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Abstract

Public concerns on phthalates distributions in the environment have been increasing since they can cause liver cancer,
structural abnormalities and reduce sperm counts in male reproductive system. However, few data are actually available on
the effects of Di-(2-ethylhexyl)-phthalate (DEHP) in female reproductive system. The aim of this study was to assess the
impacts of DEHP on zebrafish oogenesis and embryo production. Female Danio rerio were exposed to environmentally
relevant doses of DEHP and a significant decrease in ovulation and embryo production was observed. The effects of DEHP
on several key regulators of oocyte maturation and ovulation including bone morphogenetic protein-15 (BMP15),
luteinizing hormone receptor (LHR), membrane progesterone receptors (mPRs) and cyclooxygenase (COX)-2 (ptgs2) were
determined by real time PCR. The expressions of BMP15 and mPR proteins were further determined by Western analyses to
strengthen molecular findings. Moreover, plasma vitellogenin (vtg) titers were assayed by an ELISA procedure to determine
the estrogenic effects of DEHP and its effects on oocyte growth. A significant reduction of fecundity in fish exposed to DEHP
was observed. The reduced reproductive capacity was associated with an increase in ovarian BMP15 levels. This rise, in turn,
was concomitant with a significant reduction in LHR and mPRb levels. Finally, ptgs2 expression, the final trigger of ovulation,
was also decreased by DEHP. By an in vitro maturation assay, the inhibitory effect of DEHP on germinal vesicle breakdown
was further confirmed. In conclusion, DEHP affecting signals involved in oocyte growth (vtg), maturation (BMP15, LHR,
mPRs,) and ovulation (ptgs2), deeply impairs ovarian functions with serious consequences on embryo production. Since
there is a significant genetic similarity between D.rerio and humans, the harmful effects observed at oocyte level may be
relevant for further molecular studies on humans.
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Introduction

Endocrine disruptors (EDs) are able to disrupt the activity of the

endocrine system and therefore modulate the metabolic activity of

organs, tissues, cells and target structures [1]. Many EDs can

interact with estrogen or androgen receptors and thus act as agonists

or antagonists of endogenous hormones. Increasing evidence shows

that EDs may also modulate the activities/expressions of steroido-

genic enzymes [2]. Recent screening studies carried out in

industrialized countries to detect contaminants in human urine

samples have revealed the population’s ubiquitous exposure to

various plasticizers belonging to the group of phthalates (esters of a-

phthalic acid). Di-(2-ethylhexyl)-phthalate (DEHP) is the most

commonly used plasticizer in PVC formulation for a wide variety of

applications including medical devices, construction products,

clothing and car products. DEHP is also used in non-polymer

materials such as lacquers and paints, adhesives, fillers and printing

inks and cosmetics [3]. As a result, DEHP has been found

everywhere in the environment, and is universally considered to be

a ubiquitous environmental contaminant [4]. In the last 3 years, the

number of studies reporting a relationship between exposure of

environmental phthalic acid ester (PAE) and human health has

rapidly increased. These studies suggest possible associations

between environmental exposure to PAEs and adverse effects on

human reproduction and health [5–7], similar to those already

described for rats dosed during gestation and/or lactation with

phthalates [8]. In addition, studies have shown that exposure of

pregnant laboratory animals to high doses of DEHP led to the

similar effects as those caused by antiandrogens [9,10].

Follicle development, oocyte maturation and ovulation in fish

are controlled by hormones, including the follicle stimulating

hormone (FSH) and the luteinizing hormone (LH), as well as

growth factors and hormones produced by the ovary [11]. The

bone morphogenetic protein-15 (BMP15), a member of the

transforming growth factor b (TGFb) superfamily, has recently

been demonstrated to prevent precocious oocyte maturation

[12,13] by inhibiting the expression of LH receptor (LHR) and

membrane progestin receptors (mPRs) [14,15] which are known to

have a pivotal role in the final steps of maturation [16]. By

preventing small follicles from undergoing maturation, BMP15

may be important in maintaining oocyte quality and subsequent

ovulation, fertilization, and embryo development [17].

The ovulatory process, the last step of oogenesis, which

ultimately leads to the rupture of the follicle wall and the release

of oocytes, involves a complex series of biochemical and

biophysical events. The pre-ovulatory surge of LH triggers a
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marked and obligatory increase in follicular prostaglandin

synthesis prior to ovulation, and the cyclooxygenase (COX)

enzyme is a key rate-limiting step in the biosynthesis of

prostaglandins. It in fact catalyzes the conversion of arachidonic

acid to prostaglandin H2, involved in the ovulation process [18].

Recently, the zebrafish and human genomes have been shown

to share extensive conserved syntenic fragments and many

zebrafish genes and their human homologs display structural

and functional similarities. These results, in addition to providing

sound elements for environmental risk assessment, can be

considered a starting point for further molecular studies on

humans [19,20].

While the effects of DEHP on humans and mammalian species

have largely been investigated especially in males, few data are

available on its effects on the reproduction of aquatic organisms

such as fish, important sentinels of environmental quality.

Considering that the Environmental Protection Agency (EPA)

has established a DEHP safety concentration limit in drinking

water on 6 ppb (mg/l), in this study, the impact of relevant

environmental concentrations [21], ranging from 0.02 to 40 mg/l,

on zebrafish oocytes maturation, ovulation and fecundity, was

analyzed. The molecular mechanisms of the adverse effects of

DEHP were also investigated.

Methods

Experimental design
Adult Danio rerio (zebrafish) females were purchased from a

commercial dealer (Acquario di Bologna, BO, IT). They were kept

in aquaria at 28uC and oxygenated water. Fish were fed twice

daily with commercial food (Vipagran, Sera, Germany) and other

two times with Artemia salina. Eggs laid by parental fish were kept

and grown. Six months old adult zebrafish were used for

toxicological studies.

Females were exposed for three weeks, in semi-static conditions,

to nominal 0.02, 0.2, 2, 20 and 40 mg/l concentrations of DEHP. In

order to evaluate DEHP estrogenic potency, one group was exposed

to the positive control, 17a-Ethynylestradiol (EE2 25 ng/l). To

investigate potential effect of the solvent, the vehicle control (EtOH),

was used as control for all experimental groups. For each

concentration, the treatment was performed in three different tanks

(30 fish each), at a mean density of 1 fish/l, at a constant day/night

photoperiod (12L/12D).

Chemicals
A technical grade DEHP (purity 99%) used in all experiments

was obtained from Supelco (Bellafonte, PA, USA). Stock solution

Figure 1. Effects of DEHP exposure in female zebrafish on oocyte growth and embryo production. A, Percentages of pre-vitellogenic,
vitellogenic, post-vitellogenic oocytes in female (n = 5) exposed to DEHP (0.02, 0.2, 2, 20 and 40 mg/l) or EE2 (25 ng/l). Asterisks* indicate statistical
significant differences set at P,0.05. Data were shown as mean 6 SEM. B, Increase of plasma vitellogenin levels in female zebrafish (n = 3) exposed to
DEHP (0.02, 0.2, 2, 20 and 40 mg/l) or EE2 (25 ng/l). Data were shown as mean 6SD. Asterisks* indicate statistical significant differences compare to
control group (p,0.05). C, Reduction of total embryos in female zebrafish exposed to (0.02, 0.2, 2, 20 and 40 mg/l) DEHP or EE2 (25 ng/l).
doi:10.1371/journal.pone.0010201.g001
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of 1 mg/ml was prepared dissolving both DEHP and 17a-

Ethynylestradiol (EE2, purity 98% Sigma) in ethanol.

Reproductive performance
At the end of the three weeks’ exposure, females (n = 10) from

each experimental group were transferred to spawning tanks

containing non contaminated water together with non treated

zebrafish males (ratio: 10female/7males). Fecundity, defined as

daily number of fertilized eggs (embryos), was determined for the

next 14 days. For each pollutant concentration, three spawning

tanks were set up.

Percent of follicles of each stage of development
Following exposure, adult females (n = 5) from each experi-

mental group were sacrificed and oocyte follicles stages determi-

nation was performed. The ovary of zebrafish is in fact

asynchronous and oocytes at different stages of development are

simultaneously present [22]. The oocytes were divided into three

different groups according to their sizes: previtellogenic (0.15–

0.34 mm Ø), vitellogenic (0.35–0.69 mm Ø) and postvitel-

logenic (0.70–0.75 mm Ø). Follicles were manually isolated using

micro tweezers under a microscope equipped with a micrometric

scale in the objective. Each follicle stage was expressed as a percent

of the total number of follicles from both ovaries of each female

used.

Enzyme-linked immuno sorbent assay (ELISA)
Rabbit anti-zebrafish vtg polyclonal antibody was purchased by

Biosense Laboratories AS (Thormøhlensgt. 55, N-5008 Bergen,

Norway). The assay to determine vtg concentration was performed

in the plasma of 5 fish. Standard curves were obtained by adding

increasing doses of vtg from 10 to 1280 ng [23]. A reliable

calibration curve enables the antigen titer (vtg) to be measured in

all culture media.

Gene expression
Total RNA was extracted from 5 ovaries using TRI REAGENT

TM (Sigma) following manufacturer’s instructions. The cDNA

synthesis and real time PCR assay were performed using the

SYBR green described as previously [24]. Quantifications of LHR,

mPRa, mPRb, ptgs2 gene expression were normalized using ARP

(Acidic Ribosomal Protein, a house-keeping gene) in each sample

in order to standardize the results by eliminating variations in

mRNA and cDNA quantity and quality. In order to amplify,

LHR, mPRa, mPRb, ptgs2 and ARP gene, the following primer

pairs were used: FLHR 59 GGCGAAGGCTAGATGGCACAT39

RLHR 59TCGCCATCTGGTTCATCATA39; FmPRa 59 CG-

GTTGTGATGGAGCAGATT39; RmPRa 59 AGTAGCGCCA-

GTTCTGGTCA 39; FmPRb 59 ACA ACGAGCTGCTGAA-

TGTG39, RmPRb 59ATGGGCCAGTTCAGAGTGAG 39,

Fptgs2 59TGGATCTTTCCTGGGTGAAGG39; Rptgs2 59GAA-

GCTCAGGGGTAGTGCAG39; FARP 59TTCCTCGGTATG-

GAGTCCT39, RARP 59-TGGGGCAATGATCTTGATCTT39.

Western blot analysis
Ovary homogenates were prepared, electrophoresed, and trans-

ferred to PVDF membrane. The membranes were then probed with

anti-BMP15, anti-mPRa and anti-mPRb antisera as previously

reported [25]. Data were normalized against b tubulin protein levels.

Anti-b-tubulin antibody (1 g/ml) (Gene Tex, Inc.) was used to

normalize the sample loading. The antibody reaction was visualized

with chemiluminescent reagent for Western blot. The densitometric

analysis was performed by ImageJ software for Windows.

Follicles in vitro maturation
Maturation assays were performed as previously described [13].

Briefly, gravid female zebrafish were anesthetized using 3-amino-

benzoic acid ethyl ester (Sigma-Aldrich Canada Inc., Oakville, ON,

Canada) and decapitated. The ovaries were removed; follicles were

Figure 2. Pre-exposure of DEHP inhibits steroid-induced germinal vesicle breakdown (GVBD) in vitro. Stage IIIB follicles were collected
from female zebrafish and were pre-exposed to DEHP for 4 hrs before addition of 17,20 bP, or simultaneously exposed to DEHP and 17,20 bP. Data
represent mean 6 SD of three replicate wells from one experiment. The experiment was repeated three times with similar results. Different letters
indicate statistical significant differences compare to control group (p,0.05).
doi:10.1371/journal.pone.0010201.g002
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staged according to their size and stage IIIB oocyte were collected.

These oocytes were then pre-incubated for 4 hrs with 10 nM or

100 nM DEHP before the addition of 17,20b dihydroxy-4-pregnen-

3one (17,20bP) (100 ng/ml, Sigma Aldrich, Milan Italy). Additional

groups were incubated with DEHP and 17,20bP simultaneously.

The rate of maturation indicated by the germinal vesicle breakdown

(GVBD) was scored after 12 hrs post incubation. Each treatment

was conducted with approximately 20 follicles per well and all

experiments were carried out at least three times.

Data Analysis
Statistical analysis was performed with GraphPad Prism version

5.00 for Windows, GraphPad Software, San Diego California

USA. Normal distribution of any variable analysed was checked

by Kolgomorov–Smirnov test. Data for dose-response studies were

analyzed for statistical significance by one-way ANOVA. Bonfer-

roni’s multiple comparison tests were used to determine differences

among groups. Significance was set at p,0.05.

Results

Effects of DEHP exposure in female zebrafish on oocyte
growth and maturation

Treatment with EE2 or the 2 mg/l DEHP dose led to a significant

increase in the number of vitellogenic oocytes. This increase was

associated with a significant decrease in pre-vitellogenic oocytes

observed in the same experimental groups; EE2 and 2 mg/l DEHP

shifted pre-vitellogenic oocytes towards vitellogenic induction.

Figure 3. Up-regulation of ovarian BMP15 protein level and down-regulation of LHR gene expression in female zebrafish exposed to
DEHP. A, BMP15 protein levels in vehicle control (EtOH), DEHP (0.02, 0.2, 2, 20 and 40 mg/l) or EE2 (25 ng/l) treated fish. Insert shows a representative
Western blot while the graph represents densitometric analysis of BMP15 normalized using b-tubulin. Data were expressed as the mean6SD from at least
four separate experiments. Asterisks* denote exposure groups that are significantly different from the control group (p,0.05). B, Down regulation of
ovarian LHR gene expression normalized using ARP gene in females exposed to DEHP (0.02, 0.2, 2, 20 and 40 mg/l) or EE2 (25 ng/l.) Data were expressed as
mean6SD from at least four independent experiments. Asterisks* indicate statistical significant differences respect to control group (p,0.05).
doi:10.1371/journal.pone.0010201.g003
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Interestingly, no post-vitellogenic oocytes were found in the EE2, 20

or 40 mg/l DEHP exposed females, (Figure 1A). In all treated

groups, the GSI (gonad-somatic index) became higher, although not

significantly except for the EE2 group where a significant increase

was found (data not shown). A significant increase in vtg levels in the

plasma of treated females was observed with the highest induction

found with 40 mg/l DEHP, clearly showing the estrogenic activity of

DEHP (Figure 1B).

After three weeks DEHP exposure, females were paired with

control males and in the following 14 days, the embryos were

collected and counted daily. The fecundity was remarkably

compromised by DEHP at all doses tested. The most dramatic

effects were observed at the highest dose of DEHP where the

number of embryos was about 1% of the embryos produced by the

control (Figure 1C). The number of embryos collected in females

exposed to EE2 was similar to that obtained with 20 mg/l DEHP.

Effects of DEHP on in vitro GVBD
To further confirm the effect of DEHP on oocyte maturation, in

vitro maturation assays were performed. Approximately 75% stage

IIIB follicles underwent GVBD following treatment with 17,20bP

alone for 12 hrs. In contrast, the steroid-induced oocyte maturation

(GVBD) was inhibited significantly when stage IIIB oocytes were

pre-exposed with two different doses of DEHP for 4 hrs prior to the

treatment of 17,20bP, compared to 17,20bP treatment alone. When

DEHP and 17,20bP were added simultaneously, no inhibition of

steroid-induced GVBD was observed (Figure 2).

Effects of DEHP exposure on ovarian BMP15 protein level
Since exposure to DEHP caused a strong inhibition in oocyte

maturation, we tested the effect of DEHP on BMP15 known to be

involved in this processes.

A significant dose-dependent increase in BMP15 protein was

observed in all groups treated with DEHP except for the 0.02 mg/l

dose and EE2 groups (Figure 3A).

Effects of DEHP exposure on ovarian LHR gene
expression

A significant decrease in LHR mRNA levels was observed in the

oocytes of females exposed to DEHP or EE2 compared to the

vehicle control group (p,0.05). The lowest expression of LHR was

obtained in fish exposed to EE2, or DEHP being the lowest doses

(0.02 and 0.2 mg/l) the most injurious (Figure 3B).

Effects of DEHP on ovarian mPRs gene and protein
expression

A significant decrease in both mPRb mRNA (Figure 4A) and

protein (Figure 4B) levels was observed in oocytes of females

exposed to DEHP at all doses or EE2 compared to those in the

vehicle control group. The lowest expression of mPR was obtained

in fish exposed to EE2, or DEHP at doses of 0.02 and 0.2 mg/l. No

significant variations in mPRa gene and protein expression was

observed using the same treatments (data not shown).

Effects of DEHP exposure on ovarian cyclooxygenase-2
gene expression

Compared to controls, a significant dose-dependent decrease in

the expression of cyclooxygenase 2 (ptgs2) gene was observed with

lowest levels at dose of 40 mg/l (Figure 5).

Discussion

In this study, we provide evidence that environmentally relevant

concentrations [21] of DEHP interfere with zebrafish reproductive

performance, representing a concrete risk for the aquatic

population living in polluted areas.

We found that exposure of female zebrafish to DEHP or EE2

led to a significant increase of circulating levels of vitellogenin.

Since estrogen is well known for its effect on promoting

vitellogenesis, this observation supports our hypothesis that DEHP

has estrogenic effects in zebrafish. However, in fish exposed to the

highest dose DEHP, there was a significant decrease in the

number of post-vitellogenic oocytes and the number of ovulated

eggs was dramatically decreased by all treatments.

According to a model proposed by Nagahama and collaborators

[26], vitellogenesis and oocyte maturation are regulated primarily

by FSH and LH, respectively. During oocyte maturation, LH

induces 17,20bP production [27] and enhances the expression of

membrane progestin receptors [28,29]. Studies in zebrafish have

demonstrated that the effects of these hormones may be

Figure 4. Effects of DEHP exposure on the expressions of ovarian mPRb in female zebrafish. A, Female zebrafish were exposed to DEHP
(0.02, 0.2, 2, 20 and 40 mg/l) or EE2 (25 ng/l). Data were shown as mean 6 SD. Asterisks* indicate statistical significant differences to control group
(p,0.05). B, Insert shows a representative Western blot while the graph represents densitometric analysis of mPRb normalized using b-tubulin. Data
are expressed as the mean 6SD from at least four separate experiments. Asterisks* denote exposure groups that are significantly different from the
control group (p,0.05).
doi:10.1371/journal.pone.0010201.g004
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modulated and/or mediated by locally produced regulators, such

as TGFb family members [12]. Since a member of this family,

BMP15, plays a physiological role in the zebrafish ovary by

preventing precocious oocyte maturation [13], in the present

study, its levels were determined in the gonad of DEHP treated

females and the protein level was seen to significantly increase,

representing one of the possible factors responsible for the

observed block in oocyte maturation. In contrast to the increase

in BMP15 level, we found that DEHP caused an inhibition of the

LHR and mPRb expression. The worst effect on these maturation

factors was induced by the lowest doses of DEHP, behaving as

EE2.

It has been reported that BMP15 inhibited expression of mPRb,

but not mPRa expression [14,25] and might also suppress LHR

expression [17]. The mPRb has been demonstrated to be involved

in initializing the resumption of meiosis during Xenopus oocyte

maturation [30] and in regulating in vitro maturation of pig

cumulus-oocyte complexes [31]. Moreover, while previous studies

have shown that microinjection of mPRa antisense nucleotide in

oocytes resulted in partial inhibition of 17,20bP-induced oocyte

maturation in goldfish [28], similar experiments conducted on

zebrafish oocytes using the mPRb subtype resulted in complete

inhibition of oocyte maturation, suggesting that mPRb has a key

role in the control of this process in zebrafish [29]. The lack of egg

production observed in the present study, may be due to reduction

of mPRb subtype by DEHP exposure. In addition, the differences

in expression between the two mPRs here observed, might also be

due to the lower frequency of stage IV follicles in treated females

where the a isoform is commonly more abundant [32,33].

The in vivo results were supported by the in vitro GVBD

inhibition by DEHP which occurred only when the oocytes were

exposed to this contaminant four hours before the incubation with

17,20bP, while no effects were observed when DEHP and 17,20bP

were concomitantly added to oocyte cultures. These results suggest

that DEHP may act on the synthesis of local factors involved in

GVBD contrasting oocyte maturation when 17,20bP was added a

few hours later.

About ovulation, this process is controlled by prostaglandins

which are synthesized under the influence of 17,20bP. In this

regard, a relationship was also demonstrated between ovarian

ptgs2, the gene coding for the enzyme essential for the ovulation

process [34], and the lack of ovulation in fish exposed to DEHP,

being the highest doses the most detrimental.

Similar effects on vitellogenesis and ovulation, as well as on the

expressions of LHR, mPRb and ptgs2 caused by DEHP or EE2,

suggest that these two chemicals work in a similar way inhibiting

the maturation/ovulation process, as already found for EE2 in

mammals [35]. The inhibition of ptgs2 gene transcription may

lead to a reduction in the cyclooxygenase (COX) products, the

prostaglandins, which in turn are essential for vertebrate ovulation

[34,36]. On the contrary, BMP15 expression was induced by all

doses of DEHP, except for the lowest dose, but not by EE2.

Therefore, it is possible that DEHP may have additional functions

which are not related to its estrogenic activity. It remains to be

determined how DEHP regulates the expression of BMP15.

In summary, the data presented here provide new insight into

the molecular control of oogenesis by phthalates in zebrafish. We

can conclude that all environmental relevant doses of DEHP affect

vitellogenesis, demonstrating its estrogenic potency. Different

dose-related effects have been observed in relation to maturation

and ovulation process. The lowest doses have a stronger negative

effects on signals inducing maturation (LHR and mPRb), while the

highest doses have a greater impact on the inhibition of ovulation

(ptgs2). The results of this study, both in vivo and in vitro, clearly

demonstrate that all doses of DEHP strongly impair oocyte

maturation and ovulation by influencing the expression of factors

involved in these processes. These results could help to build a

vertebrate integrated model on the effects of this environmentally

relevant compound during oogenesis, an emerging field of

investigation.
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