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Abstract: MXene/Ag2CrO4 nanocomposite was synthesized effectively by means of superficial
low-cost co-precipitation technique in order to inspect its capacitive storage potential for superca-
pacitors. MXene was etched from MAX powder and Ag2CrO4 spinel was synthesized by an easy
sol-gel scheme. X-Ray diffraction (XRD) revealed an addition in inter-planar spacing from 4.7 Å to
6.2 Å while Ag2CrO4 nanoparticles diffused in form of clusters over MXene layers that had been
explored by scanning electron microscopy (SEM). Energy dispersive X-Ray (EDX) demonstrated the
elemental analysis. Raman spectroscopy opens the gap between bonding structure of as-synthesized
nanocomposite. From photoluminence (PL) spectra the energy band gap value 3.86 eV was esti-
mated. Electrode properties were characterized by applying electrochemical observations such as
cyclic voltammetry along with electrochemical impedance spectroscopy (EIS) for understanding
redox mechanism and electron transfer rate constant Kapp. Additionally, this novel work will be an
assessment to analyze the capacitive behavior of electrode in different electrolytes such as in acidic
of 0.1 M H2SO4 has specific capacitance Csp = 525 F/g at 10 mVs−1 and much low value in basic of
1 M KOH electrolyte. This paper reflects the novel synthesis and applications of MXene/Ag2CrO4

nanocomposite electrode fabrication in energy storage devices such as supercapacitors.

Keywords: MXene nanocomposite; spinel chromite; energy storage; supercapacitors electrodes

1. Introduction

The stipulate for well-groomed energy storage strategies is on the hit list in the cur-
rent state of affairs. To overcome this worldwide issue, supercapacitors were used to
pile up energy in electronic applications to store charge, depending upon electrochemi-
cal reactions enclosed by them [1]. Narrative layered two-dimensional (2D) material i.e.,
MXene (Ti3C2Tx) comprehensively deliberated to construct electrodes for supercapaci-
tors owing to their high metallic conduction rate and reactive hydrophilic surface. In
spite of all the assorted dilemmas including re-crushing and oxidizing of titanium which
obstruct Ti3C2Tx to achieve the significant capacitance, cheap carbon electrode material
for instance Ti3C2Tx, a type of MXene, participated in great technological research for
development of supercapacitors electrodes by defeating these issues [2–4]. In composite
form, Ti3C2Tx deals with the above-mentioned problems due to its excellent specific capac-
ity with lower resistance, significant surface area and the redox active nature of surface
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functional groups. Supercapacitors (SCs) had been discussed as a promising energy storage
tool due to the fast charge/discharge process, high power density in many new technolo-
gies and the use of the redox (pseudo-capacitive) mechanism on surface which could be
employed for storing more energy than batteries [5–7]. The electrochemical capacitors
(ECs) mentioned as supercapacitors are taken as the key technology for the promotion
of the immense progress in 2D transition metal carbides/nitrides, known as “MXene”.
Hence, MXene (Ti3C2Tx) showed potential as electrode resource of supercapacitors due to
their key factors of intercalation, pseudocapacitance mechanism, metallic-like conductivity,
power and energy storing aptitude [8,9]. The MXene in bare form obsessed low specific
capacitance about 246 (F/g) in supercapacitors, but it improved its capacitive nature, sig-
nificant specific surface area, hydrophilic nature, porous structure, negatively charged
surfaces by recombination with other materials in nanocomposite form [10–13]. In energy
storage applications i.e., in supercapacitors the transition metal oxides (TMOs) exhibited
mixed spinal structure because of remarkable electrochemical properties were taken into
consideration [14,15]. Hence metal oxide systems including metal chromite spinels, for
instance MgCr2O4 [16] and CaCr2O4 [17], these exceptional spinels are verified to be high-
performance electrode materials for electrochemical supercapacitors which may be taken
either in single or in composite form with carbon-based materials for better results [18].
Among various silver-based compounds, (Ag2CrO4) nanoparticles in which crystallization
occurred in orthorhombic form [19], Ag2CrO4 in composite form such as (Ag2CrO4/GO)
composites [20], TiO2/Ag2CrO4 nanocomposites [21], Ag2CrO4/g-C3N4, RuO2-MXene
along with silver, Co3O4/MXene, MXene/Ag, TiO2/Ti3C2, lanthanum and manganese
co-doped bismuth ferrite/Ti3C2, MXene (Ti3C2Tx)/Ag NWs (silver nanowires) had been
synthesized in the past for various energy storage purposes [22–30]. The most recent
work done on copper-chromite/graphene-oxide nanocomposite for electrode fabrication
explored new energy tools had been accepted in my own collaboration [31]. However,
there was no earlier work done in this field until now and thus this paper can be claimed
as a novel work. The affordable wet chemical co-precipitation sonicated-assisted me-
chanical method of mixing was practiced during synthesis process of MXene/Ag2CrO4
nanocomposite which made it fit candidate for supercapacitive applications. Ag2CrO4
nanoparticles adding up with MXene sheets enhanced the capacitive properties of MXene
by generating a course to electron transfer that led to unique surface contact within MXene
sheets. We put forward the challenges and perspectives for the future progress of the
MXene/Ag2CrO4 nanocomposite.

2. Materials and Methods
2.1. Chemical and Reagents

Silver nitrate pentahydrate (99.0%), chromium nitrate monohydrate (99%), 1, 2 ethane-
diol (99.8% pure) and powder form of tin was used. Here acetic acid (99.9%) acting as a
catalytic agent, ethylene glycol (99.5%) was engrossed in it both for solution and reduction.
Additionally, hydrofluoric acid known as HF (39%) was applied as etching agent in MAX
(Ti3AlC2) powder. Deionized water (DI) was used as a solvent. The chemicals collected
from sigma Aldrich company were used.

2.2. Ag2CrO4 Nanoparticles Synthesis

In order to synthesize Ag2CrO4 nanoparticles, the wet chemical sol-gel method was
applied. In this approach, 4 g of silver nitrate and 3 g of chromium nitrate solution
was prepared in 50 mL of DI water accomplished by adding up of citric acid powder in
2:1 ratio. The aqueous solution undergone continuous stirring at 70 ◦C until the required
homogeneous solution obtained. After viscous gel development, stirring had been stopped.
In order to achieve main product, solution was positioned at oven adjusted at 700 ◦C for
three hours and then further calcination at 600 ◦C in the furnace was performed. At the
end, powder form of the sample grounded in agate motor to get homogeneous fine powder.
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The chemical formula of Ag2CrO4 was explained by chemical Equations (1) and (2) given
below [32].

Ag = Ag+ + e− (1)

2Ag+ + CrO4
−2 = Ag2CrO4 (2)

The obtained powder of Ag2CrO4 nanoparticles was used to synthesize nanocompos-
ite of MXene/Ag2CrO4.

2.3. Synthesis of MXene (Ti3C2Tx)

MXene was synthesized using the conventional method. First, 10 g of formerly
prepared MAX powder were taken in a teflon bottle with 200 mL (39%) intense HF to
synthesize Ti3C2Tx (MXene). Hydrofluoric acid (HF) and MAX powder was homoge-
neously blended by constant stirring for 36 h, at room temperature. Later, the hot plate
was removed, and the solution was placed to cool down for 12 h. Moreover, the mixture
was again stirred for 12 h. At the end, the resultant solution was rinsed several times by
using deionized (DI) water followed by vacuum filtration. By drying the solution at 60 ◦C
for 12 h, the etched MXene obtained is used for assembling of nanocomposite [33].

2.4. Synthesis of MXene/Ag2CrO4 Nanocomposite

The easily available wet chemical method, namely the co-precipitation method, was
used to synthesize nanocomposite of MXene/Ag2CrO4 in which the solution of MXene
prepared in 200 mL DI water by taking 200 mg of Ti3C2Tx (MXene) under sonication for
10 min. At the same time already prepared Ag2CrO4 nanoparticles were assorted in 100 mL
acetic acid and 100 mL ethylene glycol in a stoichiometric proportion of 1:1 with 0.01 M
(morality). Sonication of MXene solution was performed at 3500 rpm for 120 min at 60 ◦C to
obtain homogeneous sample. Then, both solutions were thoroughly mixed by continuous
stirring at 80 ◦C for 1 hr. After that the settled solution was washed many times with DI
water unless neutral solution was obtained. An oven was used at 70 ◦C for 24 h until it is
completely dried. Obtained nano-powder became homogenous using an agate motor.

3. Results and Discussion
3.1. X-ray Diffraction (XRD) Analysis

The structure of the resultant sample was analyzed by X-Ray diffraction (XRD) tech-
nique with monochromatic wavelength λ (1.5 Å) in which corresponding (hkl) values
were assigned approximately to all peaks. In Figure 1, the XRD pattern of bare Ag2CrO4
nanoparticles representing an orthorhombic structure with the JCPDS no. 026-0952 in
which Bragg diffraction peaks appeared at 2θ = 24.45◦, 33.65◦, 36.34◦, 37.92◦, 43.82◦, 47.97◦,
50.36◦, 54.95◦, 57.91◦, 63.42◦, 67.18◦ confirming successful synthesis of Ag2CrO4 nanoparti-
cles [34]. The prominently solid and high-pitched peaks proved pure and well-crystalline
Ag2CrO4 collected by the stated process [35]. The characteristic peaks of MAX at 9.5◦ and
19.2◦ angles with (002) and (004) planes transferred towards left due to etched aluminum
(Al) peaks resulting an increase in the spacing between sheets of resulting etched MAX
powder so-called MXene (Ti3C2Tx) [36]. In MXene/Ag2CrO4 nanocomposite all the peaks
shifted towards lower angles with low intensity, certified an increase in inter-planar spacing
from 4.7 Å to 6.2 Å of MXene/Ag2CrO4 nanocomposite which step up the conductivity [37].



Materials 2021, 14, 6008 4 of 14
Materials 2021, 14, x  4 of 14 
 

 

 

Figure 1. XRD patterns of Ag2CrO4, MXene and MXene/Ag2CrO4 nanocomposite. 

From XRD data [38] the average crystallite size of MXene/Ag2CrO4 nanocomposite 

was calculated by Debye-Scherrer Equation (3) given below. 

D = K. λ/(β Cosθ) (3) 

In general, crystalline size D in nm, X-ray wavelength λ is 0.15 nm, θ is the Bragg’s 

angle in radian, β full width half maximum of diffracted beams. The average crystallite 

size of MXene/Ag2CrO4 nanocomposite is 14 nm analogous to other MXene composite 

[39,40]. The presence of characteristic peaks of Ag2CrO4 and MXene in the nanocomposite 

sample is an indication of the successful development of MXene/Ag2CrO4 nanocomposite. 

3.2. The Scanned Electronic Microscopic Analysis 

The scanned electron microscopic (SEM) analysis of the synthesized sample ex-

plained the surface morphology of MXene/Ag2CrO4 nanocomposite. The purpose was to 

see how MXene and Ag2CrO4 nanoparticles coordinated with each other, including the 

even and continuous layered form of MXene with sharp edges gained after selective etch-

ing of aluminum (Al) layer by HF etching method as shown in Figure 2a. The SEM images 

of the Ti3C2Tx/Ag2CrO4 nanocomposite sample are shown in Figure 2b in which nanopar-

ticles of Ag2CrO4 adorned the surface of Ti3C2Tx in random pattern forming coagulated 

structure and explored huge clusters of the nanoparticles. Hence, only some grains scat-

tered on layers of MXene. The number of nanoparticles nucleated on the surface of MXene 

engraved pores caused more storage capacity [41–44]. The average diameter of Ag2CrO4 

nanoparticles is 75 nm reported in [32], here 3.67 nm is the grain size of MXene/Ag2CrO4 

nanocomposite calculated by using image J. software. Here, clearly, it can be seen Ag2CrO4 

nanoparticles in the MXene/Ag2CrO4 nanocomposite were reduced suggestively and 

closely occupied the MXene sheets. Furthermore, grain size distribution histogram shown 

in Figure 3 summarizing discrete or continuous data on an interval scale, respectively. 

10 20 30 40 50 60 70 80

2
7

1

4
2

2

1
3

3
4

3
1

1
6

0
0

6
0

0
5

1

2
2

22
4

0
3

1
1

1
4

00
2

0

2
2

0

0
4

00
1

1
0

2
0

In
te

n
s
it

y
 (

a
.u

)

2 q ()

MXene/Ag2CrO4

MXene

Ag2CrO4

Ag2CrO4 JCPDS: 026-0952

Figure 1. XRD patterns of Ag2CrO4, MXene and MXene/Ag2CrO4 nanocomposite.

From XRD data [38] the average crystallite size of MXene/Ag2CrO4 nanocomposite
was calculated by Debye-Scherrer Equation (3) given below.

D = K λ/(β Cosθ) (3)

In general, crystalline size D in nm, X-ray wavelength λ is 0.15 nm, θ is the Bragg’s
angle in radian, β full width half maximum of diffracted beams. The average crystallite size
of MXene/Ag2CrO4 nanocomposite is 14 nm analogous to other MXene composite [39,40].
The presence of characteristic peaks of Ag2CrO4 and MXene in the nanocomposite sample
is an indication of the successful development of MXene/Ag2CrO4 nanocomposite.

3.2. The Scanned Electronic Microscopic Analysis

The scanned electron microscopic (SEM) analysis of the synthesized sample explained
the surface morphology of MXene/Ag2CrO4 nanocomposite. The purpose was to see
how MXene and Ag2CrO4 nanoparticles coordinated with each other, including the even
and continuous layered form of MXene with sharp edges gained after selective etching of
aluminum (Al) layer by HF etching method as shown in Figure 2a. The SEM images of the
Ti3C2Tx/Ag2CrO4 nanocomposite sample are shown in Figure 2b in which nanoparticles
of Ag2CrO4 adorned the surface of Ti3C2Tx in random pattern forming coagulated struc-
ture and explored huge clusters of the nanoparticles. Hence, only some grains scattered
on layers of MXene. The number of nanoparticles nucleated on the surface of MXene
engraved pores caused more storage capacity [41–44]. The average diameter of Ag2CrO4
nanoparticles is 75 nm reported in [32], here 3.67 nm is the grain size of MXene/Ag2CrO4
nanocomposite calculated by using image J. software. Here, clearly, it can be seen Ag2CrO4
nanoparticles in the MXene/Ag2CrO4 nanocomposite were reduced suggestively and
closely occupied the MXene sheets. Furthermore, grain size distribution histogram shown
in Figure 3 summarizing discrete or continuous data on an interval scale, respectively.
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3.3. Energy Dispersive X-ray Spectroscopy (EDX)

The spectroscopy of energy dispersion analysis of Ag2CrO4 nanoparticles and MXene/
Ag2CrO4 powder are exhibited in Figure 4a,b, respectively, where not only the Ag, Cr and
Ti signals seemed but also the O signal appeared due to oxidation of MXene concerned
with some functional groups. This provided the proof of perfect synthesis of current
nanocomposite [45]. The elements presented in spectra as per EDX analysis according to
weight percentage is confirmation of the ideal synthesis of the required MXene/Ag2CrO4
nanocomposite as shown in Table 1.

Table 1. Estimated elemental composition of MXene/Ag2CrO4 nanocomposite.

Elements Shell Weight (%)

Oxygen K 14.10

Silver K 43.41

Titanium K 39.04

Chromium K 3.04
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Figure 4. Energy dispersive spectra of (a) Ag2CrO4 nanoparticles (b) MXene/Ag2CrO4 nanocomposite.

3.4. Raman Spectroscopy

Here, Raman spectroscopy has been employed to illustrate extremely responsive com-
position of the material structure having incredibility and a more mechanically important
spectroscopic technique to probe the dynamic vibrational phonons of Ti3C2Tx/Ag2CrO4
nanocomposite [46]. The Raman spectra of MXene (Ti3C2Tx) was determined at 155 cm−1

showing a vibrational band of anatase phase of TiO2 [47]. Phonons (lattice vibrations)
at the interface of MXene and traces of transition metal oxides were handled by Raman
spectroscopy. Two main causes of lattice viberations in MXene based materials one, surface
functional groups involved stimulating pseudocapacitance and the other, exchanging of
ion gave rise to storing charge leading to a high capacitance of MXene/Ag2CrO4 nanocom-
posite in acidic solution [48,49].

Raman spectroscopy of MXene/Ag2CrO4 nanocomposite noted at wavelength 532 nm
and power 150 mW showing a characteristic peak at definite position 0.86 cm−1 with a
remarkable intensity confirmed the occurrence of the prepared nanocomposite mostly due
to the existence of functional groups involed [50] as shown in Figure 5.
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3.5. Photoluminescence (PL) Spectroscopy

The optical spectra of MXene/Ag2CrO4 nanocomposites were explained by using
325 nm wavelength of He-Cd laser at room temperature with 40 MW power. At 300 nm
wavelength, the optical band gap 3.86 eV calculated in the visible region is indication of the
allocation of nanoparticles clearly seen in Figure 6. The photoluminescence (PL) spectra of
Ti3C2Tx/Ag2CrO4 nanocomposite explored high intensity emission peak at 321 nm which
was mainly due to electron-hole pair recombination of sp2 hybridized carbon atoms [51,52].
Due to defects in the structure of Ag2CrO4 the photoluminescence emission properties were
possible at room temperature [34]. The recommended speed of charges transported by light
irradiation effect on the Ti3C2Tx/Ag2CrO4 nanocomposite in which valence band (VB)
negative charges near to the ground skip to the conducting band (CB) due to complex
photoluminescence scheme. When light was projected, positive and negative charges in
aqueous medium coupled to produce radicals on the exterior of the Ti3C2Tx/Ag2CrO4
nanocomposite [53].
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3.6. Electrochemical Analysis

In order to perform the electrochemical analysis at Gamry potentiostat interface 1000,
a three electrode assembly was taken where platinum wire, glassy carbon electrode (GCE)
and Ag/AgCl were used as counter, working and reference electrodes, respectively [54,55].
The working electrode was rinsed many times using an alumina slurry and ethanol prior
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to production of synthesis material. To fabricate GCE, 0.25 g powder of electrode material
was used with 2 µL of 5% nafion solution on glassy carbon electrode [56]. The functional
electrode underwent drying in an oven at 50 ◦C for 20 min.

3.6.1. Electrochemical Impedance Spectroscopy (EIS)

The electrochemical impedance spectroscopy (EIS) was adopted to study the depen-
dence of capacitance of supercapacitors on the applied power in which an alternating
current voltage of 0.5 V and zero direct current voltage was utilized and current passes
through electrode (metal or semiconductors) at working position [57]. The electron trans-
ferred properties of Ti3C2Tx/Ag2CrO4 were studied by using EIS. The Nyquist plots drawn
for Ti3C2Tx/Ag2CrO4 in 0.1 M H2SO4 and 1 M KOH were displayed in Figure 7, also con-
cerned EIS parameters were given in Table 2. The differences in electrochemical behavior of
the as-synthesized electrocatalysts depend upon the relative feasibility of electron transfer.
Low charge transfer resistance Rp due to elevated conduction, facilitated more electrons in
the electrode surface and the current electrocatalysts showed a low Rp value [58] with high
conductivity in acidic media, hence a higher specific capacitance Csp value was achieved.
The nature of the electrodes exhibited no influence on the solution resistance (Ru) and
Warburg resistance (Rw) because these are features of the electrolyte and diffusion of
electroactive specie that are common in all observations. However, (Rp) and phase con-
stant element (CPE) are influenced by modification of electrodes, as they are associated
with conductive properties of the active material. Here α represents surface roughness
factor and its value varies from 0 to 1. Herein, currently modified electrode system has
α value 0.85 and 0.89 revealing that catalysts depicted enough surface roughness. The
electron-transfer rate constant Kapp (cm s−1) for planned catalysts was deliberated using
the following Equation (4) [59]. Moreover, the fitted EIS model i.e., CPE with the diffusion
model has been represented in the inset of Nyquist plots in Figure 7.

kapp = RT/F2·Rp·C (4)

Materials 2021, 14, x  8 of 14 
 

 

transfer. Low charge transfer resistance Rp due to elevated conduction, facilitated more 

electrons in the electrode surface and the current electrocatalysts showed a low Rp value 

[58] with high conductivity in acidic media, hence a higher specific capacitance Csp value 

was achieved. The nature of the electrodes exhibited no influence on the solution re-

sistance (Ru) and Warburg resistance (Rw) because these are features of the electrolyte 

and diffusion of electroactive specie that are common in all observations. However, (Rp) 

and phase constant element (CPE) are influenced by modification of electrodes, as they 

are associated with conductive properties of the active material. Here α represents surface 

roughness factor and its value varies from 0 to 1. Herein, currently modified electrode 

system has α value 0.85 and 0.89 revealing that catalysts depicted enough surface rough-

ness. The electron-transfer rate constant Kapp (cm s-1) for planned catalysts was deliberated 

using the following Equation (4) [59]. Moreover, the fitted EIS model i.e., CPE with the 

diffusion model has been represented in the inset of Nyquist plots in Figure 7. 

kapp = RT/F2·Rp·C (4) 

Here, F served as the Faraday constant, C corresponds to amount of analyte and R is 

the universal constant in SI units. 

0 1x10
4

2x10
4

3x10
4

4x10
4

5x10
4

6x10
4

7x10
4

0

1x10
4

2x10
4

3x10
4

4x10
4

5x10
4

6x10
4

IM KOH

0.1M H2SO4

-Z
im

a
g
(

)

Zreal()

 

 

 

Figure 7. Nyquist plots of Ti3C2 TX/Ag2CrO4 in 1 M KOH and 0.1 M H2SO4. 

Table 2. Electrochemical parameters estimated from EIS analysis Ti3C2Tx/Ag2CrO4 modified elec-

trode 

Electrolyte 
Ru 

(Ω) 

Rp 

(kΩ) 

 CPE 

(µF) 
Alpha 

RW 

(µΩ) 

Kapp 

(10−8 cm s−1) 

1M KOH 17.52 52.60 7.90 0.85 19.63 0.03 

0.1M H2SO4 7.80 1.35e−6 0.94 0.89 92.03 3953 

The poorer Kapp in 1 M KOH aqueous electrolyte solution corresponds to relatively 

lower electron conductivity as compared to acidic electrolyte. 

  

Figure 7. Nyquist plots of Ti3C2 TX/Ag2CrO4 in 1 M KOH and 0.1 M H2SO4..



Materials 2021, 14, 6008 9 of 14

Table 2. Electrochemical parameters estimated from EIS analysis Ti3C2Tx/Ag2CrO4

modified electrode.

Electrolyte Ru
(Ω)

Rp
(kΩ)

CPE
(µF) Alpha RW

(µΩ)
Kapp

(10−8 cm s−1)

1M KOH 17.52 52.60 7.90 0.85 19.63 0.03

0.1M H2SO4 7.80 1.35e−6 0.94 0.89 92.03 3953

Here, F served as the Faraday constant, C corresponds to amount of analyte and R is
the universal constant in SI units.

The poorer Kapp in 1 M KOH aqueous electrolyte solution corresponds to relatively
lower electron conductivity as compared to acidic electrolyte.

3.6.2. Electrochemical Active Surface Area (ECSA) Analysis

The electrochemically active surface area (ECSA) is an important performance indica-
tor of a catalyst in any electrochemical reaction and for this reason cyclic voltammograms of
all prepared electrocatalysts were recorded in a standard redox solution of 5 mM potassium
ferrocyanide (K4[Fe (CN)6]) and 3M potassium chloride (KCl) at 100 mVs−1 for ECSA
inference [60]. Peak current (ip) increment in the CV profile correspond to a reversible
one-electron transfer process using the synthesized nanocomposite as modified electrodes
in K4[Fe (CN)6] electrolyte. This observation of a reversible CV profile was used to point
out the oxidation and reduction methods by an overall redox process as shown in Figure 8.
The ECSA of electrode was calculated by applying the Randles-Sevcik Equation (5) [61].

ip = 2.69 × 105·n3/2 ·A·D1/2 ·υ1/2 ·C (5)
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Figure 8. Cyclic voltammogram Fe2+/Fe3+ redox couple on Ti3C2Tx/Ag2CrO4 modified GCE in
5 mMK4[Fe (CN)6]) + 3M KCl at 100 mVs-1.

Here ip is the peak current, n is the count of transferred electrons, A is the electrochem-
ical active surface area (cm2), D corresponds to the diffusion co-efficient, υ represents the
scan rate (Vs−1), C is analytic amount [62]. With a peak current value of 132 µA, the ECSA
of observed electrode is 0.04 cm2 that referred to efficient capacitive performance of the
electrode material.

3.6.3. Electrochemical Investigations

The electrochemical performances of Ti3C2Tx/Ag2CrO4 nanocomposite were evalu-
ated by cyclic voltammetry (CV) by varying the electrode potential between a working
electrode and reference electrode in order to measure current flows between working and
counter electrodes. By using the modified working electrodes in both acidic and basic
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electrolytes to analyze the electrode potential in both media, the acid electrolyte has the
advantage in providing protons for as synthesized nanocomposite in cyclic voltamme-
try [63]. The capacitive behavior of the nanocomposite was observed in forward and
reverse directions relative to the anodic peaks (oxidation) and cathodic peaks (reduction)
which is the verification of surface redox reactions. The specific capacitance of working
electrode Ti3C2Tx/Ag2CrO4 nanocomposite was calculated using Equation (6).

Csp = A/2 [mkV] (6)

where Csp is specific capacitance in F/g, m is used for mass of electrode i.e., 0.25 mg,
k represents the scan rate and A denotes integrated area under CV curve and V corresponds
to potential window −0.2 V to 0.6 V. The estimated electrochemical capacitance parameters
are summarized in Table 3.

Table 3. Specific capacitance measurements from cyclic voltametric measurements.

Scan Rate
(m Vs−1)

Specific Capacitance (F/g) in
1 M KOH

Specific Capacitance (F/g) in
0.1 M H2SO4

10 - 525

20 75 348

40 40 239

70 29 176

80 28 161

100 26 148

Cyclic voltammetry demonstrated capacitive performance of Ti3C2Tx/Ag2CrO4 elec-
trode at different scan rate as shown in Figure 9. The highest Csp = 525 F/g was attained at
10 mVs−1 in 0.1M H2SO4. Clearly, it can be seen from Table 3 that the specific capacitance
and scan rate are inversely related. With an increase in scan rates, capacitance will be
low owing to low charge storage ability of electrode material [64]. Enhanced specific
capacitance with small area utilization by ions of electrolyte at a low scan rate is important
to note down [65]. Synthesized Ti3C2Tx/Ag2CrO4 nanocomposite exhibits comparatively
improved capacitance output even at lower concentration of acidic electrolyte. Comparison
of Ti3C2Tx/Ag2CrO4 nanocomposite with other nanocomposites shown in Table 4.
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Figure 9. Voltametric profiles using Ti3C2Tx/Ag2CrO4 electrode (a) in 1 M KOH (b) 0.1 M H2SO4..
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Table 4. Comparison of the specific capacitance with earlier MXene based nanocomposite electrodes.

Electrode Electrolyte Scan Rate (mVs−1) Capacitance (F/g) References

Ti3C2Tx/Ag2CrO4 0.1M H2SO4 10 525 This work

Ti3C2Tx Aerogels 3M H2SO4 10 438 [66]

Ti3C2Tx ion gel Ionic liquid 20 70 [67]

Ti3C2Tx/PPy 1M H2SO4 5 416 [68]

Ti3C2Tx/PPy nanoparticles 1M Na2SO4 2 184.36 [69]

4. Conclusions

MXene (Ti3C2Tx) based silver-chromite nanocomposite special treatment particularly
in the field of energy storage application is reported. XRD showed enhanced inter-planar
spacing from 4.7 Å to 6.2 Å. SEM images revealed silver chromite nanoparticles attach-
ment to MXene sheets whereas EDX confirmed the presence of silver chromite within the
nanocomposite. Raman spectroscopy and photoluminescence revealed functional groups’
attachment and a band gap value of about 3.86 eV. MXene/Ag2CrO4 nanocomposite-
based electrode in 0.1M H2SO4 electrolyte have 525 F/g capacitance at a scan rate of
10 mVs−1 instead of its lower value of 75 F/g at 20 mVs−1 in case of 1M KOH. Thus,
pseudocapacitive behavior in the acidic media gives maximum charge storage in the case
of the Ti3C2Tx/Ag2CrO4 electrode, as compared to basic media. MXene type materials
in nanocomposite form with significant capacitance in the near panorama give strategy
to suggest more search. Here specific capacity of Ti3C2Tx/Ag2CrO4 electrode faraway
from ideal value, for this reason there is need for progress in the instruction about surface
functional groups.
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