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While oxidative damage owing to reactive oxygen species (ROS) often

increases with advancing age and is associated with many age-related dis-

eases, its causative role in ageing is controversial. In particular, studies that

have attempted to modulate ROS-induced damage, either upwards or down-

wards, using antioxidant or genetic approaches, generally do not show

a predictable effect on lifespan. Here, we investigated whether dietary

supplementation with either vitamin E (a-tocopherol) or vitamin C (ascorbic

acid) affected oxidative damage and lifespan in short-tailed field voles,

Microtus agrestis. We predicted that antioxidant supplementation would

reduce ROS-induced oxidative damage and increase lifespan relative to unsup-

plemented controls. Antioxidant supplementation for nine months reduced

hepatic lipid peroxidation, but DNA oxidative damage to hepatocytes and

lymphocytes was unaffected. Surprisingly, antioxidant supplementation sig-

nificantly shortened lifespan in voles maintained under both cold (7+28C)

and warm (22+28C) conditions. These data further question the predictions

of free-radical theory of ageing and critically, given our previous research in

mice, indicate that similar levels of antioxidants can induce widely different

interspecific effects on lifespan.
1. Introduction
Until recently, the most dominant mechanistic theory of ageing was the free-

radical theory of ageing (FRTA), now more commonly termed the oxidative

damage theory of ageing [1,2]. Essentially, it suggests that damage to proteins,

lipids and DNA is caused by free radicals, more specifically reactive oxygen

species (ROS), primarily generated as a by-product of mitochondrial oxidative

phosphorylation. Despite the existence of an extensive array of defence and

repair systems to prevent and mitigate damage [1,3–5], the FRTA predicts

that a proportion of ROS evade these systems, leading to oxidative damage.

This damage consequently accumulates with age, initiating a series of events

that over the time compromise function, leading to pathology and ultimately

death [1,6]. However, despite extensive correlative evidence supporting the

FRTA, several recent studies have raised reservations over the role of ROS in

causing ageing [6–8]. The idea that supplementation with antioxidants such

as vitamins E and C can decrease ROS and oxidative damage, and hence

increase lifespan is pervasive, despite a lack of convincing supportive data
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Figure 1. Kaplan – Meier survival curves of voles maintained in the cold
(a) 7+ 28C or warm (b) 22+ 28C and given access to either a control
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[9]. We previously reported that lifelong dietary vitamin E

supplementation in laboratory mice (C57BL/6) extended life-

span relative to controls, although oxidative damage to lipids

and DNA was unaffected [10]. Vitamin C supplementation in

the same mouse strain had no effect on lifespan or oxidative

damage, but did reduce expression of several genes linked

to antioxidant protection [11]. The effects of antioxidant

supplementation on disease and mortality in humans are

equally ambiguous [12], with some meta-analysis approaches

even suggesting that mortality is increased following

supplementation of certain antioxidants [13,14].

Given this confusion surrounding the FRTA, there has been

a recent drive to understand the role of ROS-induced oxidative

damage in shaping life histories and to examine the relation-

ship between oxidative damage and ageing in non-model

organisms [3,4,15]. To this end, we examined lifespan and

oxidative damage in short-tailed field voles (Microtus agrestis)
supplemented from two months of age with either dietary

vitamin C (ascorbyl-2-polyphosphate) or dietary vitamin E

(a-tocopherol), relative to unsupplemented controls. Voles

were supplemented at identical concentrations to our previous

mouse studies [10,11]. We predicted that metabolic rate, ROS

production and oxidative damage would be elevated under

cold conditions in rodents, thus resulting in a greater likelihood

of detecting the effect of antioxidant supplementation on

oxidative damage and lifespan [10,11]. Consequently, we

maintained both control- and antioxidant-supplemented

voles at housing temperatures of either 7+28C (cold) or

22+28C (warm).

diet, a vitamin E-supplemented diet or a vitamin C-supplemented diet
from two months of age. (a) Solid blue line denotes control, stippled
green line denotes vitamin E and broken orange line denotes vitamin C
groups. (b) Solid red line denotes control, stippled green line denotes vitamin
E and broken orange line denotes vitamin C groups.
2. Material and methods

Short-tailed field voles were collected from a wild population and

maintained under experimental conditions as previously described

[16]. At approximately one month of age, an individual from the

same sex sibling pair was transferred to the cold (7+28C), while

the other one remained in the warm (22+28C). At two months of

age, animals at each temperature were randomly assigned to either

a control diet (RM1 diet containing 10 mg kg21 ascorbyl-2-polypho-

sphate and 22 mg kg21 a-tocopherol), a vitamin C-supplemented

diet (RM1 þ 180 mg kg21 of ascorbyl-2-polyphosphate) or a

vitamin E-supplemented diet group (RM1 þ 550 mg kg21 a-toco-

pherol). The comparison of the warm and cold unsupplemented

animals used as controls here was reported previously elsewhere

[16]. All lifespan experiments were run simultaneously, with

Kaplan–Meier survival curves constructed using known birth and

death dates of each individual, with p-values calculated using the

log-rank test [16]. We compared the effects of the two supplemented

diets using a mixed-effects model with diet and temperature as fixed

effects and sibling pair as a random effect nested within diet. An

additional cohort was used to examine the effects of antioxidant sup-

plementation on food intake, body mass and oxidative damage at 11

months of age (nine months supplementation). Hepatic lipid

peroxidation was estimated by measuring thiobarbituric acid

reactive substances using high-performance liquid chromatography

[10,11,16]. Hepatic and lymphocyte DNA oxidative damage was

determined using the modified Comet assay [10,11,16], which

uses the lesion-specific bacterial repair enzymes endonuclease III

(ENDO III) and formamidopyrimidine-DNA glycosylase (FPG) to

increase sensitivity and specificity. ENDO III induces breaks at oxi-

dized pyrimidine sites and FPG induces breaks at purines, including

8-oxo-guanine [17]. Sample sizes are reported in the electronic

supplementary material, table S1. Data were deposited in the

Dryad repository: http://dx.doi.org/10.5061/dryad.31cc4 [18].
3. Results
Voles maintained on the control diet in the cold (figure 1a)

lived significantly longer than those fed either the vitamin E

(log-rank test, X2 ¼ 5.804, p ¼ 0.016) or vitamin C diets

(X2 ¼ 6.052, p ¼ 0.014), with median lifespan being 477, 424

and 353 days, respectively. Similarly, control voles in the

warm (figure 1b) lived significantly longer than the vitamin

E (X2 ¼ 5.008, p ¼ 0.025) or C-supplemented animals

(X2 ¼ 7.588, p ¼ 0.006), with median lifespan being 368, 305

and 303 days, respectively. When comparing the effects of

the different supplemented diets, we found no effect of diet

(F1,59¼ 0.04, p ¼ 0.834), no effect of individual sibling pair

(F28,59 ¼ 0.97, p ¼ 0.535) and no significant interaction of diet

and temperature (F1,29¼ 0.16, p ¼ 0.689). However, there

was a significant effect of ambient temperature (F1,59¼ 5.32,

p ¼ 0.029) on lifespan, with supplemented individuals in the

cold living longer on average (391 days) compared with

individuals in the warm (307 days). Daily food intake

(figure 2a) at 11 months of age did not differ between control-

and antioxidant-supplemented voles either in the cold (F ¼
0.949, p ¼ 0.390) or in the warm (F ¼ 2.382, p ¼ 0.101). How-

ever, a significant difference in body mass (figure 2b) was

observed between groups in the cold (F ¼ 5.383, p ¼ 0.007) at

this time, with vitamin E-supplemented voles being signifi-

cantly heavier than the control voles (post hoc Tukey test,

p ¼ 0.017). No difference in body mass was detected between
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Figure 2. Mean (+s.e.m.) daily food intake ((a) g d21), body mass ((b) g)
and hepatic lipid peroxidation ((c) hmol mg protein21) levels at 11 months of
age in vitamin E- and vitamin C-supplemented voles maintained in the cold
and warm relative to their respective unsupplemented controls. Asterisk (*)
denotes significant difference to appropriate control where p , 0.05.
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animals maintained in the warm (figure 2b; F ¼ 1.755, p ¼
0.182). Hepatic lipid peroxidation (figure 2c) was significantly

lower in vitamin E-supplemented mice relative to controls in

the cold (t ¼ 2.986, p ¼ 0.011) and warm (t ¼ 2.513, p ¼
0.029). Vitamin C supplementation also reduced lipid peroxi-

dation relative to controls in the warm (figure 2; t ¼ 2.348,

p ¼ 0.037), but not in the cold (t ¼ 0.272, p ¼ 0.790). Lympho-

cyte (see the electronic supplementary material, figure S1a and

S1b) and hepatocyte (see the electronic supplementary

material, figure S2a and S2b) DNA oxidative damage was gen-

erally elevated in the supplemented groups at both housing

temperatures, although this did not reach any statistical signifi-

cance for comparison ( p . 0.05; exact p-values reported in the

electronic supplementary material).
4. Discussion
In contrast with our previous findings on laboratory mice

[10,11], our data clearly demonstrate that dietary supplemen-

tation with either vitamin E or vitamin C dramatically

shortened lifespan in voles. This occurred despite the fact

that hepatic lipid peroxidation was significantly reduced in

all but one (cold, vitamin C-supplemented) treatment group,

although lymphocyte and hepatocyte DNA oxidative

damage was unaffected by antioxidant supplementation. The

reasons for this lifespan effect are currently unclear. Dietary

restriction extends lifespan in many animals [19], and the anti-

oxidant diets may have been more palatable, driving

hyperphagia that potentially affect health and survival. While

absolute daily food intake at 11 months of age was unaffected

by diet, supplemented voles at both temperatures tended to be

heavier than the control animals, although this reached signifi-

cance, relative to controls, only in the cold exposed vitamin E

group. Increased body mass is a major risk factor for many

pathologies [20], hence it would be interesting to know how

our antioxidant diets impacted on metabolism and overall

health. In addition to a negative impact of antioxidants on life-

span, voles fed the antioxidant-supplemented diets in the cold

(where metabolic rate is increased [16]) lived approximately 27

per cent longer than those in the warm. This effect could be

mediated via elevated uncoupling of metabolic rate in the

cold conditions which has been previously implicated as a

factor influencing lifespan [21–24]. Both the negative impact

of antioxidant supplementation and positive effect of cold

exposure on lifespan cast further doubt on simplistic models

relating metabolism, ROS production and ageing [4,6–8]. Anti-

oxidants elicit many cellular effects that are unrelated to ROS-

quenching per se [25,26], and it is undoubtedly naive to think

that other pathways and processes are not affected following

supplementation. For example, the positive effects of exercise

on insulin sensitivity in humans are lost when antioxidants

are given [27], vitamin C can act as a pro-oxidant under certain

conditions [28], and in yeast, at least, vitamin E supplemen-

tation (a-tocopherol) has been shown to increase ROS

production, increase oxidative damage and decrease lifespan

[29]. In addition, antioxidant efficacy in quenching ROS

in vitro appears not to be predictive of lifespan in Caenorhabditis
elegans [30]. We did not measure ROS directly or determine

endogenous antioxidant levels, hence cannot be certain that

antioxidant supplementation did not affect other aspects of

antioxidant protection, as seen in mice where lifelong vitamin

C supplementation reduced various parameters associated

with antioxidant protection [11]. However, it should be noted

that this dampening of endogenous antioxidant protection in

mice did not have any impact on lifespan [11]. What our find-

ings do indicate is that significant variation exists in the effects

of antioxidants on oxidative damage and lifespan across

species. We suggest that there is a need for further comparative

studies in this area, and that caution should be used when

advocating that antioxidants might protect against oxidative

damage and ageing in humans, based on studies of limited

numbers of species.
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