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Fractional model of MHD blood 
flow in a cylindrical tube containing 
magnetic particles
Samina Majeed1, Farhad Ali1*, Anees Imtiaz1, Ilyas Khan2 & Mulugeta Andualem3*

In recent years, the use of magnetic particles for biomedicine and clinical therapies has gained 
considerable attention. Unique features of magnetic particles have made it possible to apply them 
in medical techniques. These techniques not only provide minimal invasive diagnostic tools but also 
transport medicine within the cell. In recent years, MRI, drug supply to infected tissue, Hyperthermia 
are more enhanced by the use of magnetic particles. The present study aims to observe heat and 
mass transport through blood flow containing magnetic particles in a cylindrical tube. Furthermore, 
the magnetic field is applied vertically to blood flow direction. The Caputo time fractional derivative 
is used to model the problem. The obtained partial fractional derivatives are solved using Laplace 
transform and finite Hankel transform. Furthermore, the effect of various physical parameters of our 
interest has also been observed through various graphs. It has been noticed that the motion of blood 
and magnetic particles is decelerated when the particle mass parameter and the magnetic parameter 
are increased. These findings are important for medicine delivery and blood pressure regulation.

List of Symbols
T  Ambient temperature
Tw  Surface temperature
T  Cauchy stress tensor
f (r1, τ)  Dimensionless fluid velocity  (ms−1)
�E  Electric field intensity
�B  Magnetic flux intensity
k0  Thermal conductivity of fluid  (Wm−1  K−1)
μ0  Magnetic permeability
�J   Electric current density
C  Fluid’s concentration
C∞  Ambient concentration
σ  Electrical conductivity  (s3  A2  m−3  kg−1)
B0  Applied magnetic field
Pm  Dimensionless particle mass concentration
g  Gravitational acceleration  (ms−2)
βT  Thermal expansion coefficient  (K−1)
m  Mass of magnetic particles (kg)
N  Number of magnetic particles
p  Oscillating pressure gradient
α  Fractional parameter
Pr  Prandtl number
Gr  Grashoff number
Gm  Mass Grashoff number
Sc  Schmidth number
t  Dimensional time
⇀

V   Velocity field.
I0  Interaction forces
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g(r1, τ)  Dimensionless particles velocity  (ms−1).
λ0  Amplitude of systolic pressure gradient
�1  Amplitude of diastolic pressure gradient
μ  Dynamic viscosity of fluid  (kgm−1  s−1)
u(r,t)  Blood velocity  (ms−1)
ρ  Density of fluid (kg  m−3)
ν  Kinematic viscosity  (m2  s−1)
Cw  Wall concentration
K  Stokes’ constant
β  Brinkman-type fluid parameter
βC  Mass expansion coefficient
N  Number of magnetic particles
up  Velocity of magnetic particles (m  s−1)
u  Velocity of fluid (m  s−1)
Pc  Dimensionless particle concentration parameter
T  Temperature field (K)
r  Radial axis
M  Magnetic parameter
cp  Specific heat capacity  (m2  K−1  s2)
D  Mass diffusivity for blood
m  Mass of magnetic particles

The fluids like blood and polymer solutions are complex fluid and cannot be described by conventional 
Navier–Stokes’ equations. Such fluids are classified as non-Newtonian  fluids1. Brinkman-type fluid is one of the 
types of non-Newtonian fluids. Brinkman type fluid is a kind of fluid that passes through a high permeable  area2. 
Brinkman developed a model for fluid flow in the porous medium. It has enormous applications in science and 
engineering e.g. geohydrology, petroleum engineering, scientific study of soil, and manufacturing the products 
involving chemical  processes3. In addition, Brinkman type fluid has massive applications in the medical field, 
e.g. Oxygen exchange in the blood through millions of alveoli in the lungs in capillaries, the procedure of blood 
dialysis in the artificial kidney, flow in blood  oxygenation4. Ali et al.5 for the first time used Laplace transform 
technique to get the exact solution for the Brinkman type fluid model. The influence of radiative heat flux on 
Brinkman type fluid with the applied magnetic field is investigated  Zakaria6. Blood flow in a cylindrical tube was 
examined by Saqib et al.7. In this study, blood is used as a Brinkman type fluid in this investigation. Magnetic 
particles are also injected into the bloodstream to investigate the effects of a perpendicularly applied magnetic 
field on blood and particle velocity. They found that raising values of the Brinkman parameter reduced the blood 
velocity. Ali et al.8examined the influence of thermal radiation on the natural convection flow of Brinkman type 
fluid by the use of an applied magnetic field.

Magnetic particles are metallic particles that are influenced by the magnetic  field8. Magnetic particles has 
also the property of escalation of the thermal conductivity of working fluids when exposed to external magnetic 
 field9. This property of magnetic particles makes it a good choice for researchers to use in the biomedical  field10. 
Almost five decades ago magnetic particles were first time used for cancer  treatment11. One of the character-
istics of magnetic particles is their attraction to high magnetic flux density, which helps in drug targeting and 
 biosepration12. Magnetic particles have the property of Hysteresis loss to the alternative magnetic field. This 
property is helpful in  Hyperthermia13. Since the magnetic field is generated by magnetic particles that affects the 
surrounding local region. This property is used in magnetic resonance imaging (MRI)14. Other common uses of 
magnetic particles are gene  transfer15,  immunoassays16.

Keeping in mind the applications of magnetic particles in the biomedical field, various researchers are inter-
ested to discuss blood mixed with magnetic particles in different geometries under the application of magnetic 
field. Ali et al.17 briefly examined the role of magnetic particles for therapeutic purposes. Their model is based 
on blood flow with suspended magnetic particles and a magnetic field applied perpendicularly. Moreover, It is 
noticed that the motion of particles and blood can be regulated by using adequate use of magnetic field intensity. 
Furlani et al.18 used magnetic particles in the blood and formulated a mathematical model to introduce nonin-
vasive magnetic targeting therapy. The results showed that this model is effective when the tumor is within few 
centimeters of the surface of the body. Grief et al.19 examined the effects of a perpendicularly applied magnetic 
field on blood flow with suspended magnetic particles. They noticed that by using magnetic particles, tumor 
treatment can be made more effective. In order to find an effective way to deliver localized genes effectively, 
 Kilgus20 developed a model. It was noticed that the use of magnetic particles makes this process more effec-
tive. The model developed by Shit and  Roy21 using magnetic particles in blood flow is helpful for the therapy of 
atherosclerosis and hypertension. Their investigation shows that the use of an external magnetic field is helpful 
to control blood flow. Mirza et al.22 explored the role of magnetic field for treatment of stenosed artery. They 
observed magnetized blood flow with suspended magnetic particles. During their investigation, strong variation 
in blood near the stenosed artery was observed.

Magnetic particles work as a heat source, scientists used this property to cure cancerous  cells23. Choi and 
 Eastman24 in their research work proved that adding a certain amount of metallic particles in fluid enhances the 
rate of heat transfer. This property of magnetic particles has attracted many researchers to conduct further stud-
ies. The effects of heat transfer on blood with suspended magnetic particles in a small capillary were observed by 
Ali et al.25.  Khalid26 examined the influence of natural convection on flowing blood with suspended nanotubes 
and noticed that transfer of heat enhanced by the increase of carbon nanotube’s volume fraction. Shah et al.27 
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analytically observed free convective blood flow. The effect of heat transmission on free convective fluid was 
investigated by Alsabery et al.28 in horizontal concentric annuls. Blood also plays a significant role in mass trans-
fer to surrounding tissues. Researchers have also noticed experimentally that the existence of magnetic particles 
in blood improves mass  transfer29. Tripathi et al.30 examined the behavior of two phase blood flow in a stenosed 
artery with combined effects of heat and mass transfer with an applied magnetic field.

Fractional calculus is almost three centuries old and is one of the exciting researches of applied analysis of 
sciences for modeling biological  problems31. Fractional calculus shows hereditary and memory effects which 
are not possible by ordinary  calculus32. To model any physical/biological problem, fractional calculus is more 
realistic than ordinary calculus. In recent years, many researchers have used fractional order calculus to model 
many biological problems. In order to observe the dynamic behavior of TB infection Rahman et al.33 developed a 
time fractional model. Their examination pointed how to diminish the contamination in human benig. They this 
investigation probed that fractional order derivative significantly analysis the model rather than classical deriva-
tive. Bansi et al.34 investigated blood flow in an artery using a fractional model. It was observed that fractional 
parameter is helpful to control temperature and motion of blood flow. Tabi et al.35 used time fractional model to 
describe the variation in motion of blood with embedded particles in a stenosed artery with an applied magnetic 
field. Their investigation showed that fractional parameter is more realistic to show the behavior of blood and 
particles. To investigate the frequency dependence of brain tissue, Kohandel et al.36 employed fractional calculus. 
By using fractional calculus, Ahmed et al.37 proposed a cancer model. This model showed that fractional order 
calculus is more effective to describe tumor immune system. To study the dynamics of tumor cells, Arfan et al.38 
presented a time fractional model. The findings can be used to look into the dynamics of tumor cells, immune 
cells, and therapeutic reactions.

Keeping in mind all the above mentioned literature, a time fractional model has been established. The goal is 
to explore the impact of heat and mass transfer on blood with uniformly distributed magnetic particles flowing 
through a cylindrical tube. Moreover, blood flow is exposed to magnetic field. The Hankel and Laplace trans-
formation are utilized to get the exact solution. The impacts of the various parameters are briefly described in 
several graphs.

Problem formulation
Consider unsteady blood flow in the axisymmetric circular cylinder of the radius r0 with suspended magnetic 
particles. In addition, Blood is considered to be Brinkman type  fluid10. Blood involving magnetic particles is 
moving in the z direction, where the magnetic field is applied vertically to the direction of fluid flow as shown 
in Fig. 1. The intensity of the applied magnetic field is assumed to be strong as a result induced magnetic field is 
 weak39. At t = 0, blood and magnetic particles are at rest. At t =  0+ fluid with suspended particles starts motion. 
Convective heat transfer and oscillating pressure gradient are responsible for fluid flow.

Governing equation for fluid motion is described by fluid Navier–Stoke’s equation, while particles motion is 
represented by Newton’s second law, and Maxwell’s equation for electromagnetic field is defined  as40

Figure 1.  The geometry of the problem.
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According to Ohm’s  law41

The electromagnetic force is defined  as42

where 
⇀

k  is unit vector in z direction.

Momentum equation for blood. The velocity field for unsteady incompressible fluid flow mixed with 
magnetic in presence of pressure gradient and perpendicularly applied magnetic field in a cylindrical coordinate 
system ( r, θ , z ) is defined  as9,43:

Replacing uz by u, The fluid motion equations for incompressible Brinkman type fluid flow are:

Brinkman type fluid is modeled by the constitutive relation given as:

where, I is called identity tensor, and:

We derive the following governing equations in components form as a result of our simplification:

the pressure gradient is taken in the following oscillating  form44:

Incorporating Eq. (10) in Eq. (9), we get

KN
ρ

(

up(r, t)− u(r, t)
)

 indicates the force due to the relative motion of fluid and magnetic particles.
For magnetic particles, the momentum equation  is45:

m is the mass of magnetic particles.
The equation for energy and mass concentration is as  follows46:

(1)

�∇ × �E = −∂ �B1
∂t

,

div �B1 = 0,

�∇ × �B1 = µ0�J ,



















,

(2)�J = σ0
(

�E + ⇀

V ×�B
)

,

(3)
⇀

F em = �J × �B = σ0
(

�E + ⇀

V ×�B
)

× �B = −σB02u(r, t)
⇀

k .

(4)�V = uz(r, t)�k.

(5)∇ · �V = 0.

(6)ρ
∂ �V
∂t

+ ρ
( �V .∇

) �V = div T+ (J × B− I0).

(7)T = −PI+ µA1

(8)A1 = L + L
t , and L = grad( �V).

(9)

∂u(r, t)

∂t
+ βu(r, t) = − 1

ρ

∂p

∂z
+ ν

�

∂2u(r, t)

∂r2
+ 1

r

∂u(r, t)

∂r

�

+KN

ρ

�

up(r, t)− u(r, t)
�

+ gβT (T − T∞)+ gβC(C − C∞)− 1

ρ
σB02u(r, t)















,

(10)−∂p

∂z
= �0+ �1 cos(ωt)

(11)

∂u(r, t)

∂t
+ βu(r, t) = 1

ρ
(�0+ �1 cos(ωt))+ ν

�

∂2u(r, t)

∂r2
+ 1

r

∂u(r, t)

∂r

�

+KN

ρ

�

up(r, t)− u(r, t)
�

+ gβT (T − T∞)+ gβC(C − C∞)− 1

ρ
σB20u(r, t)















,

(12)m
∂up(r, t)

∂t
= K

(

u(r, t)− up(r, t)
)

,

(13)ρcp
∂T

∂t
= k

(

∂2T

∂r2
+ 1

r

∂T

∂r

)

, t > 0, r ∈ (0, r0)
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Subjected to the following initial and boundary conditions

Introducing the dimensionless variables

The given dimensionless equations obtained

where, Pr = µ cp
k , Sc = ν

D ,
Subjected to the following IC and BCs:

where

Taking the Caputo time fractional derivative of Eqs. (17) to (20) we obtain:

(14)
∂C

∂t
= D

(

∂
2
C

∂r2
+ 1

r

∂C

∂r

)

, t > 0, r ∈ (0, r0)

(15)

u(r, 0) = 0, up(r, 0) = 0, T(r, 0) = T∞, C(r, 0) = C∞

u(r0, t) = H(t)u0, up(r0, t) = H(t)u0

�

1− e−
K
m t
�

,

T(r0, t) = Tw , C(r0, t) = Cw,
∂u

∂r

�

�

�

�

r=0

= 0























,

(16)

(17)

(18)
∂g(ξ , τ)

∂τ
= Pm

(

f (ξ , τ)− g(ξ , τ)
)

,

(19)
∂�(ξ , τ)

∂τ
= 1

Pr

(

∂2�(r1, τ)

∂ξ2
+ 1

ξ

∂�(ξ , τ)

∂ξ

)

,

(20)
∂�(ξ , τ)

∂τ
= 1

Sc

(

∂2�(r1, τ)

∂�2
+ 1

ξ

∂φ(ξ , τ)

∂ξ

)

,

(21)

f (ξ , 0) = 0, g(ξ , 0) = 0, �(ξ , 0) = 0, �(ξ , 0) = 0,

f (1, τ) = 1, g(1, τ) =
�

1− e−bt
�

, �(1, t) = 1, �(1, t) = 1,

∂f (ξ , τ)

∂ξ

�

�

�

�

ξ=0

= 0,























,
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Pc = KNr20
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, M0 = M − β1, Pm = Kr20
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, β1 = βr20
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,
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where, Definition of Caputo time fractional derivative is as  follows47:

The solution of the problem
In order to get the solutions for velocity field, Temperature field, and concentration profile, FHT and LT are 
utilized defined as  under48,49:

where J0(εn) is Bessel’s function of the first kind of order zero. εn are positive roots of equation J0(x) = 0.

Temperature field calculation. Equations derived by applying LT to Eqs. (25) and (21) are:

�(ξ , ℓ) of is Laplace transform of �(ξ , t) , and ℓ is called the transformation variable.
Equations derived by applying FHT to Eq. (29) and substituting values from Eq. (30), are as follows:

where ε
2
1n
Pr = a1.

�H (ε1n, ℓ) is the HT of �(r, ℓ) simplified form of Eq. (31) is:

Applying inverse Laplace transform by using Lorenzo and Hartley’s Rχ ,υ(−γ ∗,ℑ)  functions50 to Eq. (32)

where

Taking the inverse HT of Eq. (26), the obtained equation is:

Calculation fluid concentration. Taking Laplace transform to Eqs. (27) and (21) obtained equations are:

(25)Dα
t �(ξ , τ) = 1

Pr
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∂2�(ξ , τ)

∂ξ
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∂�(ξ , τ)

∂ξ
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(26)Dα
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∂ξ
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,

(27)Dα
t f (r, t) =























1
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t
�

0

f /(τ )

(t − τ)α
d(τ ); 0 < α < 1,

∂f (t)

∂t
α = 1.

(28)

L{f (r, t)}(ℓ) = f (ℓ) =
∞
�

0

f (r, t)e−ℓtdt,

H{f (r, ℓ)}(εn) = f H(εn, ℓ) =
1

�

0

rf (r, ℓ)J0(rεn)dr.



































(29)ℓα�(ξ , ℓ) = 1
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(

d2�(ξ , ℓ)
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(30)�(1, ℓ) = 1

ℓ
,

(31)�H (ε1n, ℓ) =
ε1n J(ε1n)
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�(ξ , ℓ) is Laplace transform of �(ξ , t), where ℓ denotes transformation variable.
The equations derived by applying FHT to Eq. (28) and substituting results from Eq. (37) are::

where ε
2
1n
Sc = a2,

�(ε1n, ℓ) shows Hankel transform of �(r, ℓ) . Equation (38) reduces to:

Lorenzo and Hartley’s Rχ ,υ(−�
∗,ℑ)  functions50 to Eq. (39) to get inverse LT:

Taking the inverse Henkel transform of Eq. (40), we obtain:

Calculation for blood flow. Taking LT of Eqs. (23) and (24) we obtain:

Applying the HT to Eqs. (42) and (43) we get:

where,

Simplifying Eq. (44) leads to:

where,

(36)ℓα�(ξ , ℓ) = 1

Sc

(

d2�(ξ , ℓ)

dξ2
+ 1

ξ

d�(ξ , ℓ)

dξ

)

,

(37)�(1, ℓ) = 1

ℓ
,

(38)�H (ε1n, ℓ) =
ε1nJ(ε1n)

Sc

1

ℓ(ℓα + a2)
,

(39)�H(ε1n, ℓ) =
J1(ε1n)

ε1n

1

ℓ
− J1(ε1n)

ε1n

ℓ−(1−α)

ℓα + a2
,

(40)�H(ε1n, τ) =
J1(ε1n)

ε1n
− J1(ε1n)

ε1n
R(α,1−α)(τ ,−a2),

(41)�(ξ , τ) = 1− 2

∞
∑

n=1

J0(ξε1n)

r1n J1(ε1n)
R(α,1−α)(−a2, τ),

(42)

(43)g(ξ , ℓ) = f (ξ , ℓ)

Pm ℓα + 1
,

(44)

(45)gH
(

ε1n, q
)

= 1

Pm

(

1

ℓα + 1
Pm

)

f H(ε1n, ℓ),

(46)

1
�

0

�

∂2f (ξ , ℓ)

∂ξ
+ 1

ξ

∂f (ξ , ℓ)

∂ξ

�

dr1 =− ε21n.f H (r1n, ℓ)+ ε1n J1(ε1n)f (1, ℓ),

f (1, ℓ) = 1

ℓ
,























,

(47)
(

ℓ2α + ϒ0ℓ
α + ϒ1

ℓα +ϒ2

)

f H (ε1n, ℓ) = F0n(ℓ)+
J1(ε1n)

ℓ
+ Gr�H (ε1n, ℓ)+ Gm�H(ε1n, ℓ),
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After simplification Eq. (38) reduces to:

Equation (39) can be written as:

where

(48)

(49)f H (ε1n, ℓ) =



































ε1n J1(ε1n)

ℓ
+ F0n(ℓ)

J1(ε1n)

ε1n
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��

1

ℓ
− ℓα−1
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�
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�
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��
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ℓ
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�

ℓα +ϒ2

(ℓα +ϒ3)(ℓα +ϒ4)
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,

(50)
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Applying inverse LT to Eq. (51) we get:

where

is Robotnov and Hartley’s  function50

Applying inverse FHT of Eq. (32) reduces to:

where

Limiting cases. Case-I: taking α = 1.
When α → 1 , the Robotnov and Hartley’s Lorenzo and Hartley’s and function  become51

(51)

ϒ3 = ϒ0+
√
ϒ0− 4ϒ1

2
, ϒ4 = ϒ0−

√
ϒ0− 4ϒ1

2
, ϒ5 = ϒ3+ϒ4,

ϒ6 = ϒ3ϒ4, ϒ7 = ε21n −ϒ5, ϒ8 = ε21nϒ2−ϒ6,

℘0 = ϒ8−ϒ7ϒ3−ϒ2
3

ϒ3−ϒ4
, ℘1 = −ϒ8+ϒ7ϒ4+ϒ2

4

(ϒ3−ϒ4)
, ℘2 = ϒ1−ϒ2

ϒ3−ϒ4
,

℘3 = ϒ2−ϒ4

ϒ3−ϒ4
, ℘4 = a1

a1−ϒ3
, v℘5 = ϒ3

a1−ϒ3
,

℘6 = a1

a1−ϒ4
, ℘7 = ϒ4
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,
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a2−ϒ3
, ℘13 = a2

a2−ϒ4
, ℘14 = ϒ4

a2−ϒ4
,

℘15 = ℘11+ ℘13, ℘16 = ℘2+ ℘12, ℘17 = ℘3+ ℘14,











































































































,

(52)fH (ε1n, τ) =
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− J1(ε1n)

ε1n



















1+ N1 Rα,−1(−ϒ3, τ)+ N2 Rα,−1(−ϒ4, τ)
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Equations (27), (33), (43) and (44) reduces to

where,

The limiting solution (57) and (58) is quite in agreement with the published work Shah et al.27.
Case-II: For Gm = 0, the obtained general solution (54) reduces to

The limiting solution (62) is quite in agreement with the published work Ali et al. 52.

Graphical results and discussion
The exact solutions for the generalized blood flow mixed with magnetic particle with joint effect of heat and mass 
transport are derived in this study. Various graphs are sketched to examine the flow behavior by taking fixed value 
for ωt = 5π

8 ,A0 = 0.5,Gr = 3.2× 102,A1 = 0.5, 39. Figures 2, 3, 4, 5 indicates the impacts of a non-integer order 
parameter α on temperature, concentration, and velocity field. Figure 2 illustrates the variation in fluid tempera-
ture for various values of α. Distinct curves for temperature field are obtained at a fixed time which is termed as 
the memory effect. This behavior cannot be obtained using classical derivatives. The obtained curves will help 
the experimentalists to best fit the curve with the curve drawn from the experimental data. Moreover, when the 
body temperature is normal i.e. at 310K0, D = 1.6× 10−4mm2s−1, k = 0.52 Jm−1 sec−1 K−1, ρ = 1050Kg/m3, 
µ = 3.2548× 10−3Kg m−1. sec−1 cp = 3617JKg−1K−1, For fixed value of Pr = 22.6430, despite of getting curves 
due to α, a significant change in the behavior of temperature gradient is also noticed with the variation of time. 
The influence of α on concentration profile is illustrated through Fig. 3a, b by taking Sc = 1.9× 10453. In the 
graph time is also varied along α. It is worth noting to observe that the behavior of fractional parameter is quite 
opposite for larger time (τ > 1) as compared to smaller time (τ < 1). It is expected that for (τ = 1) , the different 
integral curves will overlap each other. Further more, Fig. 3a, b shows various integral curves(solutions), which 
cannot be described by the non fractional model. These different solutions may provide space for the experimen-
talists to best fit their real data with one of these curves. Figures 4 and 5 are sketched for α ∈ (0, 1) and α = 1, to 
investigate the effects on fluid and particle velocity. Effect of time variation is also taken into account. Different 
curves obtained for fractional model solution and experimentalists can find the curve which reasonably good 
fits to the given data. It is also noticed that for τ > 1 , increased values of memory parameter, both the fluid and 
particles velocity increased and decreased for τ < 1 . Figure 6 highlights the impact of magnetic parameter on 
both velocity profiles. It has been noticed that increased values of a magnetic parameter causes a significant 
decrease in fluid’s velocity. The graph clearly demonstrates that blood and particle velocity reaches its peak in 
the center and then steadily falls. This is because an increase in the magnetic parameter escalates the resistive 
forces that dominate fluid motion, decelerating the fluid and particle velocity. Anwar et al.53 reported a similar 
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Figure 2.  Impact of α on temperature field for long and short time.

Figure 3.  Impact of α on concentration profile for long and short time. M = 0.5,Pm = 0.5,α = 0.5,

Gm = 0.5,M = 0.5,Pc = 0.5.

Figure 4.  Effect of  α on blood and particle velocity for τ > 1 . Pm = 0.8,β = 0.5,M = 0.5,Pc = 0.5,Gm = 0.5.
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pattern of behavior in their investigation. These findings reveal that the intensity of the external magnetic field 
can be used to alter blood velocity. It is important to have a suitable external magnetic field in order to drive 
magnetic particles to the tumor site. Figure 7 marks the change in the blood and particle motion by variation 
in the Brinkman type fluid parameter β . As can be seen in the diagram, fluid and particle motion reduces as a 
result of an increase in β . Physically, this is correct because the fluid’s drag forces dominate and the fluid velocity 
 falls7. It is obvious from the obtained result that, the adequate use of magnetic field intensity can be helpful in 
order to regulate the blood flow in medical field. Figures 8 and 9 are sketched to analyze the influence of parti-
cle mass parameter and particle concentration parameter on the blood and particle velocity. Same decreasing 
trend for velocities is noticed when the values of  Pm and Pc are raised. The physics behind this is when particle 
concentration is increased the collisions of the particles also increases, due to this behavior they are dispersed 
from streamlines. As a result deviation from dynamic equilibrium state induces a relative velocity between the 
particles and the blood that generates additional energy dissipation and consequently it results in an effective 
 viscosity54, consequently, fluid grows denser and thicker, slowing the flow. The variation in the values of Pm, 
has also resulted the same behavior as observed for Pc. During their research, Saqib et al.9 and Nandkeolyar and 
 Das55 also reported this tendency .This result shows that by adjusting the values of the Pm and Pc, successful 
drug delivery to the tumor cite can be made possible. The influence of the Gm on blood and particle motion is 
seen in Fig. 10 the obtained graph shows that both the velocities of blood and magnetic particles reduce due to 
an increase in mass Grashoff number.

Figure 5.  Effect of α on blood and particle velocity for τ < 1.Pm = 0.8,β = 0.5,M = 0.5,Pc = 0.5,Gm = 0.5.

Figure 6.  Effect of distinct values of M on blood and particle velocity. M = 0.5,Pm = 0.5,α = 0.5,

Gm = 0.5,β = 0.5,Pc = 0.5.
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Figure 7.  Effect of distinct values of β on blood and particle velocity. M = 0.5,Pm = 0.5,α = 0.5,

Gm = 0.5,M = 0.5,Pc = 0.5.

Figure 8.  Effect of variation in Pc on blood and particle velocity. M = 0.5,Pm = 0.5,α = 0.5,

Gm = 0.5,M = 0.5,β = 0.5.

Figure 9.  Effect of variation in Pm on blood and particle velocity. M = 0.5,Pc = 0.5,α = 0.5,

Gm = 0.5,M = 0.5,β = 0.5.
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Conclusion
The present study briefly examined the MHD blood flow in a heated cylindrical tube. Magnetic particles are also 
added to the blood stream. The effects of heat and mass transfer on the flow are observed.The problem is modeled 
via fractional derivative. The following are some final results based on the current study:

• Caputo time fractional derivative is employed to get the solution to the problem.
• The exact solution has been obtained using Laplace and Finite Hankel transform.
• The effects of memory carrying parameter are observed.it is noticed that memory parameter gives different 

curves for temperature, concentration, and velocity profile of blood at constant time, but dual behavior has 
been observed for a long and short period of time.

• The effects of vertically applied magnetic field and different parameter has been discussed. Moreover, it has 
seen that magnetic field has a similar impact on blood and attractive particles velocities.

• By applying Brinkman fluid parameter, both the velocity of particles and fluid decreases.
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