small compared to the non-
phosphoglycerylated, therefore a k-nearest neighbors
cleaning treatment was implemented to deal with the class
imbalance [35, 40, 41]. The balanced dataset was then
used to construct the Bigram-PGK predictor using
LibSVM package which showed a superior performance
over the existing methods on the 10-fold cross-validation
procedure. The performance of Bigram-PGK on the met-
rics sensitivity, specificity, precision, accuracy, MCC and
area under the ROC curve (AUC) was 0.9642, 0.8973,
0.8253, 0.9193, 0.8330, 0.9306, respectively.

Results and discussion
Dataset balancing
The phosphoglycerylation dataset obtained from PLMD
was found to be imbalanced, whereby the phosphogly-
cerylated sites were much less compared to that of non-
phosphoglycerylated. The 111 phosphoglycerylated sites
compared to 3249 non-phosphoglycerylated sites re-
sulted in an imbalance ratio of 1:29. Having imbalance
ratio of this magnitude will easily bias the classification
process. Resolving the class imbalance is critical in order
to build a reliable predictor. To deal with the imbalance
issue, we employed the commonly used k-nearest neigh-
bor cleaning treatment which removed instances from
the majority class (non-phosphoglycerylated in this case)
when they are one of the k neighbors of a positive in-
stance (phosphoglycerylated site) [35, 37, 40, 42, 43].
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The cleaning treatment was initiated with a k value
equal to the imbalance ratio i.e. 29. The intention was to
remove those negative instances which were among the
29 neighbors of every positive instance. With a k value
of 29, the imbalance ratio remained undesirable hence
the threshold was further increased until the final data
set attained an imbalance ratio of 1:2. As a result, the
number of non-phosphoglycerylated sites was reduced
to 224 instances after applying a k value of 111. The
final dataset of 111 positive instances and 224 negative
instances, obtained using a k value of 111, was used to
validate the performance of the predictor.

Statistical measures
In proposing any new predictor, it is crucial to assess its
performance. In this work, we have employed five statis-
tical measures including sensitivity, specificity, precision,
accuracy, and Mathews correlation coefficient [16, 35,
38, 41, 42, 44–47]. Furthermore, we have calculated the
area under the ROC curve of the predictor and it is
depicted in the later section.
The first metric, sensitivity, determines the ability of

the classifier to correctly predict phosphoglycerylated ly-
sine sites. The measure ranges from 0 to 1 where a
higher value indicates the better the predictor is in clas-
sifying the phosphoglycerylated sites. Specificity is the
second metric and it measures the ability of the classifier
to correctly predict non-phosphoglycerylated lysine sites.
This metric also takes on the 0 to 1 range of values
where a high value indicates that the predictor is effect-
ive at predicting non-phosphoglycerylated sites. The
third and fourth metrics are precision and accuracy, re-
spectively, and they take on the same range of values as
sensitivity and specificity. Precision metric assesses cap-
ability of the predictor to correctly classify phosphogly-
cerylated sites from all the phosphoglycerylated sites
predicted. The accuracy metric evaluates how correctly
the predictor distinguishes between phosphoglycerylated
sites and non-phosphoglycerylated sites. Mathews cor-
relation metric, which is the fifth measure, assesses the
quality of the predictor. The range of values of MCC
metric is − 1 to + 1 where − 1 signifies a completely
negative correlation, while + 1 indicates a highly positive
correlation. These five statistical measures can be writ-
ten as equations as shown below:

Sensitivity ¼ TP
TP þ FN

ð1Þ

Specificity ¼ TN
TN þ FP

ð2Þ

Precision ¼ TP
TP þ FP

ð3Þ

Accuracy ¼ TN þ TP
FN þ FP þ TN þ TP

ð4Þ

MCC ¼ TN � TPð Þ− FN � FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

ð5Þ

In the equations above, FN, FP, TN, and TP represents
false negatives, false positives, true negatives and true
positives, respectively. False negatives represents in-
stances which are phosphoglycerylated sites but pre-
dicted as non-phosphoglycerylated. False positives are
those that are non-phosphoglycerylated sites yet pre-
dicted as phosphoglycerylated. The true negatives are in-
stances correctly predicted as non-phosphoglycerylated
sites and finally, true positives are instances correctly
predicted as phosphoglycerylated sites. It is desirable for
the best predictor to have high scores in all of the statis-
tical measures. Nevertheless, the proposed predictor
should at least have higher sensitivity measure compared
to the existing predictors.

Validation scheme
The statistical measures outlined in the previous section
to assess the predictor’s performance was carried out
using the 10-fold cross-validation scheme. In the litera-
ture, there are three common ways of determining the
effectiveness of a predictor and these are n-fold cross-
validation test, independent dataset test, and the jack-
knife test [48, 49]. Though the jackknife test is regarded
to be the least arbitrary of the three and outputs dis-
tinctive result on dataset [50], we employed the n-fold
cross-validation scheme to avoid high computational
time, with n equal to 10. The below steps highlight the
10-fold cross-validation procedure:

Step 1: Divide the dataset into 10 equal parts
Step 2: Train predictor by combining the 9 parts and
test it using the part left out
Step 3: Adjust the classifier parameters with training
set
Step 4: Obtain the statistical measures with the test set
Step 5: Repeat steps 2 to 4 until all the folds have been
used as test sets and average the statistical measures

The result of 10-fold cross-validation scheme on
Bigram-PGK is presented in the following section.

Bigram-PGK comparison with available predictors
There are three predictors in the literature which carry
out the classification of phosphoglycerylated and non-
phosphoglycerylated sites, and these are Phogly_PseAAC
[38], CKSAAP_PhoglySite [16], and iPGK_PseAAC [39].
Firstly, we obtained the predictions of these methods on
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all the lysine residues in our benchmark dataset. This
was carried out by preparing the dataset in FASTA for-
mat and uploading it to the webservers of Phogly-
PseAAC and iPGK-PseAAC predictors, and for the
CKSAAP_PhoglySite predictor by inputting the file to
the Matlab software package. It is intuitive to point out
that these predictors may have been trained using sam-
ples which are being used to carry out the performance
evaluation and therefore the results can be biased in
their favor. The performance comparison of our pre-
dictor against the existing methods was carried out on
the validation set, the sets put aside as test sets during
the 10-fold cross-validation scheme. Likewise, the same
validation set was used to obtain the performance of the
other methods by investigating their predictions on
those samples when the benchmark dataset was
uploaded to the respective webserver/software packages.
The comparison result of Phogly_PseAAC [38],

CKSAAP_PhoglySite [16], iPGK_PseAAC [39], and our
predictor Bigram-PGK is shown in Table 1. In Table 1,
we have also added the AUC measure for all the predic-
tors for a more robust comparison since the predictor
with the highest AUC measure is always favorable. It
can be seen from the results that Bigram-PGK gives the
highest performance on the metrics sensitivity, accuracy,
MCC and AUC. The sensitivity measure increased by
16.4%, accuracy by 1.7%, MCC by 6.5%, and AUC by
5.1%. These improved performances goes on to say that
Bigram-PGK is quite an effective predictor for the phos-
phoglycerylation problem. From Table 1, it can also be
realized that iPGK_PseAAC predictor [39] obtained the
highest specificity measure (0.9864) but its sensitivity
measure is very low (0.4555), which shows that almost
55% of the phosphoglycerylated sites were undetected by
this method.
The promising result in Table 1 clearly illustrate the

ability of Bigram-PGK to correctly predict phosphogly-
cerylated and non-phosphoglycerylated lysine residues.
This can be credited to the use of underlying important
evolutionary information in protein sequences. The in-
formation is captured in PSSM of amino acids surround-
ing the lysines and when this information is transformed
into the matrix of bigram occurrences, it produces the
necessary characteristics for identifying the modified ly-
sines. Furthermore, the improved performance can also

be attributed to the SVM algorithm for its effective data
handling.

Insights into phosphoglycerylation prediction
In the Additional file 2, we present the analysis of phos-
phoglycerylation sites predicted by iPGK_PseAAC [39],
CKSAAP_PhoglySite [16], Phogly_PseAAC [38], and
Bigram-PGK on the 10-fold cross-validation procedure.
It has been observed that for the proteins having mul-
tiple phosphoglycerylation sites, not all the predictors
were able to detect them entirely. In fact, only the
Bigram-PGK predictor managed to detect almost all of
these proteins. The only protein which went undetected
was Beta-globin (UniProt Accession A8DUK4) which is
a subunit of a larger protein named hemoglobin [51],
and this protein was successfully identified by the
Phogly_PseAAC [38] predictor alone. Moreover,
Bigram-PGK was the only one that effectively detected
all phosphoglycerylation sites of the protein Carbamoyl-
phosphate synthase (UniProt Accession Q8C196) which
plays a vital role in the removal of surplus ammonia
from the cell of ureotelic animals [52]. Moving on to the
proteins with single phosphoglycerylation site, there
were a number of proteins which only the Bigram-PGK
predictor was able to detect. These proteins include Arf-
GAP with SH3 domain (UniProt Accession E9QMI7)
which regulates the formation of post-Golgi vesicles and
controls constitutive secretion [53], 14–3-3 protein beta/
alpha (UniProt Accession A2A5N1) which regulates
both general and specialized signaling pathways [54],
60S ribosomal protein L31 (UniProt Accession P62900)
which is heavily involved in RNA binding and structural
integrity of the ribosome [55], and Zinc finger protein
GLI1 (UniProt Accession P47806) which acts as a tran-
scriptional activator [56]. There were also proteins that
the Bigram-PGK could not detect but were detected by
the rest of the predictors. These proteins include Glu-
tamate receptor ionotropic (UniProt Accession B1AS29)
which acts as an excitatory neurotransmitter at many
synapses in the central nervous system [57], and EH
domain-containing protein 4 (UniProt Accession
Q9EQP2) that binds ATP and membrane and it could
likely control membrane reorganization upon ATP hy-
drolysis [58]. Furthermore, none of the predictors were
able to detect phosphoglycerylation site of a couple of

Table 1 Comparison of the three existing prediction methods with the Bigram-PGK predictor using 10-fold cross-validation scheme

Predictor Sensitivity Specificity Precision Accuracy MCC AUC

iPGK_PseAAC [39] 0.4555 0.9864 0.9548 0.8119 0.5692 0.7230

CKSAAP_PhoglySite [16] 0.8285 0.9420 0.8765 0.9043 0.7818 0.8854

Phogly_PseAAC [38] 0.6927 0.7193 0.5518 0.7102 0.3951 0.7062

Bigram-PGK 0.9642 0.8973 0.8253 0.9193 0.8330 0.9306

Highest values of the metrics are highlighted in bold
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the proteins. One such protein is Proline synthase co-
transcribed bacterial homolog protein (UniProt Acces-
sion Q80ZV3) which selectively and non-covalently
interacts with biologically active form of vitamin B6 and
other vitamin B elements [59]. Nevertheless, all the pre-
dictors successfully predicted the phosphoglycerylation
site of many of the proteins such as ATP-dependent 6-
phosphofructokinase (UniProt Accession P47857) which
acts as a catalyst in phosphorylation of D-fructose 6-
phophate to fructose 1,6-bisphosphate by ATP [60],
Farnesyl pyrophosphate synthase (UniProt Accession
Q920E5) which plays a key role in isoprenoid biosyn-
thesis [61], Calcium-binding mitochondrial carrier
protein Aralar2 (UniProt Accession Q9QXX4) which
acts as a catalyst in calcium-dependent exchange of
cytoplasmic glutamate with mitochondrial aspartate [62],
Triosephosphate isomerase (UniProt Accession P60174)
that catalyzes interconversion between dihydroxyacetone
phosphate and D-glyceraldehyde-3-phosphate in glycoly-
sis [63], Kinectin (UniProt Accession Q86UP2) which is
involved in kinesin-driven vesicle motility [64], Fructose-
bisphosphate aldolase (UniProt Accession A6ZI44)
which plays an important role in glycolysis and gluco-
neogenesis [65], and Eukaryotic translation initiation
factor 4E-binding protein 1 (UniProt Accession Q13541)
which is a repressor of translational initiation that con-
trols EIF4E activity [66].

Conclusion
This paper presents a novel predictor Bigram-PGK,
which utilizes the feature PSSM + bigram to predict
phosphoglycerylation. The underlying evolutionary in-
formation in PSSM of protein sequences and its trans-
formation to bigram occurrences appears to be a crucial
property in detecting the lysine modification. The use of
studied feature in this work and the SVM classifier with
polynomial kernel to obtain a decent hyperplane separ-
ation was effective to distinguish between the modified
and unmodified lysine sites.

Materials and methods
Protein dataset
The benchmark dataset used in this work was obtained
from the Compendium of Protein Lysine Modifications
(CPLM) repository, accessed 1 March 2017 (available at
http://cplm.biocuckoo.org) which has now been
upgraded to Protein Lysine Modification Database
(PLMD). PLMD contains a number of different protein
lysine modifications that have been experimentally iden-
tified. Phosphoglycerylation dataset obtained was initially
prepared by removing sequences which had 40% or
higher sequential similarities, which is a widely used
level in the literature [40, 67, 68], using the Cd-hit tool
[69]. As a result, a total of 91 sequences were attained

and in each sequence, there were more than one lysine
residue. From these sequences, 3360 lysine residues
were found. Three thousand two hundred forty-nine
lysines were non-phosphoglycerylated and 111 were
phosphoglycerylated.

Position specific scoring matrix
Evolutionary feature captures how proteins have evolved
in relative to its structural, functional and sequential
similarities with other protein sequences [70]. PSSM cal-
culates the substitution probability of amino acids in the
sequence to all the amino acids of the genetic code.
PSSM profiles is a highly revered feature in the area of
proteomics [71–73]. The profiles are obtained using PSI-
BLAST toolbox [74] which aligns protein sequences to
similar sequences stored in protein data bank [75]. The
outputs of PSI-BLAST are two matrices with a dimen-
sion of L × 20; L being the length of the queried protein
sequence and 20 being the 20 amino acids of the genetic
code. Of the two matrices, one being log odds and the
other the amino acid linear probabilities, the latter was
used in this work. The PSSM for the purpose of this
work was produced on non-redundant proteins using a
threshold value of 0.001 of the PSI-BLAST toolbox with
three iterations.

Feature extraction
This section deals with the segment sizing for each ly-
sine residue and its corresponding feature extraction. To
represent each sample, we have used the evolutionary in-
formation of 32 upstream and 32 downstream amino
acids to the lysine K portrayed in Fig. 1a. In the cases
where lysine residue did not have enough amino acids,
either upstream or downstream, the mirror technique
[35] was used to create the missing amino acids as
shown in Fig. 1b. The segment consisting of 32 up-
stream and 32 downstream neighboring amino acids of
lysine K can be denoted by P as:

P ¼ A−32;…;A−2;A−1;K ;A1;A2;…;A32f g ð6Þ

From eq. (6), the downstream amino acids are repre-
sented by An where 1 ≤ n ≤ 32 while the upstream by A-
n where 1 ≤ n ≤ 32. Moreover, it can be seen that a
segment consists of a total of 65 amino acids, including
the lysine K at the center. The segment P is attached
with an experimentally confirmed label of either 1 or a 0
indicating a phosphoglycerylated site or a non-
phosphoglycerylated site, respectively. The acquired sub-
matrix by segment P describing each lysine was
converted to a frequency vector of bigrams (PSSM +
bigram) resulting in the matrix of size 20 × 20. Each ly-
sine was then represented by transforming this matrix to
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a 400 dimensional row vector capturing evolutionary in-
formation of the segment P.

Profile bigrams
The profile bigrams technique has displayed promising
results in dealing with discriminatory information
[76–79]. For the purpose of explanation, let’s assume
that the PSSM of a protein sequence is denoted by a
matrix M. Every element in matrix M, indicated by mij,
can be said to be the transitional probability of j-th amino
acid at i-th location within the given protein sequence.
The segment P, consisting of 65 amino acids (a fraction of
the protein sequence), is hence represented by a 65 × 20
feature matrix in which 20 denotes the amino acids of the
genetic code. Therefore the PSSM was calculated based
on the substitution probabilities of each amino acid in the
segment to the 20 amino acids. For the matrix M, its pro-
file bigram is calculated by.

Bp;q ¼
X64

k¼1
mk;pmkþ1;qwhere1≤p≤20and1≤q≤20

ð7Þ
From the above equation, the resulting dimension of

matrix B representing the PSSM + bigram is 20 × 20. Fi-
nally, matrix B is converted to a 400 dimensional row

vector indicated by Eq. (8) which represents the 400
transitional probabilities pertaining to evolutionary in-
formation of each lysine residue.

F ¼ B1;1;B1;2;…;B1;20;B2;1;B2;2;…;B2;20;B20;1;B20;2;…;B20;20
� �

ð8Þ

Support vector machine
Support vector machine is one of the supervised learning
model listed under the topic of machine learning. The
algorithm is commonly used in classification and regres-
sion applications. It is a discriminative classifier that
works by defining a separating hyperplane. Usage of SVM
is not only popular in protein problems [20, 80–83], but
also in other areas of biology, such as genomes [84, 85].
With a given set of training data, the algorithm produces
an optimal hyperplane separating the two classes and for
every new data points presented, it is able to categorize
based on this defined hyperplane. The data points repre-
sent a point in n-dimensional space where n corresponds
to the number of features it possesses. These data points
of two class problem are not always linearly separable,
hence non-linear kernels are used to carry out classifica-
tion. The non-linear kernels project the nonlinear input

Fig. 1 Depiction of lysine residue with its upstream and downstream amino acids. a Lysine residue with sufficient neighbors. b Scenario of lysine
residue with insufficient neighbors on either the upstream or downstream portion
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space to a higher dimensional space where the classes
are linearly separable. For the purpose of this work,
LibSVM package on Matlab software was used to
carry out the identification of phosphoglycerylated
and non-phosphoglycerylated sites using C-SVC type
SVM and a polynomial kernel.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12860-019-0240-1.

Additional file 1. MCC values for different segment sizes.

Additional file 2. Number of Phosphoglycerylation sites detected by
each predictor.
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