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The environmental soot and carbon blacks (CBs) cause many diseases in humans, but 
their underlying mechanisms of toxicity are still poorly understood. Both are formed after 
the incomplete combustion of hydrocarbons but differ in their constituents and percent 
carbon contents. For the first time, “Sir Percival Pott” described soot as a carcinogen, which 
was subsequently confirmed by many others. The existing data suggest three main types 
of diseases due to soot and CB exposures: cancer, respiratory diseases, and cardiovas-
cular dysfunctions. Experimental models revealed the involvement of oxidative stress, DNA 
methylation, formation of DNA adducts, and Aryl hydrocarbon receptor activation as the key  
mechanisms of soot- and CB-induced cancers. Metals including Si, Fe, Mn, Ti, and Co in soot 
also contribute in the reactive oxygen species (ROS)-mediated DNA damage. Mechanistically, 
ROS-induced DNA damage is further enhanced by eosinophils and neutrophils via halide  
(Cl− and Br−) dependent DNA adducts formation. The activation of pulmonary dendritic cells,  
T helper type 2 cells, and mast cells is crucial mediators in the pathology of soot- or CB-induced 
respiratory disease. Polyunsaturated fatty acids (PUFAs) were also found to modulate T cells 
functions in respiratory diseases. Particularly, telomerase reverse transcriptase was found to 
play the critical role in soot- and CB-induced cardiovascular dysfunctions. In this review, we 
propose integrated mechanisms of soot- and CB-induced toxicity emphasizing the role of 
inflammatory mediators and oxidative stress. We also suggest use of antioxidants and PUFAs 
as protective strategies against soot- and CB-induced disorders.

Keywords: soot (black carbon), carbon black, inflammation, oxidative stress, polyunsaturated fatty acids, air 
pollution

Abbreviations: PM, particulate matter; DEP, diesel exhaust particles; ROS, reactive oxygen species; TNF-α, tumor necrosis 
factor-alpha; 8-OHdG, 8-hydroxy-2′-deoxyguanosine; iNKT, invariant natural killer T cells; IL-1, interleukin-1; AD, aerody-
namic diameter; ufBC, ultrafine black carbon; PAH, polycyclic aromatic hydrocarbons; CAD, coronary artery disease; CB, 
carbon black; COPD, coronary occlusion pulmonary disease; Cp, ceruloplasmin; VEGF, vascular endothelial growth factor; 
ANS, autonomic nerves system; MMP-9, matrix metalloproteases-9; IARC, International Agency for Research on Cancer; 
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iNTRODUCTiON

The environmental soots [black carbon (BC)] and carbon blacks 
(CBs) cause many health issues in humans and animals (1, 2). 
The terms soot and CB have been used interchangeably but, both 
are physically and chemically distinct entities (3–5). Soots are 
considered as unwanted byproducts derived from incomplete 
combustion of carbon-containing materials (3–5). In contrast, 
the CBs are manufactured under the controlled conditions in 
the rubber, printing and painting industries for commercial use 
(3–5). Soot is a powdery mass of fine black particles (6–8). It con-
sists of impure carbon, formed after the incomplete combustion 
of hydrocarbons (9). The main source of environmental soot is 
the combustion of fossil-based fuels and biomass burning at the 
Earth’s surface (10). The other examples of soot may include coal, 
charred wood, petroleum coke, cenospheres, and tars (11, 12). To 
a smaller extent, quartz/halogen bulbs with settled dust, cooking, 
oil lamps, smoking of plant matter, fireplaces, candles, house 
fires, furnaces, and local field burning also contribute to the soot 
production (13). Soot particles range from about 10 nm to 1 mm 
in size (14–17). The relative amount of elemental carbon inside 
soot is considered to be less than 60% of the total mass of particle 
(4, 7, 18). Among hydrocarbons, the poly aromatic hydrocarbons 
(PAHs) are the main carcinogenic compound in the soot (19–21). 
At elemental level, the most characterized diesel soot contains 
carbon (as a main component), hydrogen, oxygen, sulfur, and 
trace amount of metals (22–24). The major component of soot, 
the BC, causes premature human mortality and disability (25). 
Furthermore, changes in the chemical composition of soot are 
accomplished due to heterogeneous oxidation reactions in the 
environment (26–28). From the regional point of view, developed 
nations were the biggest source of soot (BC) emissions but at the 
present scenario, soot emissions are majorly from developing 
countries (29, 30). It is noted that United States emits about 6.1% 
of the world’s soot (31). Notably, the biggest amount of soot comes 
from Latin America, Asia, and Africa (31, 32). India and China 
alone may account around 25–35% of total global soot emissions 
(31–34). The impact of soot on the human health and to the entire 
environment depends on its distribution and its distance from the 
source of origin (35–38). Soot from vehicle exhausts comes from 
combustion of diesel, gasoline, and other petroleum-based fuels 
materials that contains carbonaceous particles, having polycyclic 
aromatic hydrocarbons (PAHs) attached to it (21). Typically, die-
sel exhaust particles (DEP) are made up of carbon core with some 
volatile and semi-volatile (such as H2SO4 and organics) compo-
nents adsorbed on it (9, 39). It has been believed that the vehicle 
exhaust contributes to approximately 50% of urban particulate 
matter (PM) (40). The special attention is given to the smaller 
fractions of PM (PM 2.5 and PM 0.1) because these particles can 
penetrate deep into the bronchiolar parts of the lungs and cause 
various health hazards (41).

In contrast to soot (BC), CB is generated by the partial com-
bustion of heavy petroleum materials such as coal tar, ethylene 
cracking tar, and FCC tar (42). The common subtypes of CB are 
furnace black, acetylene black, lamp black, channel black, and 
thermal black (3, 43). CB is also known by the trade names such 
as Printex-90, Printex-140, Printex-G, and Lampblack-101 (3, 

43). Around 95% of CB production is achieved by the oil furnace 
process (3, 44, 45). In this process, the heavy aromatic petroleum 
products are pyrolyzed at the very high temperatures (around 
1,400–1,800°C) to make the CB particles and tail gas (e.g., carbon 
monoxide, hydrogen, and steam) (46, 47). This process is con-
ducted as a continuous process in a closed reactor. It is interested 
to know that the production is highly controlled in the oil furnace 
process, such that various CBs with the differing properties can be 
made (3, 46). The amount of elemental carbon is greater than 97% 
in CB that is arranged as aciniform-like structures. CB has widely 
been used to produce both in vitro and animal models of soot 
toxicology and will be discussed in detail in latter sections of this 
article (3–5). CB is also dissimilar to environmental soot espe-
cially due to its higher surface area to volume ratio as well as very 
less (less bioavailable) polycyclic aromatic hydrocarbon contents 
(3). Importantly, both soot and CB mainly affect cardiovascular 
system, respiratory system, and cause different kinds of cancer 
(Figure  1) (41). Therefore, it is important to know soot- and 
CB-induced toxicity in these major disease areas.

HiSTORiCAL PeRSPeCTive OF SOOT- 
AND CB-iNDUCeD HeALTH eFFeCTS

Historically for the first time, Sir Percival Pott, a London sur-
geon, in 1775 recognized that chimney sweeps were particularly 
susceptible to develop scrotal cancer. He attributed this disease 
to the soot exposure to workers (Figure  2) (48, 49). Later he 
described soot, as the first environmental factor to cause cancer. 
This linkage started the chain of events that led to the develop-
ment of first experimental model of cancer and the synthesis of 
first carcinogen (49, 50). Later, Earle and Paget confirmed soot, 
as a general human skin carcinogen (48, 51). In 1936, the proof 
indicating soot as a carcinogen was first given by the findings of 
Kuroda and Kawahata (50, 51). In the year of 1969, Rosmanith 
et  al. reported anthracofibrosis (characterized by the luminal 
narrowing and black pigmentation in the mucosa) in the workers 
of CB industry (52). Further in 1983, Riboli et al. have reported 
the mortality from lung cancer in the individuals working in the 
manufacturing plant of acetylene and phthalic anhydride, due to 
soot exposure (53). Subsequently, Snow found that the inhalation 
of CB leads to its accumulation into the larynx and trachea result-
ing into multiple disease situations (54). Kandt and Biendara (55) 
observed the appearance of chronic rhinitis more frequently in 
soot-exposed workers than in unexposed persons (55). Beck et al. 
(56) further confirmed that the soot exposure leads to causa-
tion of cancer (56). In 1987, Bourguet et al. considered soot as 
a major factor for cancer of skin in the persons working in the 
tire and rubber industry (57). Another study by Parent et al. was 
conducted in 1996 to find a relationship between exposure of CB 
and lung cancer risk assessment in a population-based study in 
Montreal, QC, Canada. This study provided additional support 
for the fact that exposure to CB leads toward the development of 
lung cancer (58). In 1994, Szozda described frequent occurrence 
of chronic bronchitis and ventilation disturbances in persons 
exposed to the BC (59). Recently, Parent et al. (60) demonstrated 
an association between esophageal cancer and in occupational 
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FiGURe 1 | The major health problems due to soot and carbon black (CB). Figure shows soot- and CB-induced major health problems. The first hazard is cancer 
that is caused by DNA adducts formation, DNA strands breaks, or mutation in genes. Second is the respiratory toxicity caused by dysfunctional immune response 
involving activation of eosinophils and mast cells. The third is cardiovascular toxicology that also includes the coronary heart disease. Apart from these, soot also 
causes damage to the different organs of the body by some unknown mechanisms.
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exposures of sulfuric acid and CB (60). These evidences in the 
history clearly show the association of soot and its constituents to 
human health, but its exact mechanism of toxicity remains elusive 
and need further experimentation, both at epidemiological and 
animals levels (61). Nevertheless in the last decade, there is a 
significant increase in the number of soot and CB toxicity studies 
that will be discussed in detail (Figure 3).

MAJOR DiSeASeS AND RARe 
PATHOLOGiCAL MANiFeSTATiONS DUe 
TO SOOT AND CB

Over three centuries, the linkages of soot and CB with differ-
ent diseases have been observed (25). Soot and CB cause many 
diseases but only three are understood to some details (Figure 1). 
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FiGURe 3 | Number of publication found in PubMed related to soot. 
Histograms represent decade wise publications in the area of soot toxicity, 
collected from PubMed search using the word soot.

FiGURe 2 | Historical perspective of soot-induced health hazards. 
Diagrammatic representation of major breakthrough studies due to soot and 
carbon black exposure (62). The left panel shows the pathological 
manifestation and right panel shows the corresponding year of study.
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The more complex disease associated with the soot and CB is the 
occurrence of cancer. Soot- and CB-induced cancers are localized 
and systemic in nature (34). The second major health issue with 
soot and CB is respiratory disorders, which sometimes can be very 
severe. The third one is the cardiovascular dysfunctions. Apart 
from these diseases, some unique pathological observations have 
also been seen in response to soot or CB exposures (Table  1).  
In a study, prenatal exposure of pritex-90 caused sexual and 
neuroinflammatory changes in mice (63). Surprisingly, lung 
exposure of diesel engine exhaust significantly influenced pro-
inflammatory markers of the rat brain (64). In another study, 
Printex-90 lowered the sperm production (65). Similarly, carbon 
nanoparticles were found to adversely affect the male reproduc-
tive system of mice (66). Recently, it was known that CB exerts 
developmental toxicity by the immune activation in the male 
offspring of mice (67). Soot from a transformer fire was also 
seen to induce salivary gland duct metaplasia in guinea pigs (68). 
These studies show the involvement of systemic response of the 
body in the development of different pathologies that further 
need extensive exploration.

Although soot and CB cause similar effects, but there is distinc-
tions in their effects from the structure and composition point of 
view (71). It has been observed that the CB exposure in some studies 
has lees carcinogenic effect than the environmental soot exposure 
(Table 2) (21). It is believed that poly aromatic hydrocarbons exist in 
the CB are not biologically accessible as compared to the soot (BC) 
(46, 71, 72). As CB is formed under the controlled conditions, the 
bound poly aromatic hydrocarbons are less bioavailable compared 
to soot (BC). In the next sections of this article, three major diseases 
will be discussed in detail. At the beginning of each section, the 
epidemiologic studies and clinical manifestations will be discussed. 
Subsequently, findings from the animal models will be described.

THe PATHOLOGiCAL MeCHANiSMS OF 
CANCeR DUe TO SOOT AND CBs

As introduced in the previous section, soot is the first known 
carcinogen responsible for the development of different types of 
cancer in humans and experimental models. These cancers may 
have local or distal appearance from the site of exposure (48, 50, 
77). It was noted that despite the efforts of 200  years to control 
the safety in the soot-related work, chimney sweeps still show 
increased mortality from cancer (78). In line of this, a case report 
from Gerber described that the development of penis carcinoma in 
chimney sweeps was caused due to soot exposure (79). In Swedish 
chimney sweeps, the cancer excess was also reported due to soot 
and asbestos exposure (80). Soot is absorbed and transported to 
blood by airway epithelium and majority of the cancers in the 
distal body parts may be accompanied due to this mechanism of 
soot transportation (81). A population-based study showed that, 
occupational exposures to polycyclic aromatic hydrocarbons, a 
component of soot is responsible for respiratory and urinary tract 
cancers (82). Another case–control study in rubber manufacturing 
industry showed CB as a major contributor to the early cancer of 
skin (57). Subsequently, it became clear that exposure to polycyclic 
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TABLe 2 | Examples of studies with carbon black (CB) where it fails to cause pathology.

Key findings of study Associated disease CB used Reference

Occupational exposure to CB did not experience  
any detectable excess risk of lung cancer

Cancer CB (73)

Aryl hydrocarbon receptor activation was observed  
by particulate matter, which was responsible for the  
antiapoptotic effects, however, CB fails to do so

Cancer CB (74)

In utero exposure of nano-sized CB did not induce  
tandem repeat mutations in germ cells

Cancer CB (69)

The CB exposure did not induce acute phase response  
in the liver (the production of serum amyloid A proteins,  
Sap, Saa1, Saa3)

Acute phage response serum  
amyloid

CB (66)

Intratracheally administration of CB did not aggravate  
elastase-induced pulmonary emphysema in rats

Pulmonary emphysema CB (75)

CB did not induce impairment of NO-dependent  
relaxation in intralobar pulmonary arteries

Cardiovascular disease (relaxation  
of arteries)

CB (76)

TABLe 1 | Soot- and carbon black (CB)-induced special pathological manifestations in different experimental models.

Form of soot/CB Concentration/dose 
used

Animal 
models

Parameters studied Results and interpretation Reference

Soot from a 
transformer fire

46.3 ppm for 90 days Guinea pig Salivary gland morphology Salivary gland duct metaplasia (68)

Diesel engine soot Nasal exposure Rat Inflammatory mediators in  
the brain

Soot-induced inflammation is liked  
with brain pathology

(64)
(69)

CB (Printex-90) 67 μg/animal Female mice Expanded simple tandem repeat 
(ESTR) germline mutation rates

ESTR mutation rates were not  
statistically different

(63)

CB (Printex-90) 268 µg/animal Female mice Sexual development and  
neurofunction

Sexual development and neurofunction  
were altered

(65)

CB 0.1 mg/mouse for 10 
times every week

Mice Male reproductive system Serum testosterone levels were elevated (66)

CB (Printex-90) NA Mice Sperm production Showed lowered sperm production (70)
CB or diesel exhaust 
particles

300 µg/m−3 Mice Heart rate (HR) HR is significantly decreased
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aromatic hydrocarbons (PAHs) in diesel soot are responsible in the 
development of prostate cancer (83). Furthermore, CB nanoparti-
cle exposure-mediated human health risk was confirmed by gene 
expression profiling (84). Contradictory to the other studies, the 
International Agency for Research on Cancer (IARC) in Montreal, 
QC, Canada reported that the subjects with occupational exposure 
to titanium dioxide, industrial talc, CB, and cosmetic talc did not 
experience any detectable excess risk of lung cancer (85). However, 
this study was limited to the lung pathology alone, and no other 
organs were investigated (85).

In addition to the above described evidences, experimental 
models also provided data to further support the cancer causing 
properties of soot and CB (Figure 4). Study conducted on dogs 
demonstrated that the absorption of soot through alveolar epithe-
lium is means of entry to the circulation of un-metabolized PAHs 
(86). It has been shown in rat model that soot particle interactions 
with lung tissue is responsible for morphological changes in the 
lungs (87). The diesel exhaust (DP) and CB when regularly inhaled 
by rats showed toxic and pulmonary carcinogenic properties (88, 
89). In vitro study on the carcinogenic potency of CB confirmed 
the genotoxic basis of soot toxicity (90).

At molecular level, DNA methylation changes occur after 
the exposure of ambient particulate pollutants (PM, BC) with 

aerodynamic diameter ≤2.5 µm [PM2.5], which in turn alter the 
expression profile of genes toward the development of cancer 
(Figure 4) (91). Interestingly, polycyclic aromatic hydrocarbons 
can alter the histone modification and therefore are responsible 
for epigenetic effects (92, 93). Another study reported that soot 
and CB cause genotoxic effects by making single- and double-
stranded DNA breaks (92, 93). DEP enhanced nuclear factor 
kappa B (NF-kB) DNA-binding activity along with alteration 
profile of c-FOS proto-oncogene expression in cultured human 
epithelial cells, indicating the initiation of cancer (94). Notably, 
butadiene soot (a PAH-containing soot) exposure increases the 
of matrix metalloproteases-9 (MMP-9) protein expression in 
prostate cancer cell line. This indicates that hydrocarbons can 
also stimulate MMP-9 protein secretion that contributes in the 
development of cancer via inflammatory pathway (95). It was 
found that gene expression modulation occurs in response to 
combustion-derived nano-sized particles in A549 cells (96). This 
study demonstrated that several radiation-responsive genes such 
as GADD45beta and CDKN1A as well as NF-kappa B-dependent 
genes are altered due to the exposure of nano-sized combustion-
derived particles (96).

The ability of soot particles to cause mutations has long been 
debated, but recent reports show that soot particles indeed can 
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FiGURe 4 | The proposed mechanism of soot- and carbon black (CB)-induced toxicity. The toxicological mechanisms of soot or CB can be theoretically classified 
into two types. The one is direct toxicity or localized damage, and the other is systemic toxicity. In direct toxicity, soot/CB comes into contact with lung epithelial 
cells, produces oxidative stress by affecting mitochondria, and upregulates calcium influx in the cells. The soot-induced oxidative stress initiates the cell survival or 
death mechanisms such as autophagy and apoptosis. Soot may lead to cancer development by interruption of autophagic and apoptotic cell death. Soot or CB 
also induces DNA methylation, DNA adducts formation, Aryl hydrocarbon receptor (AhR) activation, DNA double-strand breaks, and failure to DNA repair 
mechanisms, resulting in cancer. In systemic toxicity, soot triggers an inflammatory response in lungs and causes various symptoms. Due to soot or CB exposure, 
lung epithelial cells secrete inflammatory mediators (chemokine and cytokines), which further amplify the immune response. Immune cells produce interleukin-13 
(IL-13) and transforming growth factor beta (TGF-beta) which activate fibroblast cells to acquire fibrotic phenotype (production and accumulations of fibrous proteins 
in extracellular space). Monocytes and macrophage produce a large number of matrix metalloproteases (MMPs) and other toxic mediators that alter many 
physiologic functions including brain and cardiovascular systems. Serum amyloid A (SAA) produced in response to soot causes problems to the liver and kidney.
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cause DNA mutations (97). Soot particles from the 1991 oil fires 
of Kuwait desert were studied for its property to induce genetic 
effects in in vitro conditions (98). In this study, dose-dependent 
increase was seen for both sister chromatids exchanges in 
peripheral blood lymphocytes. Also, a mutation at the hprt locus 
was observed in the metabolically competent AHH-1 cell line 
(human lymphoblast cell line) in response to soot (98). It was 
further confirmed in an in vitro study of cultured cells that the 
soot causes the mutation in the DNA and induces genotoxic 
effect (97). CBs also induced genotoxic effects by damaging 
DNA in presence of magnetite (Fe3O4) and polycyclic aromatic 
hydrocarbons (PAHs) (99). However, in utero exposure of nano-
sized CB (Printex-90) did not cause mutations (tandem repeat) 
in germ cells (69). The one of the crucial mechanisms that causes 

DNA modification is the DNA adducts formation due to soot 
or CB exposure (100, 101). The chemical modification of DNA 
occurs when, polycyclic aromatic hydrocarbons (PAHs) reacts 
to the DNA molecule and form DNA adducts. In line of this, 
an important study described that chronic inhalation of diesel 
emissions and CB caused DNA adducts formation in the rat lungs 
(102). The formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine 
in the DNA of rat lungs following sub-chronic exposure of CB 
(Printex-90) was also found (103–105). Subsequently, it was 
elucidated that soot and/or CB exposure induced oxidative stress 
in associated with the formation of DNA adducts via a failure of 
DNA repair mechanism (106). Mechanistically, it was observed 
that reactive oxygen species (ROS) enhance DNA damage by 
inflammatory cells such as eosinophils and neutrophils via the 
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helide (Cl− and Br−)-dependent formation of DNA adducts and 
thus enhancement of cancer (107). It is already evident that 
sulfate (a semi-volatile component) present in the soot particles 
directly induces oxidative stress in the cells (108, 109). It is also 
found that sulfate in DEP may involve in the tissue remodeling 
and fibrosis (110). Another important mechanism that may play 
a key role at molecular level is the aryl hydrocarbon receptor 
(AhR) activation and DNA damage (101, 104, 111, 112). It was 
evident that soot nanoparticles significantly upregulate the AhR 
activation in the lungs, which may subsequently influence the 
oxidative damage and inflammation (113, 114). Soot also binds 
with the AhR receptor and may affect at cells and organ levels 
but the mechanism of its interaction to AhR receptor is not yet 
known (115). It was found that the activation of AhR via air pol-
lutants can induce inflammation and subsequent allergic diseases 
(116). Activation of AhR induces the secretion of PDGF-BB by 
activated macrophages when exposed by DEP and stimulates 
lung fibroblast proliferation (117). Recently, it was confirmed 
that AhR activation and Nrf2 activation are the key mechanism 
in the induction of oxidative stress in response to air PM (soot) 
exposure (118). The AhR-mediated functions were also observed 
due to PM exposure, such as AhR-dependent cell proliferation 
and cytochrome P450 1A1/1B1 expression (119). The metals in 
PM2.5 were associated in the activation of AhR that subsequently 
influence the pathogenesis of infections in child (120). It was 
also observed that poly aromatic hydrocarbons found in PM are 
responsible for the AhR-mediated antiapoptotic effects where CB 
fails to do so (72, 74, 121).

It is also believed that trace amount of metal ions present in the 
soot are responsible for its toxic effects (122–124). A significant 
correlation in the metal content (Si, Fe, Mn, Ti, and Co) present 
in the ambient air samples was seen with the unregulated ROS 
formation in polymorphonuclear leukocytes (124–126). It was 
further proved that metal ions enhance the ROS formation 
capacity of ultrafine black particles both in  vivo and in  vitro 
(127). In has now been clear that metal ions present in the DEP 
are responsible for its genotoxic effects (128). A recent study 
described the estrogenic activity of soot is not related to the metal 
ion concentrations present in it (129). In soot, mainly BC and 
metal ions are responsible for the ROS generation in lung cells 
(130). Another study described that intracellular calcium ion 
formation and inflammation induced by ultrafine carbon black 
(ufCB) is not dependent on metal ions and other components. 
Collectively, sufficient amount of data support the claim that soot 
and CB are able to cause cancer via the genetic and molecular 
modifications.

THe MeCHANiSMS OF 
PATHOPHYSiOLOGY iN ReSPiRATORY 
DiSeASeS DUe TO SOOT AND CB

The respiratory epithelium of the lungs is the first tissue to get 
constant exposure with different kinds of soots and CBs present 
in the environment. Soot or CB toxicity causes the interruption 
of respiratory process by alteration in lung functions (131). 
These toxicological mechanisms may be of two kinds. The first 

mechanism is the direct contact-mediated dysfunctions of lung 
cells that include ROS generation, cell hyperplasia, cell death, 
or apoptosis of lung airway epithelium and other adjacent cells 
(Figure 4) (132). The second mechanism includes the involve-
ment of systemic immune response resulting in the development 
of tissue remodeling and fibrosis that causes problem in breathing 
and lung dysfunctions. In this section, we would discuss these 
two types of toxicities caused by soot or CB in the context of 
human clinical and animal studies.

The two respiratory diseases that are mainly reported in 
humans due to soot exposure are chronic obstructive pulmonary 
disease (COPD) and asthma (133). The pathophysiology of 
asthma involves the inflammation of airways, tissue remodeling 
and fibrosis, obstruction of airflow intermittently, and hyper 
responsiveness of bronchi (134, 135). The pathophysiology of 
COPD includes airway inflammation, mucociliary dysfunctions, 
and structural changes (136, 137). There are numerous evidences 
that support the linkage of soot or CB with asthma and COPD. A 
study reported that an early exposure to the air pollution leads to 
the development of childhood asthma (138). Ultrafine particles 
(UFPs) (soot) and carbon monoxide concentrations are associ-
ated with asthma enhancement in the urban children (139). DEP 
initiate the alveolar epithelial cell movement by alterations of 
polarity mechanisms (140). An epidemiological study reported 
that healthy subjects were affected by agriculture crop burning 
with their altered peak expiratory flow rate and pulmonary 
functions (1). The patients prone to COPD or asthma already 
exhibit preexisting oxidative stress and hence are more suscep-
tible toward soot-mediated oxidative damage. Interestingly, it is 
known that ufCB causes adverse effects via ROS and may have 
worse manifestations in these susceptible persons (141).

The evidences from animal models also supported soot- and 
CB-mediated mechanisms of toxicity. A rat model of study 
described that the flame-generated ultrafine soot increased 
the ROS and upregulated Nrf2 antioxidants in the lungs (142). 
Similar studies found that the neonatal lungs are more susceptible 
to ultrafine soot as compared to adults (143). The ultrafine soot 
also generates ROS and induces DNA damage (144). Moreover, 
CB enhanced ROS in the rat alveolar macrophages, this is an 
example where non-biodegradable components of CB can gen-
erate an immune and oxidative stress response (145). Another 
study showed excessive generation of ROS by monocytes upon 
exposure of CB (146). It is already known that increased produc-
tion of pro-inflammatory mediators are linked with the activation 
of specific transcription factors such as NF-kB, through the Ca2+ 
upregulation and ROS formation (146–148). A study suggested 
that ufCB triggers an increase in cytosolic Ca2+, possibly through 
entry of extracellular Ca2+ via the Ca2+ channels in the plasma 
membrane (146). Therefore, nanoparticles activate the opening of 
Ca2+ channels by means of ROS (146). It has now been unrevealed 
that alterations in the glutathione and superoxide dismutase activi-
ties are the key enzymatic mechanisms involved in the generation 
of oxidative stress by CB (149). CB induced ROS that involves 
lot of enzymatic reactions including ERK MAP kinase cascade 
pathway (145). NADPH quinone oxidoreductase-1 enzyme was 
also activated following DEP exposure and mediates activation 
of ROS (150). Interestingly, an antioxidant ceruloplasmin was 
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found upregulated in epithelial cells of lung due to ufCB exposure 
(151). This emphasizes that antioxidant machinery is triggered in 
response to ufCB exposure in the lung (151). Increased nitrative 
stress has also been recently reported to cause DNA damage in 
response to ufCB particles (152).

Oxidative stress produced by soot or CB is subsequently 
linked with systemic immune response (inflammation) in the 
lungs, which results in the development of asthma and other 
diseases (Figure  4) (153–155). The existing literature supports 
that the inflammation causes serious damage to the lung func-
tions by many mechanisms, most of which are not properly 
understood (156, 157). It was found that DEP were taken up by 
epithelial cells of human airway and altered cytokines production 
showing inflammation in lungs. These cytokines are known to 
cause damage to the lung functions (158). Notably, one of the 
key pathological manifestations of dysfunctional inflammatory 
response is the development of tissue remodeling and fibrosis. It 
was seen that soot triggers an inflammatory condition that leads 
to the accumulation of collagen fibers (56). This study provided 
the evidence that soot-associated lung inflammation leads to the 
tissue remodeling and fibrosis (56). In addition to the mediators 
of inflammation, immune cells also play a very critical role and 
modulate respiratory functions (33, 159). The Th2-type inflamma-
tory responses and activation of pulmonary dendritic cells were 
seen on instillation of engineered DEP in vivo (160). Similarly, 
DE enhanced allergen-related eosinophils recruitment to airways 
and increased protein concentrations of granulocyte macrophage 
colony-stimulating factor and IL-5 in the lungs of mice (161).

Furthermore, exposure of DEP to rats by intratracheal instilla-
tion downregulated LPS-induced TNF-alpha and IL-1 release by 
alveolar macrophages (162). Similarly, exposure of DEP to rats 
downregulated the ability of alveolar macrophages to generate the 
antimicrobial reactive oxidant species in response to zymosan (a 
fungal component) (163). Moreover, ultrafine carbon particles 
downregulated cytochrome P450 1B1 expression in human mono-
cytes (164). These data suggested that the Printex-90 decreased 
the expression profile of CYP gene that may interfere with the 
detoxification potential of inhaled toxic compounds (164). It is 
well established that TNF-alpha is a major cytokine responsible 
for cellular death and causes toxicity (165, 166). The 14-nm CB 
particles also synergize the ZnCl2 stimulated TNF-alpha release 
(167). Furthermore, zinc-induced morphological changes and 
cell death were altered by carbon nanoparticles treatment (167). 
However, there are also some examples where systemic response 
was not seen. In a study, CB exposure also lacks an acute phase 
response in the liver (the production of SAA proteins, Sap, Saa1, 
and Saa3) (66).

From nutritional point of view, polyunsaturated fatty acids 
(PUFAs) such as Omega-3 fatty acids or N3-fattyacids have shown 
protective against asthma risk development (168, 169). Some 
preclinical studies have shown omega-3 fatty acids as beneficial 
agents against asthma triggers, such as environmental allergens 
and viruses (170, 171). The connection with soot toxicity to PUFA 
is understood on the basis of its antioxidant and anti-inflammatory 
properties and on its T cell regulatory properties (171). As envi-
ronmental soot produces plenty of oxidative stress and therefore 
antioxidant properties of PUFA can act as a protective agents in 

this area. In patients suffering from respiratory syndrome, a lower 
level of PUFA and other antioxidants were observed, which are 
related toward the development of various lung pathologies (172). 
A high-level PUFA also downregulates oxidative stress-induced 
chronic bronchopulmonary dysplasia (173). The antioxidant 
properties of PUFAs also help improve capacity the capacity of 
exercise in patients suffering from COPD (174). A pilot study 
described that there have not been any changes in the patients 
with stable asthma due to n-3 PUFAs dietary supplement (175). It 
is further important to note that there have been few reports that 
studied the effect of omega-3 fatty acids in the development of 
asthma pathophysiology (176, 177). Altogether, it can be said that 
soot and CB affects various biochemical and molecular mediators 
that in turn cause respiratory dysfunctions.

THe MeCHANiSM OF CARDiOvASCULAR 
DYSFUNCTiONS DUe TO SOOT AND CB 
eXPOSUReS

The cardiovascular diseases due to soot and CB exposure are of 
major concerns because of their distal appearance from the site of 
exposure and involvement of more systemic responses (Figure 4). 
A sufficient amount of clinical and epidemiological data linked soot 
and CB to cardiovascular dysfunctions. A case-crossover study 
showed that personal soot exposure is linked with acute myocardial 
infarction (178). Soot was also seen responsible in the incidence 
of myocardial infarction (179). In London, air pollution (BC) 
caused the activation of implantable cardioverter defibrillators (a 
device used to treat cardiovascular dysfunctions) (180). In Darwin, 
Australia, the risk of cardiovascular hospitalization was high in 
people exposed with bushfire particulates (181). Furthermore, air 
pollution was considered as a major risk factor to the ST-segment 
(a measure in electrocardiogram) depression in patients suffering 
from coronary artery disease (CAD) (182). Notably, traffic emis-
sion sources of primary organic carbon particles enhanced platelet 
activation, systemic inflammation, and potentially reduced anti-
oxidant enzyme activity in old people, suffered from CAD (183). It 
was observed that ufCB particles were associated with accelerated 
cardiovascular changes, which may compromise “healthy aging” 
and may trigger cardiovascular diseases (2).

Many studies on experimental models demonstrated the 
mechanistic basis of soot toxicity leading to cardiovascular 
dysfunctions (Figure  4). A study revealed that CB affects 
cardiac autonomous nervous system functions in mice (184). 
This indicated that the CB can cause the cardiovascular dys-
functions independent of apparent myocardial and pulmonary 
injury (184). CB nanoparticles exposure also caused endothelial 
changes via modulating nitric oxide synthase expression when it 
is orally given to the rats (185). The long-term exposure of soot 
(fine particulate air pollution) was found associated with the 
adverse cardiovascular outcomes (186). The fact that biodiesel 
particles are more toxic to health and can cause more cumber-
some cardiovascular health issues was shown in a mice model of 
study (187). In this study, heart rate (HR) and mean corpuscular 
volume were increased compared with control. Interestingly, 
leukocytes, reticulocytes, platelets, metamyelocytes, neutrophils, 
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and macrophages were also increased compared with control 
(187). The involvement of a number of inflammatory mediators 
along with cells were upregulated in patients with cardiovascular 
dysfunctions, indicating a role of inflammation in diesel soot-
mediated cardiovascular toxicity (187). The myth that UFPs go 
into the blood circulation was broken by a study showing trans-
location of UFPs in microcirculation of extrapulmonary organs 
after the inhalation (188). Moreover, when CB UFPs were infused 
into intra-arterially in C57BL/6 mice, significant enhancement in 
platelet on endothelium of post-sinusoidal venules and sinusoids 
was observed (188). It is already known that immune response 
is highly regulated by epigenetic mediators and its interactions 
with endothelial system may cause changes in the cardiovascular 
system. A study also described that pollution leads to endothelial 
dysfunctions through epigenetic associations (189). Importantly, 
ufCB particle changed the expression profile of endothelial nitric 
oxide synthase in abdominal aorta of animals (2).

Mechanistically, it is unveiled that ultrafine BC causes 
endothelial senescence and alters the cardiovascular functions 
at molecular levels (2). Telomerase reverse transcriptase, an 
enzyme that is required for telomere maintenance, is believed to 
be critical for proper endothelial cell functions and is inactivated 
by Src kinase in situations of excessive oxidative stress (2). ufCB 
increased Src kinase activation and decreased the telomerase 
activity in lung epithelial and endothelial cells (2). Consequently, 
ufCB increases senescence of endothelial cells and thus alters 
cardiovascular functions (2). The data from 642 elderly partici-
pated in the Veterans Administration study strongly emphasized 
the role of soot-mediated cardiovascular diseases. This study 
demonstrated that BC exposure affected soluble vascular cell 
adhesion molecule-1 (sVCAM-1), and soluble intercellular adhe-
sion molecule-1 (sICAM-1) both molecule regulate endothelial 
and cardiovascular system (190). Particularly, diabetics were 
more sensitive to the BC for both sVCAM-1 and sICAM-1 (190). 
DEP and CB also altered expressions of cell adhesion molecules 
and caused oxidative damage in human endothelial cells (191). 
Proteomic analysis from bronchoalveolar lavage fluid unveiled 
the action of BC and demonstrated a strong relationship between 
albumin or alpha2-macroglobulin and vascular endothelial 
growth factor (151). A difference was also reported in the HR of 
the soot-exposed mice (70). The other supporting study linked 
the acute inflammation and cardiovascular functions due to inha-
lation of diesel and biodiesel exhaust particles (187). Collectively, 
all studies proved that soot and CB indeed are responsible for the 
adverse cardiovascular functions. Although these studies show 
a close association of soot or CB exposure to the cardiovascular 
symptoms, but the exact mechanism of soot-mediated cardio-
vascular diseases is not properly understood and needs further 
investigations.

THe PROPOSeD MeCHANiSMS AND 
FUTURe PeRSPeCTiveS OF SOOT- AND 
CB-iNDUCeD TOXiCiTY

Based on the existing literature discussed in the above sections, 
the mechanism of soot or CB toxicity can be proposed (Figure 4) 

(192, 193). Two main kinds of toxicities may exist due to soot or 
CB exposure: the localized toxicity and the systemic toxicity (194, 
195). The localized or direct toxicity includes exposure of soot and 
its localized (contact mediated) effect by way of oxidative and/
or necrotic damage to the lung epithelial cells (161). The second 
type of toxicity is more systemic in nature and produces toxicity 
beyond the site of exposure of soot or CB. In fact, systemic toxic-
ity involves immune response that causes damage to the lungs 
and the other parts of the body (155, 161, 196). However, both 
types of toxic responses are interlinked and thus soot toxicity can 
be considered as a combined effect of them.

The localized response of soot is mainly caused by the oxida-
tive stress and dysfunctions in the cellular machinery (Figure 4) 
(142, 197). One of the mechanisms by which soot or CB exert 
oxidative stress is the interruption of mitochondrial metabolism 
(142, 198). This oxidative stress may in turn increase the level 
of calcium ion release in the cytoplasm and thus affects the cel-
lular signaling (199–202). It is already established that calcium 
signaling modulates the cell metabolic pathways and alters the 
cell survival or death pathways (200). Furthermore, it is interest-
ing to know that excessive oxidative stress generated by soot or 
CB causes extensive DNA damage that leads to the development 
of cancer (203–205). In fact, oxidative stress produced by the 
soot interrupts DNA repair machinery and promote cancer like 
phenomenon (104). Apart from this soot also triggers the cell 
death probably through the autophagic and apoptotic pathways 
(132, 206). CB also induces DNA damage and genotoxicity in the 
in vitro cultured cells (99).

The systemic response of soot is more complex and affects both 
local and distal parts of the body by more than one mechanism 
(133). It is believed that the symptoms of the soot- or CB-induced 
immune response are similar to allergic diseases (207–209). The 
CB-induced IgE production in children confirms it as an allergen 
(210, 211). The subsequent pathologic response via IgE pathway 
is the development of tissue remodeling and fibrosis (209, 212). 
Importantly, it was noticed that toll-like receptors 2 and 4 are 
associated with traffic-related air pollutant (soot), which causes 
development of asthma in children (213). As illustrated in the 
Figure 4, when soot or CB comes in contact with the lung epithe-
lial cells, various factors are released. These factors attract a huge 
number of immune cells that damage the lungs tissue in many 
ways (207, 214). Mainly, eosinophils, natural killer cells [NK 
and invariant natural killer cells (iNKT)], mast cells, T cells, and 
innate lymphocyte cells get activated due to the allergic responses 
(215–217). The blood monocytes and neutrophils may also par-
ticipate in this initial inflammatory response (217–219). In sharp 
contrast to the diversity of cell types, mast cells and eosinophils 
play the critical role in the development of more cumbersome 
pathogenesis (Figure  5) (220, 221). Eosinophils secrete profi-
brotic cytokines such as IL-13, IL-4, transforming growth factor 
(TGF)-, and stem cell factor which in turn induce fibroblast and 
mast cells proliferation and activation (215, 222, 223). Activated 
mast cells promote tissue remodeling and fibrosis by secreting 
tryptase, chymase, and histamine, which work closely with fibro-
blasts (Figure 5) (215, 224–226). As seen in the figure, monocytes 
and macrophages become activated and secrete several inflam-
matory and toxic mediators including MMPs (200, 227–232). 
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Importantly, it is seen that SAA protein is produced in the serum 
in response to soot (219, 233). It is therefore possible that SAA 
protein in response to soot exposure may lead to amyloidosis as 
observed in chronic inflammatory conditions (219, 233). The 
involvement of Th17 cells are postulated to play a pivotal role in 
the causation of soot-mediated toxicity (161, 227, 234).

As of now, a very small part of soot- or CB-induced toxicity is 
known and a lot more needs to be explored in this area (235). One 
of the main pathological manifestations of soot or CB is the devel-
opment of tissue remodeling and fibrosis, the process of which 
is still largely unknown (161, 236). The fibroblast recruitment to 
the lung and its role in the soot-induced development of tissue 
remodeling and fibrosis still remain elusive (212). The role of 
NK and iNKT cells and eosinophils is not properly known (161, 
217, 237, 238). The eosinophils interactions with mast cells are 
known to modulate the allergic responses in lungs and contribute 
to the development of tissue remodeling and fibrosis (239, 240). 
The involvement of chemotactic factors such as eotaxin-1 and 
eotaxin-2 is also not clear in response to soot or CB exposure (75). 
A recent break through study described the role of resistin-like 

molecule alpha and beta (RELM-α/β) in the lung pathology 
(241). How soot or CB toxicity is associated with the RELM-α/β 
is not clearly known (Figure 6). The amyloid formation due to 
inflammatory conditions in lung-related pathologies in response 
to soot or CB exposure needs exploration in future (242, 243).

POSSiBLe THeRAPeUTiC 
iNTeRveNTiONS TO COMBAT SOOT- OR 
CB-ASSOCiATeD DiSORDeRS

In recent years, some therapeutic strategies have been suggested 
to combat the adverse effects of soot or CB (108, 244). As under-
stood from the existing literature and from above discussions, the 
mechanism of soot toxicity involves immune cells, mediators of 
inflammation, and various molecules of oxidative stress respon-
sive pathways (245, 246). Therefore, these all may contribute 
as important targets for the development of novel therapeutics 
(Figure 7) (247, 248). Here, we discuss some relevant strategies 
that have been already tested against immune dysfunctions and 
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excessive oxidative stress. Therefore, these can possibly be used to 
treat soot- or CB-induced toxicities.

The antioxidant therapy can be an important way of treating soot 
and CB toxicity (249, 250). The existing literature already reported 
some examples of antioxidant therapy for the pulmonary toxicities 
(251). Zerumbone, an antioxidant, attenuated Th2 responses induced 
by ovalbumin and decreased airway inflammation in a mice model 
of study (252). Similarly, naringin, a flavinoid antioxidant, also 
attenuated airway inflammation in a mouse model of asthma (253). 
Allium cepa extract and quercetin also showed protective effect in a 
mice model of asthma (254). Crocus sativus, a natural antioxidant, 
and its main constituents, safranal and crocin, have shown the 
protective effects against the oxidative stress in the mice model of 
asthma (255). Resveratrol, a well-known antioxidant, has also shown 
its protective effects in a mice model of asthma (256–258). The clear 
example of antioxidant therapy to the soot or CB caused injury 
came from the effect of artesunate, which significantly decreased the 
levels of oxidative biomarkers, 3-nitrotyrosine, 8-isoprostane, and 
8-OHdG in a mice model of lung injury (259). Similarly, melatonin, 
a natural antioxidant, was found to reduce airway inflammation in 
an asthma model (260). Recently, mitochondrial-based antioxidant 
therapy downregulates TGF-β-mediated deposition of collagen in a 
murine model of asthma (261). Overall, this can be considered that 
antioxidant-based therapeutics can be a promising approach against 
soot- and CB-associated disorders.

It is evidenced that immune cells such as mast cells, eosino-
phils, T cells, and neutrophils are the major culprit in soot and 
CB toxicity. Therefore, these may be targeted for the development 

of noble therapeutic approaches (Figure  7) (215, 226, 262). A 
monoclonal antibody mepolizumab against the eosinophils acti-
vation has been developed and is currently in clinical trials against 
severe eosinophilic asthma (DREAM) (263). Similar strategies 
can be used against eosinophils and other mediators of immune 
response in soot- and CB-mediated toxicity. The mast cells may 
be the next important target for which a number of therapeutic 
interventions have been developed (215, 264). Notably, CGS 
9343B, a strong inhibitor of calmodulin family, has a potential 
to inhibit histamine release by mast cells as shown in rats (265, 
266). Inhibitors of dectin-1 signaling (R406) downregulated mast 
cells activation, thus can also be used as a novel therapy to target 
soot-induced mast cell’s toxicity (267). Similarly, TGaseII/miR-
218/-181 can also be used against mast cell activation (Figure 7) 
(268). Importantly, anti-inflammatory drugs can also interrupt 
mast cells degranulation and endothelial cells activation (269). 
Furthermore, a cross-talk between human mast cells and TGF-
beta1 signaling has been shown. Therefore, it is postulated to use 
anti-TGF-beta1 signaling against mast cells associated soot toxic-
ity (270). Recently, a novel, potent dual inhibitor (JNJ-10311795; 
RWJ-355871) of the leukocyte proteases cathepsin G and chymase 
has been discovered, which also has an anti-inflammatory activity 
in vivo (271). It has been already reported that cytochalasin B is 
able to inhibit the cytotoxic response of sensitized lymphoid cells 
and thus may attenuate mast cells responses (Figure 7) (272). The 
activation of transmembrane adaptor protein PAG/CBP, which 
is associated with the both positive and negative regulation cell 
signaling of mast cells, may also be used as a noble target against 
mast cells activation (273).

Inhibition of T-cell activation can also be a good idea 
against soot- or CB-triggered adverse responses (274). It has 
been reported that PPAR gamma is an important molecule 
and negatively regulates T cell activation (275). CP-690550 is a 
Janus kinase inhibitor that downregulate CD4+ T-cell-mediated 
diseases by inhibiting the interferon-gamma pathway (276). 
Cyclosporin A decreases surface antigen expression on the 
activated lymphocytes (277). A noble protein “NFAT” has also 
been reported as a key regulator of T-cell development and 
functions (278). A unique way of targeting T-cell activation can 
be the use of N3 fatty acids (omega-3 fatty acids), as they inter-
rupts transcription of human IL-13, which indirectly inhibit the 
T-helper type 2 effecter immune responses (Figure  7) (279). 
More recently, the antagonism of noble microRNA-126 has 
been known to suppress the effecter functions of Th2 cells in the 
allergic airways disease (280).

Furthermore, inhibition of neutrophils can also be taken into 
consideration for the development of noble protective strategies. 
Simvastatin has been shown to affect many adverse functions of 
neutrophils. In a recent study, it has been shown that simvastatin 
downregulated secretion of interleukin-8 (IL-8) by neutrophils from 
the dyslipidemic patients (281). In addition to targeting specialized 
cells, some other miscellaneous strategies can also be used for the 
possible management of soot- and CB-associated toxicity. Study 
conducted in asthmatic rats showed that zinc suppressed inflam-
mation in the airway with exerting effects on the level of eotaxin, 
IL-8, IL-4, monocyte chemotactic protein-1, and IFN-gamma (282). 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


12

Niranjan and Thakur Mechanisms of Soot and CB Toxicity

Frontiers in Immunology | www.frontiersin.org June 2017 | Volume 8 | Article 763

Curcumin suppresses ovalbumin-induced allergic disease (283). 
Inhibition of PPR-gamma can be a good strategy for combating the 
allergic response against soot (284).

CONCLUSiON AND FUTURe DiReCTiONS

Despite tremendous progress in management of air pollution 
throughout the world, it continues to harm people’s health 
and the environment. Nowadays, the problem of air pollution 
is intensified globally, and soot has been the key pollutant due 
to its effects on health of humans. The soot and CB toxicity 
is a broader area of research and should not be only limited 
to cancer, respiratory, and cardiovascular diseases but also 
include other disorders. Soot and CB induce cancers at the site 
of exposure and beyond due to DNA mutations, DNA adducts 

formation, AhR activation, DNA methylation, and altered onco-
genes expressions. The soot- or CB-induced immune response 
in the lung play critical role in the development of cancer,  
cardiovascular dysfunctions, and respiratory diseases. The role 
of eosinophils and other immune cells is critically discussed 
pointing toward development of noble therapeutics. Based on the 
existing literature, a consensus mechanism has been proposed 
depicting the linkages between different cellular and metabolic 
pathways. As soot and CB can exert chronic inflammatory 
condition, it may elicit amyloid deposition in different tissues 
which is largely unknown. The effect of soot on cardiovascular 
and oxidative stress parameters need to be studied extensively. 
Altogether, this review provides a better understanding of soot- 
and CB-induced pathologies and strategies for the possible 
therapeutics.

FiGURe 7 | The possible therapeutic strategies to combat soot or carbon black (CB) toxicity. The therapeutic strategies are shown in the figure targeting oxidative 
stress (in the center) and immune cells (in the periphery) involved in soot or CB toxicity. Red signs show the inhibitors capable of arresting the appropriate response. 
Anti-eosinophils based antibodies to prevent eosinophils mediated toxic effects are shown. The microRNAs and some noble inhibitors can also be used to 
downregulate the mast-associated toxicities. N3 fatty acids (polyunsaturated fatty acids) based therapies may be useful to minimize the T cell-associated effects. 
Importantly, the PPR-γ-based therapeutic interventions become more interesting to target various cell-specific functions.
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