
Abstract. According to the World Health Organization 
(WHO), COVID‑19 has caused more than 6.5 million deaths, 
while over 600 million people are infected. With regard to 
the tools and techniques of disease analysis, spatial analysis 
is increasingly being used to analyze the impact of COVID‑19. 
The present review offers an assessment of research that 
used regional data systems to study the COVID‑19 epidemic 
published between 2020 and 2022. The research focuses on: 
categories of the area, authors, methods, and procedures used 
by the authors and the results of their findings. This input will 
enable the contrast of different spatial models used for regional 
data systems with COVID‑19. Our outcomes showed increased 
use of geographically weighted regression and Moran I spatial 
statistical tools applied to better spatial and time‑based gauges. 
We have also found an increase in the use of local models 
compared to other spatial statistics models/methods.

Introduction

Modeling studies and spatial analysis have tried to reduce 
the effects of different instructive variables on the number of 
COVID‑19 cases (1). The beginning and continued advance‑
ment in geospatial expertise have allowed the local and global 
modeling of social and economic factors and ecological condi‑
tions that impact the occurrence of COVID‑19 (2). Certainly, 
geospatial techniques and Geographical Information Systems 
(GIS) are vital in investigating extensive information on the 
COVID‑19 pandemic worldwide (3). Clustering, simulation 
and prediction, data aggregation, spatial distribution and 
spatial tracking are some methods used in disease transmission 

analyses. At the same time, geospatial and GIS provide the 
interactions between diseases and the environment (4). 

Some non‑spatial research has been carried out to address 
numerous issues connected to COVID‑19 impact  (5). In 
Saudi Arabia, as a result of COVID‑19, the laser Hajj (Umrah 
pilgrimage) and Hajj pilgrimage services were fully suspended 
in Saudi Arabia for more than two years, which resulted 
in a severe negative to the country's economy and placed a 
barrier on private and public sectors such as hospitality and 
tourism, transportation and airlines and so on (5). Recently (6), 
developed a background for a dynamic data‑driven clustering 
to lessen the hostile economic effects of Covid‑19 lockdown 
restrictions. Their outcomes showed that ‘the proposed algo‑
rithms improved the relevant metrics by approximately 50% 
in the lockdown experiments and 60‑80% in potentially less‑
ening economic loss’ (7) projected ‘the infection probability of 
COVID‑19 by investigating social distancing and ventilation 
strategies as effective measures to mitigate disease infection 
risks and transmission’. Based on nurturing the abilities of 
communities to tackle the COVID‑19 pandemic, a study (8) 
stated that ‘supportable architectures and designing healthy 
urban infrastructures may be effective planning policies in 
response to the COVID‑19 pandemic to lessen the menace of 
infection’.

According to the World Health Organization (WHO), 
COVID‑19 has caused more than 6 million deaths, while over 
600 million people are infected. Thus, there is a need to review 
articles that study the COVID‑19 epidemic to enable federal, 
state, and local governments to plan against the web of another 
pandemic in the future. In this paper, we offer an assessment 
of recent research works between 2020 and 2022 that used 
regional data systems to assess the COVID‑19 epidemic, 
which focuses on categories of the area, authors, methods, and 
procedures used by the authors and the results of their findings.

Materials and methods

This research will be based on an assessment of research 
works that used regional data systems to study the COVID‑19 
epidemic published between 2020 and 2022. The query used 
in this research work included: Local Moran's Index, Moran's 
I, OLS, SLM, SEM, GWR, MGWR and others, the area, 
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authors, methods, and procedures used by the authors and the 
results of their findings; with the main keywords ‘COVID‑19’, 
‘GIS’ and/or ‘spatial’ in the well‑known research databases 
including Scopus, Web of Sciences, Google Scholar, Mendeley 
and Collabovid.

Subsequently, we could be grouped into Methods (Local 
Moran's Index, Moran's I, OLS, SLM, SEM, GWR, MGWR 
and others), Author(s), region, nature of COVID‑19 and result. 
Furthermore, we were able to draw a relationship between the 
methods with the following: Bar charts representing the spatial 
Methods/Models used by various authors (see Fig. 1), Bar 
charts representing hotspots and clustering, global, local, and 
other models used during Covid‑19 pandemic (see Fig. 2) and 
Bar charts representing the combination of models/methods 
used during Covid‑19 pandemic (see Fig. 3).

Hotspots and clustering: Moran's I statistic. The autocor‑
relation in the spatial analysis may be computed locally 
or globally. Additionally, spatial autocorrelation can give 
details about each district to determine whether the value of a 
particular indicator is the same as or different from that of its 
sub‑regions (9). Moran's I local statistics were applied to deter‑
mine the localized spatial autocorrelation at the research site. 
The global spatial autocorrelation or clustering is calculated 
using the Moran's I statistic (10), which is defined as (11): 

	 	 (1)  

Where xi represents the number of cases in site i and xj repre‑
sents the number of site cases j ( j ≠ i). The average value of 
xi with n sample size represented by x̄ . s2 is the variance of xi. 
The weight matrix which computes connectivity in site i with 
neighbor site j is represented by wij. A typical specification 
of the contiguity relationship in the spatial weight matrix is 
written below (11):

	 	 (2)

Moran's I could take on a range of values between ‑1 and 
1 (12). If Moran's I value is zero (0), it shows a random pattern, 
a spread‑out pattern indicates that the values are negative (13), 
and a clustered pattern indicates that the values are posi‑
tive (11). One disadvantage of global Moran's I is that it did 
not show precisely where the cluster is. Moran's I is used to 
calculate the local spatial correlation, as estimated by (11):

	 s	 (3)

‘High‑low, high‑high, low‑low and low‑high’ clusters are the 
four main categories of spatial autocorrelation (11). Moran's I 
positive value consists of low and high‑high clusters. On the 
other hand, a negative value consists of low‑high clusters and 
high‑low clusters cases. Based on Moran's I value, the location 
is a spatial outlier whenever the value is high negative value, 
and the location is spatially clustered when the value is high 
positive (14). A high‑high cluster indicates that the surrounding 
and the neighboring sites have high values (15). Equally, a 
low‑low cluster indicates that both the surrounding and the 
neighboring sites are having low. The remaining areas that are 
not considered indicate no critical clustering of cases (16). 

Ordinary least squares. The Ordinary Least Squares (OLS) 
is a regression method used to investigate the associations 
between a set of explanatory or a dependent variable and inde‑
pendent variables and has the general form of:

	 	 (4)

Where, xi represent the selected explanatory variables vector,  
yi represent the dependent variable, εi represent a random error 
term, β0 represent the intercept and β represent the vector of 
regression coefficients (17). The two main implicit OLS norms 
are: the study area must be constant with error terms not corre‑
lated, and the observations are mutually independent (18).

The OLS considered that county‑level observations are 
independent of each other and do not observe spatial depen‑
dence with the fundamental assumption of similarity and 
spatial non‑variability (19).

Spatial lag model (SLM). This method can house the spatial 
need between explanatory and dependent variables by inte‑
grating a ‘spatially lagged dependent variable’ in the regression 
model (18). SLM is denoted as:

	 	 (5)

Where Wi represent the vector of spatial weights; yi value 
for dependent variable; and xi, β0, β, εi are the same as in 
Equation 4 (17). ‘The weight matrix (Wi) specifies how the 
neighbors at district i and connects one independent variable 
to the explanatory variables at that location’ (20). According 
to (21) ‘spatial lag is a variable that averages the neighboring 
values of a location’. Also (16),  stated that ‘the SLM accounts 
for autocorrelation in the model with the weight matrix’.

Spatial error model. The Spatial Error Model (SEM) assumes 
that OLS error terms or residuals have spatially correlated 
or spatial dependence (22). Thus, residuals are disintegrated 
into random error terms, and the general form of the model is 
given as:

	 	 (6)

Where at county i, yi value for the dependent variable, ξi 
specifies the spatial error component, λ specifies the level 
of correlation between these components, and εi represent 
a spatially uncorrelated error term (17). Wi represent spatial 
weights matrix and Wiξi represent the extent to which the 
spatial errors component is correlated with one another for 
nearby observations. The SEM accounts for autocorrelation in 
the error with the weight's matrix (23).

Geographically weighted regression (GWR). Geographically 
Weighted Regression (GWR) is a model that shows the rela‑
tionship between variables over space. Thus is an extension of 
global regression models. The GWR model is given as:

	 	 (7)

Where at an area i, yi is the value for dependent variable, 
the intercept is represented by βi0, βij is the jth regression 
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parameter, Xij is the value of the jth explanatory parameter, 
and εi is a random error term (18).

The GWR is a linear regression model that models the 
spatially varying association between an independent and 

dependent variable  (24). The OLS, SEM, and SLM (global 
regression model) methods are applied to only spatial dataset. 
The global regression model cannot account for a nonstationary 
spatial issue, which explains that the relationship between the 

Figure 3. Bar chats representing the combination of models/methods used during Covid‑19 pandemic.

Figure 2. Bar chats representing hotspots and clustering, global, local, and other models used during Covid‑19 pandemic.

Figure 1. Bar chats representing the spatial Methods/Models used by various authors.
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independent and dependent variables might vary over space (21). 
Consequently (25), proposed that ‘global regression estimates 
parameters that are average of the entire area of interest rather 
than specific locations within an area’ (26). On the other hand, 
GWR model overwhelms this constraint by cumulative the local 
efficiency of the model that includes geographic context where 
parameters are derived for each location distinctly (27).

Multiscale geographically weighted regression (MGWR). 
It is expected that the gauge of all involved variables could 
not be the same over the space as GWR (23). Consequently, 
Multiscale Geographically Weighted Regression (MGWR) is 
an extension of GWR that helps to study this relationship at 
different scales with multiple bandwidths. It relaxes the GWR 
assumption by allowing other processes to use at different 
spatial scales  (28). This is achieved by deriving the best 
bandwidth vector in which each element indicates the spatial 
scale at which a particular function occurs. This latest version 
of GWR is MGWR, which is similar in intent to Bayesian 
no separable Spatially Varying Coefficients (SVC) models, 
although potentially supplying a more flexible and scalable 
framework in which to examine multiscale processes (29). It 
can be formulated as:

	 	 (8)

Where at an area i, yi is the value for dependent variable, βbwj 
represent the bandwidth used, Xij represent the value of the 
jth explanatory parameter, and εi is a random error term (30). 
βbwj is the bandwidths, which are utilized to calibrate the 
jth conditional relationship (18). Compared to MGWR has 
many merits, principally it can reduce collinearity, precisely 
represent spatial heterogeneity and decrease the bias in the 
parameter estimates (27). 

In reality, MGWR is frequently regarded as a generalized 
additive model (GAM), allowing it to be standardized using 
back‑fitting algorithms  (30) by redeveloping MGWR as a 
GAM, we have:

	 	 (9)

Where fij [replacing βbwj Xij in (8)] is the jth additive term (2) 
and is a flattening function applied to jth explanatory variable at 
county i. According to (30), ‘Calibrating the model will result in 
a set of bandwidths, one for each of the j explanatory variables 
and differences in bandwidths represent differences in spatial 
scales, and by taking the effect of scale in spatial processes’. 
Thus, MGWR captures spatial heterogeneity accurately (27).

Spatial statistics and COVID‑19
Hotspots and clustering: Moran's I statistic. Hotspots and 
clustering are popular methods used in the study of COVID‑19 
(see Table  I), which can enable targeted involvement by 
federal, state, and local agencies. ‘The global univariate 
Moran's I method is the most widely used, although it has 
mainly been utilized with socioeconomic and COVID‑19 data. 
It can evaluate whether the data tend to be clustered, dispersed, 
or spatially random. It has been used to identify clustering of 
COVID‑19 and facilitate the production of vulnerability and 
risk maps’ (31,33‑35,61‑64).

As a global indicator, ‘Moran's I neglects the instability 
of local spatial processes, which led to the development of 
the local version of Moran's I which identifies both the spatial 
clustering of entities with similar values and the occurrence 
of divergent values. This latter version is also known as a 
Local Indicator of Spatial Association (LISA) (14,37,38,65,59) 
and (41) in China (50), and (58) in the United States, and (66) in 
Mexico (50), in Italy (11), in Malaysia and (15) in Bangladesh  
‘produced LISA cluster maps to analyze the characteristics of 
COVID‑19 at various spatial levels of aggregation’.

Global regression modelling. In spatial modeling problem 
studies (67), ‘it is common to start with OLS regression to 
categorize significant relationships between the independent 
and dependent variables. If the residuals of an OLS model are 
spatially autocorrelated, then it is appropriate to use spatial 
regression‑based methods’ (68).

For instance, ‘SLM can be used to scrutinize how actions at a 
location influence similar actions in nearby locations (i.e., spatial 
interaction); and SEM can be useful to account for autocorrelation 
of the residuals’ (2,21,40‑42,46,49). From Table I, it can be observed 
that Spatially Combined Autoregressive models (SAC) have also 
been used as a mixture of the previous models to concurrently 
consider SEM and SLM in the study COVID‑19 (18,19,21,58,69) 
and (23) uses SAC to analyze the ‘characteristics of COVID‑19 at 
various spatial levels of aggregation’.

Local regression modelling. A local modeling process is an 
effective approach that builds upon traditional global regres‑
sion by allowing non‑stationary (local) rather than stationary 
parameter estimates to be computed’ (1).

Another common method is Geographically Weighted 
Regression (GWR), using the variables previously included in 
OLS regression’ (42,43,45‑47,70). ‘GWR creates a local model 
and calculates the parameters for all points of the sample 
considering the spatial variation in the relationships’ (49,71). 
It can consider ‘non‑stationary variables (such as climate, 
demographic factors, and environmental factors) and models 
the local relationships between those predictors and the patterns 
under study’ (50). It facilitates ‘the analysis of spatial varia‑
tion in a phenomenon in a given place, following Tobler's first 
law of geography that everything is related to everything else, 
but near things are more related than distant things’ (Tobler, 
1970). Regarding COVID‑19, GWR has been used to study 
the relationships between environment, disease, and a variety 
of socioeconomic activities. For example (45), used GWR and 
other models to ‘assess the evolution of air pollution during 
2020 in urban contexts in China’ (50).  studied ‘the geographic 
parallels between affected areas in the Po Valley, Italy, and 
Wuhan, China, where they found that pollution and land use 
play an important role in the distribution of COVID‑19 in 
both regions’ (1). used GWR to ‘identify relationships between 
sociodemographic variables (population density, age groups, 
diabetics) and COVID‑19 in Oman’ (42). demonstrated that 
‘GWR model best explains the spatial distribution of COVID‑19 
in the city of São Paulo, highlighting the spatial aspects of the 
data’. Spatial analysis has shown the spread of COVID‑19 in 
areas with highly vulnerable populations in Brazil.

(23) in India shown that ‘the global models perform poorly 
in explaining the factors for COVID‑19 incidences. MGWR 
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Table I. Spatial analysis models.

Region of study	 Model/method	 Covid‑19 data	 Results	 Study

Pacific and	 Local Moran's index, 	 Confirmed	 According to the results that’ three conceptual 	 (9)
Colombian 	 Moran's I, and Getis‑	 cases	 models are herein proposed that relate the indices 	
Caribbean	 Ord index		  with the geomorphological characteristics: 	
			   (a) the higher the grouping, the higher the 	
			   geomorphological heterogeneity; (b) the higher 	
			   the degree of clustering, the smaller the 	
			   geomorphological homogeneity; (c) the higher 	
			   the degree of clustering, the smaller the 	
			   geomorphological complexity. Lastly, it is 	
			   established that sedimentation processes and 	
			   coastal erosion prevail along low coasts’.	
Malaysia	 Moran's I	 Confirmed	 The study results ‘indicated significant changes 	 (11)
		  cases	 in the COVID‑19 hotspots over time. At the 	
			   beginning of 2020, the state of Selangor and 	
			   Sarawak were the first locality to become a 	
			   significant COVID‑19 hotspot. Furthermore, this 	
			   research showed all affected areas during the 	
			   study period. Overall, a non‑random distribution 	
			   of COVID‑19 occurrences was detected, thus 	
			   suggesting a positive spatial autocorrelation. 	
			   Many parties are affected by the COVID‑19 	
			   pandemic, especially those involved in healthcare 	
			   provision, financial assistance allocation, and law 	
			   enforcement’.	
Chinese cities	 Moran's I	 Confirmed	 The paper finds that ‘Foreign direct investment 	 (14)
		  cases	 (FDI) plays a positive role in promoting green 	
			   total factor productivity (TFP) in high‑high and 	
			   high‑low cluster cities, and the technology 	
			   spillover effect of highly agglomerated FDI is 	
			   more significant than that of decentralized FDI, 	
			   thus promoting the upgrading and agglomeration 	
			   of green TFP and surrounding cities. The positive 	
			   benefits of low‑high and low‑low cluster cities 	
			   are not significant. Therefore, it is necessary to go 	
			   beyond its policy of administrative regions and 	
			   give full play to radiation effect of High‑high FDI 	
			   agglomeration cities and promote the green TFP 	
			   of their surrounding cities’.	
Bangladesh	 Moran's I, GWR, 	 Confirmed	 ‘Twelve statistically significant high rated 	 (15)
	 IDW and Getis‑Ord 	 cases	 clusters were identified by space‑time scan 	
	 Gi statistics		  statistics using a discrete Poisson model. IDW 	
			   predicted the cases at the undetermined area, 	
			   and GWR showed a strong relationship between 	
			   population density and case frequency, which 	
			   was further established with Moran's I (0.734; 	
			   P≤0.01). Dhaka and its surrounding six districts 	
			   were identified as significant hotspots whereas 	
			   Chattogram was an extended infected area, 	
			   indicating the gradual spread of the virus to 	
			   peripheral districts. This study provides novel 	
			   insights into the geostatistical analysis of 	
			   COVID‑19 clusters and hotspots that might assist	
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Table I. Continued.

Region of study	 Model/method	 Covid‑19 data	 Results	 Study

			   the policy planner to predict the spatiotemporal 	
			   transmission dynamics and formulate imperative 	
			   control strategies of SARS‑CoV‑2 in Bangladesh. 	
			   The geospatial modeling tools can be used to	
			   prevent and control future epidemics and 	
			   pandemics’.	
United States	 SLM, SEM, GWR, 	 Confirmed	 The results suggested that ‘even though incorpo-	 (18)
	 and MGWR	 cases	 rating spatial autocorrelation could significantly	
			   improve the performance of the global ordinary	
			   least square model, these models still represent	
			   a significantly deficient performance compared to	
			   the local models. Moreover, MGWR could	
			   explain the highest variations with the lowest	
			   AICc compared to the others. Mapping the effects	
			   of significant explanatory variables (i.e., income	
			   inequality, median household income, the	
			   proportion of black females, and the proportion	
			   of nurse practitioners) on spatial variability of	
			   COVID‑19 incidence rates using MGWR could	
			   provide useful insights 	
			   to policymakers for targeted interventions’.	
Bangladesh	 OLS, SLM, SEM, 	 Confirmed	 The results of the models showed that ‘urban 	 (19)
	 GWR, and spatial 	 cases	 population percentage, monthly consumption, 	
	 regression model 		  number of health workers, and distance from 	
	 (SRM). 		  the capital significantly affected the COVID‑19 	
			   incidence rates in Bangladesh. Among the four 	
			   developed models, the GWR model performed 	
			   the best in explaining the variation of COVID‑19 	
			   incidence rates across Bangladesh with a R2 value 	
			   of 78.6%. Findings from this research offer a 	
			   better insight into the COVID‑19 situation and 	
			   would help to develop policies aimed to prevent 	
			   the future epidemic crisis’. 	
31 European	 OLS, SLM, SEM, 	 Confirmed	 The result shows that ‘for the COVID cases, the 	 (21)
countries	 GWR, partial least 	 cases	 local R2 values, which suggesting the influences 	
	 square (PLS) and 		  of the selected socio‑demographic variables on 	
	 principal component 		  COVID cases and death, were found highest 	
	 regression (PCR) 		  in Germany, Austria, Slovenia, Switzerland, 	
			   Italy. The moderate local R2 was observed 	
			   for Luxembourg, Poland, Denmark, Croatia, 	
			   Belgium, Slovakia. The lowest local R2 value 	
			   for COVID‑19 cases was accounted for Ireland, 	
			   Portugal, United Kingdom, Spain, Cyprus, 	
			   Romania. Among the 2 variables, the highest local 	
			   R2 was calculated for income (R2=0.71), followed 	
			   by poverty (R2=0.45). For the COVID deaths, the 	
			   highest association was found in Italy, Croatia, 	
			   Slovenia, Austria. The moderate association was 	
			   documented for Hungary, Greece, Switzerland, 	
			   Slovakia, and the lower association was found 	
			   in the United Kingdom, Ireland, Netherlands, 	
			   Cyprus. This suggests that the selected 	
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Table I. Continued.

Region of study	 Model/method	 Covid‑19 data	 Results	 Study

			   demographic and socio‑economic components, 	
			   including total population, poverty, income, are 	
			   the key factors in regulating overall casualties of 	
			   COVID‑19 in the European region. In this study, 	
			   the influence of the other controlling factors, such 	
			   as environmental conditions, socio‑ecological 	
			   status, climatic extremity, etc. have not been 	
			   considered. This could be the scope for future 	
			   research’.	
India	 SLM, SEM, GWR, 	 Confirmed	 The results show that ‘the global models perform 	 (23)
	 and MGWR	 cases	 poorly in explaining the factors for COVID‑19 	
			   incidences. MGWR shows the best‑fit‑model 	
			   to explain the variables affecting COVID‑19 	
			   (R2=0.75) with lowest AICc value. Population 	
			   density, urbanization and bank facilities were 	
			   found to be most susceptible for COVID‑19 	
			   cases. These indicate the necessity of effective 	
			   policies related to social distancing, low mobility. 	
			   Mapping of different significant variables using 	
			   MGWR can provide significant insights for policy 	
			   makers for taking necessary actions’.	
Brazil	 Moran's I and	 Confirmed	 The result showed that ‘the population density is 	 (31)
	 LISA clustering	 cases	 a key indicator for the number of deaths, whereas 	
	 analysis		  the number of hospital beds is less related, 	
			   implying that the fatality depends on the actual 	
			   patient's condition. Social isolation measures 	
			   throughout the State of Sao Paulo (SSP) have been 	
			   gradually increasing since early March, an action 	
			   that helped to slow down the emergence of the 	
			   new confirmed cases, highlighting the importance 	
			   of the safe‑distancing measures in mitigating the 	
			   local transmission within and between cities in 	
			   the SSP’.	
China	 Moran's I	 Confirmed	 The results showed that ‘most of the models, 	 (32)
		  cases	 except medical‑care‑based connection models, 	
			   indicated a significant spatial association of 	
			   COVID‑19 infections from around 22 January 	
			   2020’.	
China	 Health index of	 Confirmed	 The results showed that ‘both internal and 	 (33)
	 cities (HIC) model	 cases	 intercity population movements have been 	
			   significantly affected by the COVID‑19 epidemic, 	
			   and the decline in both was more than 50% 	
			   at some points. &e intercity movement is more 	
			   affected than the intracity movement, and the 	
			   impact is more sustained. Compared with the 	
			   same period before the outbreak, the health index 	
			   of cities (HIC) in China decreased by 28.6%  	
			   from January 20 to April 21, 2020’.	
China	 Moran's I	 Confirmed	 They found that ‘positive associations between 	 (34)
		  cases	 particulate matter (PM) pollution and COVID‑19 	
			   case fatality rate (CFR) in cities both inside and 	
			   outside Hubei Province. For every 10 µg/m3 	
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Table I. Continued.

Region of study	 Model/method	 Covid‑19 data	 Results	 Study

			   increase in PM2.5 and PM10 concentrations, the 	
			   COVID‑19 CFR increased by 0.24% (0.01‑0.48%) 	
			   and 0.26% (0.00‑0.51%), respectively. PM 	
			   pollution distribution and its association with 	
			   COVID‑19 CFR suggests that exposure to such 	
			   may affect COVID‑19 prognosis’.	
Brazil	 Local Moran's 	 Confirmed	 They observed that ‘an increasing trend in the	 (35)
	 index, Moran's I	 cases	 incidence rate in all states. Spatial auto-correlation	
	 and log‑linear 		  was reported in metropolitan areas, and 178	
	 regression model 		  municipalities were considered a priority, 	
	 and the local 		  especially in the states of Ceará and Maranhão. 	
	 empirical Bayesian 		  They also identified 11 spatiotemporal clusters 	
	 estimator		  of COVID‑19 cases; the primary cluster included 	
			   70 municipalities from Ceará state. COVID‑19 	
			   epidemic is increasing rapidly throughout the 	
			   Northeast region of Brazil, with dispersion towards	
			   countryside. It was identified elevated risk clusters	
			   for COVID‑19, especially in the coastal side’.	
All countries	 Moran's I and	 Confirmed	 The result shows that ‘southern, northern and 	 (36)
	 hot spot analysis	 cases	 western Europe were detected in the high‑high 	
			   clusters demonstrating an increased risk of 	
			   COVID‑19 in these regions and also the 	
			   surrounding areas. Countries of northern Africa 	
			   exhibited a clustering of hot spots, with a 	
			   confidence level above 95%, even though these 	
			   areas assigned low CIR values’.	
China	 Moran's I	 Confirmed	 The results show that: ‘(1) the epidemic spread 	 (37)
		  cases	 rapidly from January 24 to February 20, 2020, 	
			   and the distribution of the epidemic areas tended 	
			   to be stable over time. The epidemic spread rate 	
			   in Hubei province, in its surrounding, and in some 	
			   economically developed cities was higher, while 	
			   that in western part of China and in remote 	
			   areas of central and eastern China was lower. 	
			   (2) The global and local spatial correlation 	
			   characteristics of the epidemic distribution 	
			   present a positive correlation. Specifically, the 	
			   global spatial correlation characteristics 	
			   experienced a change process from agglomeration 	
			   to decentralization. The local spatial correlation 	
			   characteristics were mainly composed of the 	
			   ‘high‑high’ and ‘low‑low’ clustering types, and 	
			   the situation of the contiguous layout was 	
			   incredibly significant. (3) The population inflow 	
			   from Wuhan and the strength of economic 	
			   connection were the main factors affecting the 	
			   epidemic spread, together with the population 	
			   distribution, transport accessibility, average 	
			   temperature, and medical facilities, which affected 	
			   the epidemic spread to varying degrees. 	
			   (4) The detection factors interacted mainly 	
			   through mutual enhancement and nonlinear 	
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Table I. Continued.

Region of study	 Model/method	 Covid‑19 data	 Results	 Study

			   enhancement, and their influence on the epidemic 	
			   spread rate exceeded that of single factors. 	
			   Besides, each detection factor has an interval 	
			   range that is conducive to the epidemic spread’.	
China	 MGWR	 Confirmed	 The results find that ‘mean temperature (MeanT),	 (38)
		  cases	 destination proportion in population flow from	
			   Wuhan (WH), migration scale (MS), and	
			   WH*MeanT, are generally promoting for Covid‑19	
			   incidence before Wuhan's shutdown (T1); the WH	
			   and MeanT play a determinant role in the disease	
			   spread in T1. The effect of environment on	
			   COVID‑19 incidence after Wuhan's shutdown	
			   (T2) includes more factors (including mean DEM,	
			   relative humidity, precipitation (Pre), travel	
			   intensity within a city (TC), and their interactive	
			   terms) than T1, and their effect shows distinct	
			   spatial heterogeneity. Interestingly, the dividing	
			   line of positive‑negative effect of MeanT and	
			   Pre on COVID‑19 incidence is 8.5˚C and 1 mm, 	
			   respectively. In T2, WH has weak impact, but the	
			   MS has the strongest effect. The COVID‑19	
			   incidence in T2 without quarantine is also modeled	
			   using the developed GWR model, and the modeled	
			   incidence shows an obvious increase for 75.6%	
			   cities compared with reported incidence in T2	
			   especially for some mega cities. This evidences	
			   national quarantine and traffic control take	
			   determinant role in controlling the disease spread. 	
			   The study indicates that both natural environment	
			   and human factors integrated affect the spread	
			   pattern of COVID‑19 in China’.	
United States	 Logistic regression 	 Confirmed	 The result show that ‘the two decision tree 	 (39)
	 (LR), random forest 	 cases	 methods (RF and GBDT) outperformed the other 	
	 (RF), k‑nearest 		  algorithms. Moreover, the results of the RF and 	
	 neighbors (KNN), 		  GBDT indicated that higher spring minimum 	
	 and (SVM)		  temperature, increased winter precipitation, and 	
			   higher annual median household income were 	
			   among the most substantial factors in predicting 	
			   the hotspots’. 	
China	 SLM	 Confirmed	 The result showed that ‘the spatial correlation 	 (40)
		  cases	 between taxi trips as gradually weakened after the 	
			   outbreak of the epidemic, and the consumption 	
			   travel demand of people significantly decreased 	
			   while the travel demand for community life 	
			   increased dramatically’	
China	 Morans I	 Confirmed	 The result show that ‘the correlation experiment 	 (41)
		  cases	 with the new cases in the next two weeks shows 	
			   that the risk estimation model offers promise in 	
			   assisting people to be more precise about their 	
			   personal safety and control of daily routine and 	
			   social interaction. It can inform business and 	
			   municipal COVID19 policy to accelerate recover’.	
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Region of study	 Model/method	 Covid‑19 data	 Results	 Study

Brazil	 GWR	 Confirmed	 Their results have ‘demonstrated that the 	 (42)
		  cases	 geographically weighted regression (GWR) 	
			   model best explains the spatial distribution of 	
			   COVID‑19 in the city of São Paulo, highlighting 	
			   the spatial aspects of the data. Spatial analysis 	
			   has shown the spread of COVID‑19 in areas with 	
			   highly vulnerable populations’.	
Oman	 MGWR	 Confirmed	 ‘As the relationships between these covariates 	 (1)
		  cases	 and COVID‑19 incidence rates vary 	
			   geographically, the local models were able to 	
			   express the non‑stationary relationships among 	
			   variables. Furthermore, among the eleven selected 	
			   regressors, elderly population aged 65 and above, 	
			   population density, hospital beds, and diabetes 	
			   rates were found to be statistically significant 	
			   determinants of COVID‑19 incidence rates. In 	
			   conclusion, spatial information derived from this 	
			   modeling provides valuable insights regarding the 	
			   spatially varying relationship of COVID‑19 	
			   infection with these possible drivers to help 	
			   establish preventative measures to reduce the 	
			   community incidence rate’.	
Saudi Arabia	 GWR	 Confirmed	 The result shows that ‘the cities with the highest 	 (43)
		  cases	 population and population density were found to 	
			   be at a higher risk of COVID‑19’.	
African	 ANOVA	 Confirmed	 They found a significant association between 	 (44)
countries		  cases	 international mobility based on the average annual 	
			   air passengers carried and based on the apparent 	
			   lack of capacity in most African countries' 	
			   healthcare systems. This no doubt raises critical 	
			   concern for these countries' capacity to control the 	
			   virus's spread. Africa may unintentionally become 	
			   a significant viral reservoir, with the potential for 	
			   the creation of new strains in the future.	
China	 GWR and MGWR	 Confirmed	 ‘The results are crucial for understanding how 	 (45)
		  cases	 the decline pattern of particulate matter pollution 	
			   varied spatially during the COVID‑19 outbreak, 	
			   and it also provides a good reference for air 	
			   pollution control in the future’.	
175 countries	 MGWR	 Confirmed	 ‘The percentage of the population age between 	 (46)
		  cases	 15‑64 years (Age15‑64), percentage smokers 	
			   (SmokTot.), and out‑of‑pocket expenditure 	
			   (OOPExp) significantly explained global 	
			   variation in the current COVID‑19 outbreak in 	
			   175 countries. The percentage population age 	
			   group 15‑64 and out of pocket expenditure were 	
			   positively associated with COVID‑19. Conversely, 	
			   the percentage of the total population who smoke 	
			   was inversely associated with COVID‑19 at the 	
			   global level’.	
United state	  OLS and GWR	 Confirmed	 The result shows that ‘minority status and 	 (47)
		  cases	 language, household composition and 	
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			   transportation, and housing and disability 	
			   predicted COVID‑19 infection’.	
Iran	 Moran's I, OLS and	 Confirmed	 The spatial autocorrelation (Global Moran's I) 	 (48)
	 GWR	 cases	 result showed that ‘COVID‑19 cases in the 	
			   studied area were in clustered patterns. For 	
			   statistically significant positive z‑scores, the larger 	
			   the z‑score is, the more intense the clustering of 	
			   high values (hot spot), such as Semnan, Qom, 	
			   Isfahan, Mazandaran, Alborz, and Tehran. Hot 	
			   spot analysis detected clustering of a hot spot with 	
			   confidence level 99% for Semnan, Qom, Isfahan, 	
			   Mazandaran, Alborz, and Tehran, as well. The 	
			   risk factors were removed from the model step by 	
			   step. Finally, just the distance from the epicenter 	
			   was adopted in the model. GWR efforts increased 	
			   the explanatory value of risk factor with better 	
			   special precision (adjusted R‑squared=0.44)’.	
United States	 GWR and MGWR	 Confirmed	 The result shows that ‘among the two local spatial 	 (49)
		  cases	 regression models, MGWR performs more 	
			   accurately, as it has slightly higher Adj. R2 values 	
			   (for cases, R2=0.961; for deaths, R2=0.962), 	
			   compared to GWR's Adj. R2 values (for cases, 	
			   R2=0.954; for deaths, R2=0.954). To inform 	
			   policymakers at the nation and state levels, 	
			   understanding the place‑based characteristics of 	
			   the explanatory forces and related spatial patterns 	
			   of the driving factors is of paramount importance. 	
			   Since it is not the first‑time humans are facing 	
			   public health emergency, the findings of this 	
			   research on COVID‑19 therefore can be used as a 	
			   reference for policy designing and effective 	
			   decision making’.	
Italy	 Moran's I and GWR	 Confirmed	 The result shows that ‘aspects such as land take, 	 (50)
		  cases	 pollution can seriously influence the Covid‑19 	
			   and justify a pattern as that observable in Italy. 	
			   The analyses and observation of the Covid‑19 	
			   also suggests that policies based on urban 	
			   regeneration, sustainable mobility, green 	
			   infrastructures, ecosystem services can create 	
			   a more sustainable scenario able to support the 	
			   quality of public health’.	
China	 GWR	 Confirmed	 They found out that the population flow out of 	 (51)
		  cases	 Wuhan had a long‑term impact on the epidemic's 	
			   spread.	
Germany	 Moran's I	 Confirmed	 The results show that ‘nitrogen dioxide (NO2) is .	 (52)
		  cases	 significantly associated with COVID19 incidence, 	
			   with a 1 µg m‑3 increase in long‑term exposure to 	
			   NO2 increasing the COVID‑19 incidence rate by 	
			   5.58% [95% credible interval (CI): 3.35, 7.86%]’	
London, UK	 Regression	 Confirmed	 The results are ‘compared to those for a later 	 (53)
	 coefficients	 cases	 period, April 18‑May 31. The findings show that 	
			   despite some spatial diffusion of the disease, 	
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			   a greater number of deaths continues to be 	
			   associated with Asian and Black ethnic groups, 	
			   socio‑economic disadvantage, exceptionally large 	
			   households (likely indicative of residential 	
			   overcrowding), and fewer from younger age 	
			   groups. The analysis adds to the evidence showing 	
			   that age, wealth/deprivation, and ethnicity are key 	
			   risk factors associated with higher mortality rates 	
			   from Covid‑19’.	
United State	 Spatially explicit	 Confirmed	 The results showed ‘substantial spatial variation 	 (54)
	 mathematical model	 cases	 in the spread of the disease, with localized areas 	
			   showing marked differences in disease attack 	
			   rates’.	
Italy	 Artificial neural	 Confirmed	 The research ‘reaches the ambitious result of 	 (55)
	 networks and index 	 cases	 forecasting the risk in different scenarios 	
	 RCovid‑19		  assuming different administrative policies in the 	
			   Apulia region. Finally, the results of this research 	
			   can be useful for local administrators and civil 	
			   protection. Beyond this, also researchers and 	
			   other government can exploit the proposed model 	
			   to obtain maps of risk at different scales: urban, 	
			   regional, and national’.	
China	 OLS	 Confirmed	 The results of the analysis showed that ‘the 	 (56)
		  cases	 COVID‑19 lockdown improved air quality in 	
			   the short term, but as soon as coal consumption 	
			   at power plants and refineries returned to normal 	
			   levels due to the resumption of their work, 	
			   pollution levels returned to their previous level’.	
New York City 	 Getis‑Ord (GI*) 	 Confirmed	 The results showed that ‘the proportions of both 	 (57)
and Chicago,	 statistic)	 cases	 foreign‑born and Latinx residents are higher in 	
USA			   New York City hot spots than cold spots (but hot 	
			   spot values are similar to the rest of the city), 	
			   whereas the opposite is true for Chicago with 	
			   lower proportions of foreign‑born (P<0.06) and 	
			   Latinx (P=0.12) residents in hot spots vs. other 	
			   parts of the city’.	
South Korea	 Moran's I and	 Confirmed	 The result showed that ‘the spatial pattern of 	 (58)
	 retrospective space‑	 cases	 clusters changed, and the duration of clusters 	
	 time scan statistic		  became shorter over time’.	
China	 Moran's I, GWR, 	 Confirmed	 The results state that: ‘Population migration plays 	 (59)
	 MGWR and time‑	 cases	 a two‑way role in COVID‑19 variation. The 	
	 serial data and 		  emigrants’ and immigrants' population of Wuhan 	
	 geographically and 		  city accounted for 3.70 and 73.05% of the total 	
	 temporally weighted 		  migrants’ population respectively; the restriction 	
	 regression model 		  measures were not only effective in controlling 	
	 (GTWR)		  the emigrants, but also effective in preventing 	
			   immigrants. COVID‑19 has significant spatial 	
			   autocorrelation, and spatial‑temporal 	
			   differentiation influences COVID‑19’.	
China	 GWR	 Confirmed	 The results show that ‘the time series coefficients 	 (60)
		  cases	 of monthly PM2.5 concentrations distributed 	
			   with a U‑shape, i.e., with a decrease followed by 	
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shows the best‑fit‑model to explain the variables affecting 
COVID‑19 (R2=0.75) with lowest AICc value. Population 
density, urbanization and bank facility were found to be most 
susceptible for COVID‑19 cases. These indicate the necessity 
of effective policies related to social distancing, low mobility. 
Mapping of different significant variables using MGWR can 
provide significant insights for policy makers for taking neces‑
sary actions’ (18). Established that ‘even though incorporating 
spatial autocorrelation could significantly improve the perfor‑
mance of the global ordinary least square model, these models 
still represent a significantly deficient performance compared 
to the local models (72). Moreover, MGWR could explain the 
highest variations with the lowest AICc compared to the others. 
Mapping the effects of significant explanatory variables (i.e., 
income inequality, median household income, the proportion 
of black females, and the proportion of nurse practitioners) on 
spatial variability of COVID‑19 incidence rates using MGWR 
could provide useful insights to policymakers for targeted 
interventions’ in the United States of America.

Other spatial models. Pearson correlation has been used 
with all kinds of variables, but especially with socioeco‑
nomic data, for spatiotemporal analysis, risk maps, health 
accessibility, and environmental repercussions due to the 
pandemic (34,50,59,73).

 ‘Spearman and Kendall tests have been used with confirmed 
cases of COVID‑19 and socioeconomic variables, as well as with 
climate and air quality, to analyze the spatiotemporal evolution 
of the pandemic, mainly in urban contexts (53,74)’.

Getis‑Ord: (Maroko, Denis, & Brian, 2020) uses Getis‑Ord 
and showed that ‘the proportions of both foreign‑born and 
Latinx residents are higher in New York City hot spots than 
cold spots (but hot spot values are similar to the rest of the 
city), whereas the opposite is true for Chicago with lower 
proportions of foreign‑born (P<0.06) and Latinx (P=0.12) 
residents in hot spots vs. other parts of the city  (9). also 
uses Getis‑Ord and proposed that relate the indices with 
the geomorphological characteristics: (a) the greater the 
geomorphological heterogeneity, the greater the grouping; 
(b) the greater the geomorphological homogeneity, the lower 
the degree of clustering; (c) the greater the geomorphological 
complexity, the lower the degree of clustering. Finally, it is 
confirmed that coastal erosion and sedimentation processes 
predominate along low coasts’.

(55) in Italy uses Artificial Neural Networks and index 
RCovid‑19 and establishes research that ‘forecasting the risk in 
different scenarios assuming different administrative policies 
in the Apulia region. Finally, the results of their research can 
be useful for local administrators and civil protection. Beyond 

this, also researchers and other government can exploit the 
proposed model to obtain maps of risk at different scales: 
urban, regional, and national’.

Dissection. From Fig. 1, it is shown that Moran I (may be due 
to the fact that it recognizes both the occurrence of divergent 
values and the spatial grouping of objects having similar 
characteristics) and GWR (may be because it examines the 
relationships between the variety of socioeconomic activities, 
the air quality and the disease) are the two most spatial science 
methods used to study COVID‑19 spread. On the other hand, 
local Moran's model is the least spatial method used in the 
study of COVID‑19 spread in 2020 to 2022 maybe because it 
neglects the instability of local spatial processes. 

From Fig. 2, it has shown that Local models is the spatial 
model mostly used in the study of COVID‑19 spread between 
2020 to 2022 while other models were rarely used during the 
pandemic.

From Fig. 3, shows that one model/method is greatly used 
in the study of spatial analysis of COVID‑19 spread while only 
few used six models in their studies.

Conclusions

This review brings together various spatial analytical tools and 
methods, along with the findings of authors and their research 
on COVID‑19 across different regions. Our review provides a 
fresh perspective on the subject, helping to improve the devel‑
opment of spatial science methods for studying COVID‑19. 
GIS‑related tools and techniques have played a significant role 
in monitoring, evaluating, predicting events, and informing 
policy decisions during the vaccination campaigns. The 
changes in the economic, societal, and environmental land‑
scape resulting from the pandemic's evolution are expected to 
impact the scientific world, leading to new research strategies. 
However, the impact of COVID‑19 may be uneven with the 
emergence of new waves and the arrival of vaccines. Spatial 
analysis and geography will remain powerful tools in compre‑
hending and predicting the evolution of the pandemic across 
diverse spatial and spatiotemporal scales.
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