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Abstract

Fibroblasts are important in orchestrating various functions necessary for maintaining normal tissue homeostasis as well as
promoting malignant tumor growth. Significant evidence indicates that fibroblasts are functionally heterogeneous with
respect to their ability to promote tumor growth, but markers that can be used to distinguish growth promoting from
growth suppressing fibroblasts remain ill-defined. Here we show that human breast fibroblasts are functionally
heterogeneous with respect to tumor-promoting activity regardless of whether they were isolated from normal or
cancerous breast tissues. Rather than significant differences in fibroblast marker expression, we show that fibroblasts
secreting abundant levels of prostaglandin (PGE2), when isolated from either reduction mammoplasty or carcinoma tissues,
were both capable of enhancing tumor growth in vivo and could increase the number of cancer stem-like cells. PGE2 further
enhanced the tumor promoting properties of fibroblasts by increasing secretion of IL-6, which was necessary, but not
sufficient, for expansion of breast cancer stem-like cells. These findings identify a population of fibroblasts which both
produce and respond to PGE2, and that are functionally distinct from other fibroblasts. Identifying markers of these cells
could allow for the targeted ablation of tumor-promoting and inflammatory fibroblasts in human breast cancers.
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Introduction

Fibroblasts were first described in the late 19th century by the

pathologist Rudolph Virchow based on their residence within

connective tissues and their elongated, spindle-like shape [1]. As

the most prominent cell type within connective tissues, these

mesenchymal cells function to deposit and remodel extracellular

matrix (ECM), specify epithelial fate and maturation of tissues,

facilitate granulation of tissues post wounding and promote re-

epithelialization [2,3,4,5,6]. Fibroblasts are required for mammary

gland development, as signals from the underlying primary

mesenchyme are required to induce mammary placode elongation

and invasion to form the primitive mammary ductal tree [7].

In addition to regulating and maintaining tissue homeostasis,

fibroblasts are well established mediators of tissue fibrosis following

injury and promoters of epithelial tumor growth. During fibrosis,

the acquisition of epigenetic alterations [8] results in fibroblasts

with altered gene expression, conferring an increase in growth

factor production, ECM deposition, and proliferation [9]. During

carcinoma progression, the associated desmoplastic stroma

includes an abundance of alpha smooth muscle actin (aSMA+)

expressing fibroblasts, collectively referred to as cancer associated

fibroblasts (CAFs). These cells are also found in connective tissues

during wound healing and are frequently termed ‘‘myofibro-

blasts’’. These aSMA+ fibroblasts isolated from the stroma of solid

tumors can significantly promote the growth of breast [10,11,12],

prostate [13], pancreas [14], and skin cancer cells in mice [15].

Some of the tumor promoting mechanisms of these cells have been

established, such as increasing tumor angiogenesis and mediating

macrophage recruitment, both of which serve as a prominent

sources of growth factors and cytokines for the growth of tumor

cells [16]. Recently, aSMA+ myofibroblasts have also been shown

to possess a pro-inflammatory phenotype [15], suggesting that

these cells may contribute to the tumor associated inflammation

that accompanies the progression of tumors.

Despite the established functions of fibroblasts in tissue

homeostasis and disease, the molecular mechanisms contributing

to the phenotypic and functional heterogeneity among fibroblasts

remains largely unknown [17,18,19,20,21]. It has been reported

that the gene expression of fibroblasts derived from disease- free

breast tissue harbors a greater heterogeneity than those derived

from breast carcinomas, even within the same patient [22]. This is
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surprising, given that breast tumors are heterogeneous and there

exists significant heterogeneity among the expression of aSMA

within the tumor associated stroma [23]. While aSMA is a

common marker routinely used to identify CAFs, these cells may

vary in the levels of aSMA expression [24], and it remains

unknown if robust expression of aSMA marks the most tumor

promoting fibroblasts within a given fibroblast population. It also

should be noted that several cell types in the tumor microenvi-

ronment, in addition to fibroblasts, will express aSMA [25,26,27],

and it is not a unique marker of CAFs or myofibroblasts.

Moreover, it is well established that fibroblasts isolated from

homeostatic tissues will acquire aSMA expression and stress fibers,

resembling the phenotype of myofibroblasts when explanted in

culture, exposed to TGFb, or exposed to tumor cell conditioned

media [28,29,30]. Because of this, maintaining the phenotypic and

functional discrepancy of fibroblasts from homeostatic versus

diseased tissues in culture has been extremely difficult.

Intriguingly, aSMA+ fibroblasts isolated from tumor associated

stroma are not the only source of fibroblasts that harbor the

capacity to support epithelial tumor growth. Fibroblasts isolated

from arthritic synovium can promote growth of co-mixed human

breast cancer cells in a xenograft mouse model of breast cancer

[31]. However, there are numerous examples to demonstrate the

tumor suppressive function of fibroblasts as well. For example, ras-

transformed mouse keratinocytes are unable to form tumors in

syngeneic animals when they are co-mixed with dermal fibroblasts

isolated from disease-free mouse skin [32]; initiated primary

human prostate epithelial cells do not form tumors under the renal

capsule when co-mixed with fibroblasts from disease free human

prostate tissues, unlike their CAF counterparts [13]. These

functional discrepancies among fibroblast populations remain to

be reconciled.

In this manuscript, we sought to understand the properties of

breast fibroblasts that contribute to a tumor promoting phenotype.

Using fibroblast populations isolated from both disease-free and

breast tumor tissues, we demonstrate for the first time that

the ability of fibroblasts to promote tumor growth is irrespective

of tissue source and correlates with the ability of these cells to

secrete PGE2 and respond to PGE2 signaling. These data may

lend insight into the dichotomy among the tumor promoting or

tumor suppressive functions of various fibroblast populations,

and warrants the investigation of novel markers for these cells

among heterogeneous fibroblast populations. Discovery of such

markers may elucidate which patients in the clinic would largely

benefit from an adjuvant therapy targeting both the eradication of

tumor cells and the tumor promoting fibroblasts within the tumor

stroma.

Materials and Methods

Isolation of primary fibroblasts from human breast
tumors and reduction mammoplasty tissues

All human breast tissue procurement for these experiments was

obtained in compliance with the laws and institutional guidelines,

as approved by the institutional IRB committee from Tufts

University School of Medicine. Primary breast tumor tissues were

obtained from discarded material at Tufts Medical Center and

non-cancerous breast tissue was obtained from patients undergo-

ing elective reduction mammoplasty at Tufts Medical Center.

Breast tissues were minced and enzymatically digested overnight

with a mixture of collagenase and hyaluronidase as previously

described [33,34]. Large clusters of undigested tissue were allowed

to settle and the supernatant enriched for stromal cells was

collected, washed and plated in serum containing medium to

enrich for mammary fibroblasts. Cells were grown in DMEM

supplemented with 10% calf serum (CS) and antibiotic/antimy-

cotic (AB/AM, Invitrogen, Carlsbad, CA) for multiple passages

until senescent as described previously [34]. Senescent fibroblasts

were not included in subsequent experiments.

Cell cultures, conditioned media collection, and cell
treatments

Fibroblasts were grown as described above. MCF7 breast

cancer cells were grown in DMEM+10% CS+1% AB/AM. All

cultures were maintained at 37 uC and 5% CO2. To generate

conditioned media, fibroblasts were seeded at 1.56106 cells/plate

in phenol red free DMEM (PRF-DMEM, Invitrogen), supple-

mented with either 0.5% or 2% charcoal/dextran stripped FBS

(Invitrogen) and 1% AB/AM, treated with ethanol or 0.5 mM

PGE2 (Sigma-Aldrich, St. Louis, MO), or left untreated, for

72 hrs. CM was then harvested, filtered through a 0.22 mm filter

(Millipore, Danvers, MA), aliquoted and stored at 280uC. For

MCF7 treatments, cells were grown in PRF-DMEM supplement-

ed with 5% charcoal/dextran stripped FBS, 1% AB/AM, and

treated with ethanol, 0.5 mM PGE2, or 1 nM 17-b-Estradiol

(Sigma Aldrich). For MCF7 treatments involving fibroblast CM,

CM was collected as previously described, supplemented with 5%

charcoal/dextran stripped FBS, and administered to MCF7 cells

for 6 days. a-IL6 and recombinant human IL-6 (R&D Systems,

Minneapolis, MN) were used at 1.5 mg/mL and 10 ng/mL,

respectively.

Preparation of cells for mouse mammary fat pad
inoculation

All animal procedures were performed in accordance with an

approved protocol by Tufts University Institutional Animal Care

and Use Committee. A colony of NOD/SCID mice was

maintained under sterile housing conditions and received food

and water ad libum. Nulliparous female mice between 8 to 14 weeks

age were utilized in all experiments. For co-mixing experiments,

1.56106 human breast fibroblasts were mixed with 500,000

MCF7 breast cancer cells, resuspended in a 3:1 (vol/vol) ratio of

media to Matrigel (BD Biosciences, San Jose, CA) mixture, and

inoculated into the 4th inguinal mammary gland. Tumor

formation was assessed by palpitation weekly. For MCF7 limiting

dilution experiments, 500,000 MCF7 cells were cultured in

conditioned media (CM) from PGE2-treated fibroblasts for 6

days, after which 10,000 cells were resuspended in a 3:1 (vol/vol)

ratio of media to Matrigel mixture, and inoculated into the 4th

inguinal mammary gland. Tumor formation was assessed by

palpitation weekly.

Immunofluorescence
Fibroblasts were seeded at 5,000 cells/well of 8 well-chamber

slides (Becton Dickinson, Franklin Lakes, NJ) in DMEM+10%

CS+1% AB/AM (Invitrogen) for 96 hours before fixed in

methanol. Cells were then permeabilized with 0.1% Triton X-

100 (Sigma) in PBS, washed and blocked in 1% BSA in PBS at

ambient temperature. Cells were incubated with the following

antibodies overnight at 4 uC: mouse a-alpha SMA (1:200, Vector

Labs, Burlingame, CA), mouse a-Vimentin (1:200, Vector Labs),

mouse a-prolyl-4-hydroxylase (1:300, Millipore), and mouse a-

caveolin-1 (1:150, Novus Biologicals, Littleton, CO). Fluorescence

signal was detected using goat a-mouse secondary antibodies

(1:500, conjugated with Alexa488 and Alexa588, Invitrogen).

Nuclei were stained with 49, 6-diamidino-2-phenylindole (DAPI)

and images were captured with the Spot imaging software system
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(Diagnostic Instruments, Inc., Sterling Heights, MI). Quantifica-

tion was performed using Image-J software.

Quantitative Real Time PCR
RNA was isolated and purified using an RNeasy kit (Qiagen,

Valencia, CA) for cultured cells. RNA was reverse transcribed to

cDNA using an iScript cDNA synthesis kit (Biorad). Quantitative

real time PCR analysis was performed using SyBR Green and an

iCycler thermocycler (Biorad). Primer sequences used for quan-

titative real-time PCR are listed in Table S1.

Flow cytometry
Nonconfluent cultures of MCF7 cells were trypsinized into

single cell suspension, counted, and resuspended in FACS buffer

(PBS+3% CS). 100,000 cells were stained with the following

antibodies for 15 minutes at ambient temperature: a-human

CD24-PE (BD Biosciences), a-human CD44-APC (BD Bioscienc-

es), a-human ESA-FITC (Stem Cell Technologies, Vancouver,

BC, Canada), and isotype controls for each antibody (Mouse

IgG2a-PE, Mouse IgG2b-APC, Mouse IgG1-FITC, BD Bioscienc-

es). Unbound antibody was washed away with FACS buffer, and

cells were analyzed no longer than 1 hr post staining on a BD

FACS Calibur.

Tumorsphere assays
Fibroblasts were treated with either ethanol or 0.5 mM PGE2,

and conditioned media was prepared as described above. Upon

use, conditioned media was supplemented with 5% charcoal/

dextran-stripped FBS. MCF7s were dissociated to a single cell

suspension, plated at 20,000 cells/ml, and grown on ultra-low

adherence 6-well plates (Corning Life Sciences, Lowell, MA) in the

presence of supplemented conditioned media for 6 days. For

recombinant human IL-6 studies or exogenous PGE2 studies,

MCF7s were plated as described above in the presence of PRF-

DMEM supplemented with 5% charcoal/dextran-stripped FBS

and the following treatments: 0.1% BSA in PBS or 10 ng/mL

recombinant human IL-6 (R&D Systems), or ethanol or 0.5 mM

PGE2 (Sigma Aldrich). Tumorspheres were quantified using a

Multisizer-3 coulter counter (Beckman-Coulter, Brea, CA).

PGE2 enzyme immunoassay
Fibroblast conditioned media was prepared as described above

and subjected to a Prostaglandin E2 monoclonal EIA kit according

to the manufacturer’s instructions (Cayman Chemical, Ann Arbor,

MI). Concentration (pg/ml) was determined by generating a

standard curve with known concentrations of PGE2. Absorbance

was read at 405 nm using a 96 well plate mQuant spectropho-

tometer (Biotek, Winooski, VT) and the KC Junior software

program (Biotek).

Cytokine array
Fibroblasts were treated with either ethanol or 0.5 mM PGE2,

and CM was prepared as described above. Human cytokine arrays

(2000 series, RayBiotech, Norcross, GA) were exposed to CM

isolated from ethanol or 0.5 mM PGE2-treated fibroblasts and

processed according to the manufacturer’s instructions. Exposed

films were quantified for chemiluminescence intensity using a

Xenogen phosphoimager.

IL-6 ELISA
Fibroblast conditioned media was prepared as described above

and subjected to a human specific IL-6 ELISA according to the

manufacturer’s instructions (eBiosciences, San Diego, CA).

Concentration (pg/ml) was determined by generating a standard

curve with known concentrations of recombinant human IL-6.

Absorbance was read at 450 nm using a 96 well plate mQuant

spectrophotometer (Biotek, Winooski, VT) and the KC Junior

software program (Biotek). Concentrations were normalized to

total numbers of fibroblasts after 72 hour exposure to either

ethanol or 0.5 mM PGE2 and reported as arbitrary units.

Western blotting
MCF7 cells were seeded at 250,000 cells/well and exposed to

CM or treatments as described above. After 6 days, cells were

pelleted and lysed in RIPA buffer to prepare cell lysates. Fibroblast

conditioned media was prepared as previously described and

concentrated using.

Amicon Ultra Centrifugal Filters (Millipore). Protein concen-

tration from both lysates and conditioned media was determined

using a Lowry Assay according to manufacturer’s instructions

(Biorad, Hercules, CA). 30 or 50 mg of protein was resolved on a

4–12% polyacrylamide gel, transferred to a nitrocellulose

membrane (Biorad), and immunoblotted using the following

antibodies: mouse a-GAPDH (1:5000, Millipore), mouse a-

phosphorylated-STAT3 (Y705, 1:1000, Cell Signaling Technolo-

gies, Danvers, MA), rabbit a-total-STAT3 (1:2000, Cell Signaling

Technologies), mouse a-Cox-2 (Cayman Chemical), mouse a-

Cox-1 (Cayman Chemical), or rabbit a-IL6 (1:10,000, Abcam,

Cambridge, MA). Signal was detected using HRP-conjugated goat

a-mouse (1:14,000) or goat a-rabbit (1:12,000) secondary anti-

bodies (Cell Signaling) and West Dura Extended Chemilumines-

cence Substrate (Fisher).

Immunohistochemistry
Tumor tissues from MCF7 xenografts were fixed in 10% neutral

buffered formalin and paraffin embedded with standard proce-

dures. Tumor sections were deparaffinized, re-hydrated through

graded ethanols and subjected to heat-induced antigen retrieval.

Staining was performed by the Department of Pathology Core

Facility at Tufts Medical Center.

Results

Isolation and characterization of fibroblasts from human
breast tissues

We obtained fibroblasts from a variety of resected breast tissue

samples (Table 1): those derived from breast tumor specimens of

varying hormone receptor and HER2 status, and those derived

from disease-free reduction mammoplasty tissues. Given the

inability to prospectively sort for different populations of

fibroblasts due to the lack of established and unique cell surface

markers for these cells, we used the ability of fibroblasts to

preferentially adhere to plastic and grow ex-vivo under defined

conditions. Quantitative RT-PCR and immunofluorescence were

used to characterize and verify that the cells isolated from human

breast tissues were indeed enriched in fibroblasts.

We first assayed for the expression of fibroblast and epithelial

markers to ascertain the purity of the cultured stromal cells. Cells

were largely negative for cytokeratin 18 (CK18) and cytokeratin 14

(CK14) expression (Fig. 1A, Fig. S1B), indicating these cells were

devoid of breast epithelial cells. All patient derived fibroblasts

robustly expressed vimentin and prolyl-4-hydroxylase (P4H)

(Fig. 1B and Fig. S1A). In addition to these fibroblast markers,

we also assayed for the expression of aSMA, a marker of

myofibroblasts and cancer associated fibroblasts (CAFs). Consis-

tent with previous reports, aSMA expression in vivo was only

present within the stroma associated with breast tumors but not
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within the stroma of the normal human breast tissues (Fig. 1C).

However, cultured fibroblasts isolated from all the different patient

samples acquired aSMA expression as previously reported

[29,35,36]; expression was similar among patient derived

fibroblasts despite differences in expression in vivo. Interestingly,

none of the patient derived fibroblasts, regardless of the tissue

source of origin, were more than 50% aSMA positive as measured

by immunofluorescence (Fig. 1B); there was no significant

difference in aSMA expression among these patient samples

(Fig. 1B, p = 0.1433). We corroborated these immunofluorescence

results by quantitative RT-PCR (Fig. 1D). Moreover, to avoid the

confounding effects of serum-induced aSMA expression in

cultured cells, we serum starved patient derived fibroblasts for

96 hours. Even under serum starvation conditions for this

extended period of time, the levels in aSMA expression between

these patient samples did not change (data not shown).

Recently, fibroblast surface protein (FSP) and fibroblast

activation protein (FAP) have been reported to distinguish

different types of fibroblasts in tumor tissues. Therefore, we also

examined FSP and FAP expression in breast tissue derived

fibroblasts. Both CAFs and disease-free breast fibroblasts harvest-

ed from several different patient samples expressed high transcript

levels of these two proteins (Fig. 1D).

Given that aSMA, FSP or FAP expression in vitro could not

distinguish fibroblasts isolated from human breast tumor speci-

mens versus fibroblasts isolated from disease-free human breast

tissues, we sought to identify other proteins whose expression may

be enriched in one tissue source or the other. Recently, expression

of Caveolin-1 has been reported to be downregulated in CAFs

compared to disease-free fibroblasts, and loss of Caveolin-1 in

mammary stromal fibroblasts promotes a tumor promoting, CAF-

like phenotype [37,38,39]. However, we found high expression of

Caveolin-1 in fibroblasts from both breast tumor specimens and

disease-free tissues, indicating that, similar to aSMA, this protein

could not distinguish between these cell types in vitro (Fig. S1A).

An inflammatory phenotype correlates with fibroblast
tumor promoting ability

Given the lack of specific marker expression between fibroblasts

isolated from breast tumor tissues versus fibroblasts isolated from

disease-free breast tissues, we sought to assay for functional

differences in promoting mammary tumor growth in vivo.

Accordingly, we co-mixed fibroblasts from 5 different tissue

sources (patients A, C, E, I and K) with weakly tumorigenic,

estrogen-dependent MCF7 cells, and inoculated ad-mixed cells

into the inguinal mammary fat pad of female NOD/SCID mice.

Fibroblasts derived from tissue samples C, K, and E co-mixed with

MCF7 cells formed larger tumors than MCF7 cells injected alone,

whereas fibroblasts derived from tissue sample I failed to support

MCF7 tumor growth (p = 0.02, Fig. 2A), and only supported

tumor formation 50% of the time (Fig. 2B). Thus, tumor

promoting ability of fibroblasts did not depend on their tissue

source of origin (i.e. breast tumor or reduction mammoplasty,

Table 1), nor did it associate with their extent of aSMA, FSP, FAP,

or Caveolin-1 expression (Fig. 1 and Fig. S1A).

Based on these findings, we sought to identify characteristics of

these tissue derived fibroblasts that could resolve the differences in

their ability to support MCF7 tumor growth. Recent reports have

indicated that CAFs express an NFkB mediated pro-inflammatory

secretome that is required for their ability to support tumor growth

[15]. Thus, we hypothesized that fibroblasts differ in their inherent

pro-inflammatory state, which might account for their tumor

promoting capabilities in vivo. In fact, all tissue-derived fibroblasts

in vitro, regardless of their tissue of origin, expressed cyclooxygen-

ase-2 (Cox-2), an enzyme upregulated during tissue inflammation

and tumorigenesis [40], as well as its isoform Cox-1 (Fig. 2C and

Fig. S2). Both Cox-2 and Cox-1 catalyze the synthesis of the pro-

inflammatory hormone prostaglandin E2 (PGE2), although Cox-1

is thought to be constitutively expressed in most tissues and likely

responsible for producing the levels of prostaglandins required for

normal tissue function [41].

Given that these tissue-derived fibroblasts express Cox-1 and

Cox-2, we assayed for the levels of PGE2 in the conditioned media

(CM) from these cells. Fibroblasts from 8 different tissue samples

were serum starved for 72 hrs in phenol-red free DMEM, upon

which the CM was collected, filtered, and assayed for the concen-

tration of the pro-inflammatory hormone PGE2 by a specific

immunoassay. CM from several different tissue samples exhibited

significant differences in PGE2 secretion (p = 2.84610212): low

(,50 pg/ml; patient sample I), medium (50–150 pg/ml; tissue

Table 1. Summary of tissue derived fibroblasts used for this study.

Patient ID Tissue Source aSMA Expression Basal IL-6 Secretion PGE2 Secretion

A Mastectomy; ER+/HER22/BRCA1 carrier Medium Low Medium

C Mastectomy; ER2/HER22 Low Low High

D Invasive lobular carcinoma; ND ND Low ND

E Invasive ductal carcinoma; ER2/PR2/HER2+ Medium Medium Medium

F Lumpectomy; ND ND ND Medium

G Mastectomy; ER+/HER22 ND ND ND

H Phyllodes tumor ND ND ND

I Mammoplasty; disease free High Low Low

J Mammoplasty; disease free ND Medium Medium

K Mammoplasty; disease free Low Low High

L Mammoplasty; disease free ND Medium ND

M Mammoplasty; disease free Low Medium Medium

N Mammoplasty; disease free Medium ND ND

aSMA expression is defined as: low, ,45% positive; medium, 45–55% positive; high, .55% positive. ND, not determined.
doi:10.1371/journal.pone.0024605.t001
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Figure 1. Characterization of patient derived fibroblasts from human breast tumor tissues and reduction mammoplasty tissues. (A)
Quantitative RT-PCR for the relative levels of breast epithelial markers CK18 and CK14 transcripts in tissue derived fibroblasts from patient samples A,
C, M and N. MCF7 and immortalized human mammary epithelial cells (HME) serve as positive controls for CK18 and CK14, respectively. (B), Top,
immunofluorescence for the expression of mesenchymal markers vimentin and prolyl-4-hydroxylase (P4H) in tissue-derived fibroblasts from patient
samples A, C, M and N. Nuclei are stained with DAPI. Scale bar, 50 mm. Bottom, quantification of the percentage of aSMA+ cells per total number of
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samples A, E, F, M, J) or high (.200 pg/ml; tissue samples C, K)

(Fig. 2D). Intriguingly, we found a correlation between the ability

to secrete high levels of PGE2 in vitro and the ability to promote

MCF7 tumor growth in vivo. In fact, there was a statistically

significant difference in the ability to support MCF7 tumor growth

between high PGE2 secreting fibroblasts (K) compared to low

PGE2 secreting fibroblasts (I) (p = 0.004). These findings suggest

that unlike aSMA, FAP, FSP, or Caveolin-1 expression, the ability

to secrete PGE2 may contribute to the tumor promoting

phenotype of fibroblasts.

Secreted factors from tumor-promoting fibroblasts
expand breast cancer stem-like cells

It is known that breast tumors are comprised of cells with

varying tumorigenic potential. Using primary human breast

cancer tissues, it has been demonstrated that the CD44+/

CD242/EpCAM+ population of cells can support tumor initiation

with as few as 100 cells and have self-renewing, stem-like

properties [42]. These ‘‘aggressive’’ cell populations are retained

within commonly used breast cancer cell lines, with MCF7 cells

having a basal percentage of 0.03% [33,43]. Because high PGE2-

secreting fibroblasts support MCF7 tumor growth, we hypothe-

sized that these fibroblasts may secrete factors that expand the

most aggressive, tumorigenic cells within the tumor bulk. To

determine if fibroblasts could expand this aggressive cell

population, we treated MCF7 cells for 6 days with CM isolated

from serum starved tissue-derived fibroblasts exhibiting varying

degrees of PGE2 secretion in vitro. We quantified the percentage of

aggressive, CD44+/CD242/EpCAM+ stem-like cells by FACS

following this 6-day treatment. CM from fibroblasts of varying

tumor promoting potential and PGE2 secretion had significant

differences in their ability to expand the percentage of aggressive

MCF7 cells (Fig. 3A, p = 0.0007). Interestingly, those fibroblasts

exhibiting high levels of PGE2 secretion resulted in a significant

increase in the proportion of aggressive MCF7 cells compared to

those fibroblasts that had medium or low secretion of PGE2 in vitro

(E vs K, p = 0.007; F vs K, p = 0.005; J vs K, p = 0.01). Moreover,

the ability to expand CD44+/CD242/EpCAM+ cells was

associated with the ability to support MCF7 tumor growth in vivo

(Fig. 3A and Fig. 2A, respectively).

Recently, it has been reported that PGE2 is necessary for the

expansion of bone marrow hematopoietic stem cells [44]. Since

fibroblasts exhibiting high levels of PGE2 secretion also exhibited

the most robust increase in cancer stem-like cells and promoted

the largest MCF7 tumor formation, we reasoned that paracrine

production of PGE2 by fibroblasts might be sufficient to expand

CD44+/CD242/EpCAM+ MCF7 stem-like cells. Therefore, we

treated MCF7 cells with 0.5 mM PGE2, 1 nM 17-b-estradiol (E2,

positive control), or EtOH (vehicle) for 6 days, and quantified the

percentage of CD44+/CD242/EpCAM+ cells by FACS. We

found, however, that PGE2 alone was not sufficient to expand

aggressive MCF7 cells (Fig. 3B).

Given the striking association between the ability of fibroblasts

to secrete PGE2 in vitro and the ability to expand CD44+/CD242/

EpCAM+ cells and support tumor growth, we speculated that

perhaps PGE2 signaling enhances the tumor promoting pheno-

types of fibroblasts. To test this hypothesis, we chose to examine

the CM from fibroblast patient samples who did not robustly

enhance the growth of MCF7 breast cancer cells in vivo (patient

samples A and I, Fig. 2A). First, we confirmed that these tissue-

derived fibroblasts express prostanoid receptors EP1, EP2, EP3

and EP4, making them sensitive to PGE2 signaling (Fig. S2B).

Next, we exposed these tissue-derived fibroblasts to exogenous

0.5 mM PGE2 or EtOH (vehicle) for 72 hours before harvesting

CM. We then exposed MCF7 cells to this CM for 6 days before

quantifying the population of CD44+/CD242/EpCAM+ cells by

FACS. Interestingly, exposure to PGE2 before CM collection

significantly augmented the ability of tissue sample A to increase

the percentage of CD44+/CD242/EpCAM+ cells (Fig. S3),

suggesting that PGE2 enhanced fibroblast tumor promoting

ability. However, exposure to PGE2 did not significantly enhance

the ability of tissue sample I to increase expansion of CD44+/

CD242/EpCAM+ cells (Fig. S3), despite prostanoid receptor

expression (Fig. S2B).

We also performed in vitro and in vivo functional assays of MCF7

tumorgenicity using CM from PGE2- or vehicle (EtOH) treated

fibroblasts. Specifically, MCF7 cells were grown under non-

adherent culture conditions to promote tumorsphere formation in

the presence of CM from PGE2- or vehicle (EtOH) treated

fibroblasts of varying tumor promoting capability and endogenous

PGE2 secretion status. As expected, CM from PGE2 treated tissue

derived fibroblasts (tissue samples A, C and K), formed

significantly more tumorspheres than those treated with CM from

vehicle treated fibroblasts (A, p = 0.014; C, p = 0.001; K,

p = 0.0006; Fig. 3C). However, CM from fibroblasts derived from

tissue sample I did not significantly enhance MCF7 tumorsphere

formation when primed with exogenous PGE2 (Fig. 3C), consis-

tent with the inability to further enhance CD44+/CD242/

EpCAM+ cell expansion (Fig. S3B). Importantly, 0.5 mM PGE2

was not sufficient to enhance MCF7 tumorsphere formation

compared to vehicle control (Fig. 3C).

We also sought to demonstrate that fibroblasts primed with

PGE2 promote the aggressiveness of MCF7 cells in vivo. To this

end, we exposed MCF7 cells first in vitro to CM from PGE2-treated

tissue sample A, or CM from PGE2-treated tissue sample I, for 6

days to enrich for aggressive CD44+/CD242/EpCAM+ cells.

After 6 days, 104 cells from each cohort were inoculated into the

inguinal mammary gland of NOD/SCID mice. MCF7 cells

exposed in vitro to CM from PGE2-treated tissue sample A formed

significantly larger tumors than those exposed in vitro to CM from

PGE2-treated tissue sample I (p = 0.03, Fig. 3D). Histological and

immunohistochemical analysis of these tumors revealed that the

tumors were all ERa- and E-cadherin-positive with a significant

degree of central necrosis, (Fig. 3E). Interestingly, tumors derived

from MCF7 cells exposed in vitro to CM from PGE2-treated tissue

sample A exhibited reduced p53 and CK8/18 expression

compared to those tumors formed from MCF7 cells exposed to

CM from PGE2-treated tissue sample I (Fig. 3E, p = 0.02).

Together, these data suggest that PGE2 signaling in fibroblasts

enhances their tumor promoting abilities, resulting in expansion of

aggressive tumor cell populations and increased tumor growth.

PGE2 mediated IL-6 secretion by tumor-promoting
fibroblasts

Since PGE2 alone was not sufficient to confer expansion of

aggressive cancer stem-like cells (Fig. 3A), we hypothesized factors

cells in a given field. (C), H&E stains and aSMA immunohistochemistry of human breast tumor tissue sections (A, C) and human reduction
mammoplasty tissue sections (M, N) from which fibroblasts were derived. Scale bar, 50 mm. (D) Quantitative RT-PCR for the relative levels of aSMA,
FAP, and FSP transcripts in tissue-derived fibroblasts from patient samples A, C, M and N after propagating in vitro. HL60 cells are shown as a negative
control. Statistics were performed with a single factor ANOVA, p = 0.143).
doi:10.1371/journal.pone.0024605.g001
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produced from PGE2-stimulated fibroblasts were essential for this

expansion. To identify the secreted proteins mediating breast

cancer stem-like expansion, we examined the CM from PGE2-

treated or vehicle-treated tissue derived fibroblasts from patient A,

and quantitatively assayed for 164 secreted growth factors and

cytokines using an antibody-based protein array. We observed that

the secretion of IL-6 was increased at least 5 fold upon PGE2-

treatment compared to vehicle-treated control (Fig. S4A).

To more comprehensively assess whether PGE2 treated

fibroblasts secrete IL-6, we performed both qualitative and

quantitative assays. We first isolated CM from PGE2 or vehicle

treated fibroblasts from 3 patient derived tissue samples (C, A, and

G), concentrated the CM, and immunoblotted for IL-6 (Fig. 4A).

Nearly all patient samples showed an increase in IL-6 secretion

upon exposure to PGE2, supporting the cytokine array results. For

a more quantitative assessment of IL-6 secretion, we performed a

human specific IL-6 ELISA with CM prepared from various

breast tissue derived fibroblasts treated with either 0.5 mM PGE2

or EtOH (vehicle) for 3 days. Although the fold induction of IL-6

secretion in response to PGE2 was heterogeneous among tissue

derived fibroblasts, nearly all patient samples showed at least a 1.5

fold increase in IL-6 secretion upon treatment with PGE2 (Fig. 4B).

However, the induced secretion of IL-6 by PGE2 (Fig. 4B), as well

as the basal levels of IL-6 secretion in these tissue derived

fibroblasts (Fig. S4B) both failed to associate with the tumor

promoting abilities of these fibroblasts in vivo (Fig. 2A), or their

ability to secrete PGE2 in vitro (Fig. 2C). Collectively, these data

suggest that unlike high PGE2 secretion, high basal IL-6 secretion

or PGE2 mediated induction of IL-6 secretion, are not necessarily

hallmarks of tumor promoting fibroblasts.

IL-6 is necessary but not sufficient for tumor-promoting
fibroblasts to expand stem-like cells

It has been reported that IL-6 enhances aggressive, stem-like

features in sphere-forming populations of human mammary

epithelial cells [45], and mediates a positive feedback loop that

maintains oncogenic transformation [46]. Thus, we suspected it

might be an essential cytokine produced by fibroblasts that is

required for expansion of CD44+/CD242/EpCAM+ cells. To test

this, we exposed MCF7 cells to CM from PGE2- or vehicle

(EtOH) treated fibroblasts from tissue sample A and tissue sample

I for 6 days in the presence of an IL-6 neutralizing antibody (aIL-

6) or goat IgG control. Quantifying the percentage of CD44+/

CD242/EpCAM+ cells by FACS revealed that PGE2 significantly

enhanced the ability of fibroblasts from tissue sample A to support

expansion of CD44+/CD242/EpCAM+ cells (p = 0.003, Fig. 4C)

in an IL-6 dependent manner, as the expansion was attenuated in

the presence of an IL-6 neutralizing antibody (aIL-6, p = 0.0004).

PGE2 did not enhance the ability of fibroblasts from tissue sample

I to support CD44+/CD242/EpCAM+ cell expansion, despite

some IL-6 present in the CM (Fig. 4C).

Given that IL-6 is necessary for fibroblast mediated expansion

of CD44+/CD242/EpCAM+ cells, we asked if IL-6 was sufficient

to confer this expansion. We treated MCF7 cells with 10 ng/mL

recombinant human IL-6 or 0.1% BSA (vehicle), in either the

presence or absence of 0.5 mM PGE2 or EtOH (vehicle).

Interestingly, IL-6 alone, or in combination with 0.5 mM PGE2,

was not sufficient to expand CD44+/CD242/EpCAM+ MCF7

cells, unlike 1 nM E2 (Fig. 4D). Also, IL-6 alone was not sufficient

to confer increases in MCF7 tumorsphere formation (Fig. 4E). To

confirm that MCF7 cells were capable of signaling through IL-6,

we exposed MCF7 cells for 30 min to CM from PGE2 or EtOH

treated fibroblasts of differing tumor-promoting capabilities, in the

presence of an IL-6 neutralizing antibody or goat IgG control, and

immunoblotted for the levels of phosphorylated STAT3 as an

indicator of the IL-6 signaling pathway. pSTAT3 levels were

higher in MCF7 cells exposed to CM from PGE2-treated

fibroblasts from patient sample A as compared to CM from

PGE2-treated fibroblasts from tissue sample I, and this was

abrogated by addition of aIL-6. Moreover, 0.5 mM PGE2 was not

sufficient to induce pSTAT3 expression, unlike the addition of

10 ng/mL recombinant human IL-6 (Fig. 4F). Collectively, these

data indicate that IL-6 is enriched in CM from several patient

tissue-derived fibroblasts, secreted by fibroblasts in response to

PGE2, and is necessary, but not sufficient, for fibroblast-mediated

expansion of CD44+/CD242/EpCAM+ MCF7 cells.

Discussion

Several studies have implicated fibroblasts as potent tumor

promoting stromal cells through their ability to modulate the

tumor microenvironment [16] and to promote the growth of

cancer cells [10,13,14,15,47]. However, there also exists substan-

tial evidence that fibroblasts from disease-free tissues have potent

tumor suppressive properties [48]. The characteristics of these

fibroblasts that contribute to either a tumor promoting or tumor

suppressive phenotype remain to be reconciled. In this study, we

identified both fibroblast mediated PGE2 secretion and autocrine

PGE2 signaling as a novel tumor promoting characteristic of these

cells. Moreover, we identify a novel tumor promoting mechanism

of these cells that is enhanced upon exposure to PGE2: the ability

to secrete factors (such as IL-6) that are essential for the expansion

of CD44+/CD242/EpCAM+ breast cancer cells.

There exist a number of citations to substantiate the notion that

fibroblasts harvested from resected breast tumor specimens are

aSMA+ and promote tumor growth in vivo (reviewed by [11,12].

These cells, commonly referred to as cancer associated fibroblasts

(CAFs), lack specific markers to discriminate them from fibroblasts

isolated from disease free tissues, because these normal fibroblast

counterparts acquire the expression of aSMA when grown in vitro.

Despite this, aSMA has become a widely used marker to

discriminate these cells. We harvested both types of fibroblasts:

Figure 2. Fibroblast mediated tumor promotion in vivo correlates with PGE2 secretion in vitro. (A) Resected tumors from mice inoculated
with a co-mix of tissue-derived fibroblasts from 5 different patients (A, C, E, I, K) and MCF7 breast cancer cells, or MCF7 cells injected alone (none).
Scale bar, 3 mm. Bottom left, tumor weights from mice inoculated with a co-mix of tissue-derived fibroblasts from 5 different patients (A, C, E, I, K)
and MCF7 breast cancer cells, or MCF7 cells injected alone (none). Statistics were performed using a single factor ANOVA, p = 0.045). Bottom right,
average tumor volume (mm3) from mice inoculated with a co-mix of tissue-derived fibroblasts from 5 different patients (A, C, E, I, K) and MCF7 breast
cancer cells, or MCF7 cells injected alone (none), assessed over 16 weeks. Statistics were performed using a Kruskal-Wallis nonparametric ANOVA
(p = 0.02) followed by a two-tailed t test of means, comparing the volume of tumors derived from MCF7s co-mixed with patient sample K to those
derived from MCF7s co-mixed with patient sample I (p = 0.004). Error bars, SEM. (B) Tumor incidence from mice inoculated with a co-mix of tissue-
derived fibroblasts from 5 different patients (A, C, E, I, K) and MCF7 breast cancer cells, or MCF7 cells injected alone (none). (C) Cox-2 and Cox-1
western blots of lysates prepared from various tissue-derived fibroblasts. Human mammary epithelial cells (HMECs) are shown as a positive control for
Cox-2. (D) PGE2- based immunoassay of CM from various tissue-derived fibroblasts. PGE2 concentrations are determined by a set of control standards
of known concentration, according to the manufacturer’s instructions. Statistics were performed using a single factor ANOVA (p = 2.84610212). Error
bars, SEM.
doi:10.1371/journal.pone.0024605.g002
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fibroblasts from human breast tumors (CAFs), and fibroblasts from

disease free reduction mammoplasty tissues. Both sources of

fibroblasts expressed the fibroblast markers vimentin, prolyl-4-

hydroxylase, and aSMA to unifying degrees in vitro, and both were

largely negative for breast epithelium specific cytokeratins CK18

and CK14.

Despite similar fibroblast marker expression in vitro, both sources

of fibroblasts had differences in their tumor promoting abilities in

vivo. Because tumor-promoting ability of our fibroblast populations

did not associate with any differences in marker expression

examined, nor did it associate with tissue source, we sought for

other characteristics of fibroblasts that may influence fibroblast

tumor promoting abilities. Because fibroblasts isolated from

dysplastic mouse skin support squamous cell carcinoma growth

in vivo through pro-inflammatory cytokine secretion [15], we

suspected that inflammatory mediators differ among the various

patient derived fibroblasts, which ultimately influence their

varying degrees of tumor promotion. Indeed, we found an

association between tumor promoting ability in vivo and high

PGE2 secretion in vitro. In addition, the ability to secrete PGE2

associates with the ability to expand CD44+/CD242/EpCAM+

breast cancer cells.

Interestingly, PGE2 alone was not sufficient to confer the

expansion of these cells, despite MCF7 expression of the

prostanoid receptors. PGE2 enhanced the inherent tumor

promoting abilities of fibroblasts as shown by in vitro tumorsphere

assays, and in vivo MCF7 limiting dilution experiments. Our data

suggest that this is largely due to the increased secretion of IL-6 in

response to PGE2, consistent with previous reports [49]. The

secretion of IL-6 by fibroblasts was necessary for expansion of

CD44+/CD242/EpCAM+ cells. Because this particular cell

population has been shown to contribute to tumorsphere

formation and seed tumor growth at limiting dilution [43,50],

we suspect that PGE2- mediated IL-6 secretion by fibroblasts was

largely responsible for the increased MCF7 tumorsphere forma-

tion and tumor formation observed upon exposure to fibroblast

CM.

Despite the requirement for IL-6 in mediating the tumor

promoting abilities of fibroblasts, we found that IL-6 alone was not

sufficient for expansion of CD44+/CD242/EpCAM+ cells in the

MCF7 cell line. This is in contrast to previous reports using

different breast cancer cell lines [46,51]. IL-6 has been implicated

in a positive feedback loop that perpetuates cellular transformation

through NFkB [46], which may drive the secretion of the other

necessary cytokines (in addition to IL-6) that are required for the

induction and maintenance of this aggressive cell state. We failed

to see activation of NFkB in response to CM from various tissue-

derived fibroblasts (data not shown), suggesting that this feedback

mechanism may not be activated in these cells, or only activated in

various subpopulations (i.e. CD44+/CD242/EpCAM+ cells).

The basal level of IL-6 varied widely among patient derived

breast fibroblasts, and also increased with passage number,

consistent with previous reports using primary fibroblasts [52].

However, neither the basal secretion of IL-6 nor the induced

secretion of IL-6 by PGE2 in fibroblasts correlated with fibroblast

tumor promoting ability in vivo or their ability to expand CD44+/

CD242/EpCAM+ cells in vitro. This is consistent with the notion

that IL-6 is required, but is not sufficient for expansion of CD44+/

CD242/EpCAM+ cells, nor is it sufficient for tumorsphere

formation. In addition, although IGF-II was significantly induced

by fibroblasts exposed to PGE2 more so than IL-6, we failed to

observe a requirement for this cytokine in expansion of CD44+/

CD242/EpCAM+ cells (data not shown). In lieu of these data, we

speculate that a certain stoichiometric balance of specific cytokines

is required to promote the expansion of these cells. This

stoichiometric balance may be obtained in vivo by secreted factors

from tumor cells as well as inflammatory cells in the tumor

microenvironment. It therefore follows that non-tumor promoting

fibroblasts (i.e., those with very low PGE2 secretion; i.e. tissue

sample I) perhaps lack the ability to activate certain pathways

downstream of PGE2 that modulate the balance of cytokine

secretion required for CD44+/CD242/EpCAM+ cell expansion

and tumor promoting ability in vivo. Further studies are needed to

determine what precise signaling pathways are activated in stromal

fibroblasts that activate Cox-2 expression and increase PGE2 and

IL-6 secretion. Interestingly, recent studies have shown that PTEN

loss in stromal fibroblasts significantly enhances fibroblast tumor

promoting ability through upregulation of genes associated with

ECM remodeling, wound healing and inflammatory responses

[53]. Further investigation into the activation of the PI3K/Akt,

Ras, and JNK pathways in stromal fibroblasts will elucidate which,

if any, of these molecular players are upstream of PGE2 and IL-6

secretion in these cells.

Since PGE2 enhanced fibroblast secretion of IL-6, it is plausible

that PGE2 also induces secretion of other cytokines yet to be

identified that together in concert with IL-6 orchestrate the

process of CD44+/CD242/EpCAM+ cell expansion. For exam-

ple, SDF1a is a growth factor secreted by myofibroblasts [10] that

promotes breast cancer cell growth [54] as well as expansion of

CD44+/CD242 cells [55], and may be upregulated by PGE2 [56].

Also, IL-8 increases tumorsphere forming ability and the

percentage of ALDEFLUOR-positive breast cancer cells, which

enriches for cancer stem-like cell populations [57]. Further studies

are needed to elucidate if these cytokines contribute to IL-6

mediated expansion of CD44+/CD242/EpCAM+ cells.

In summary, our results indicate that the pro-inflammatory,

tumor-promoting phenotype of fibroblasts correlates with the

ability to secrete PGE2 and respond to PGE2 signaling. We were

unable to identify differential expression of well-established

markers of CAFs and tumor-promoting fibroblasts that correlated

Figure 3. PGE2 enhances the tumor promoting properties of breast tissue-derived fibroblasts. (A) CM from various patient derived
fibroblasts (E, F, J, K) were used to culture MCF7s for 6 days. The average percentage of CD44+/CD242/EpCAM+ cells was then assayed by FACS.
Statistics were performed using a single factor ANOVA (p = 0.007) followed by a Student’s two-tailed t test of means: E vs. K, p = 0.007; F vs. K,
p = 0.005; J vs. K, p = 0.01. Error bars, SEM. (B) MCF7 cells were cultured in either PRF-DMEM+10% CD-FBS supplemented with 1 nM E2 (positive
control), 0.5 mM PGE2, or vehicle for 6 days. The average percentage of CD44+/CD242/EpCAM+ cells was assayed by FACS. Data is plotted as average
of 3 independent experiments. Statistics were performed using a Student’s two tailed t test of means: EtOH vs. PGE2, p = 0.001. Error bars, SEM. (C)
Quantification of MCF7 tumorspheres formed in the presence of CM from PGE2- or EtOH- fibroblasts from patient samples A, C, K, and I.
Quantification was performed using a Beckman Coulter Multisizer and plotted as a fold induction over vehicle. Statistics were performed using a
single factor ANOVA (p = 3.2561025) followed by a Student’s two-tailed t test of means comparing EtOH vs PGE2 for each patient sample: A,
p = 0.014; C, p = 0.001; K, p = 0.0006; I, not significant). Error bars, SEM. (D), Tumor growth curves of 104 MCF7 cells primed in vitro with CM from PGE2-
treated fibroblasts from patient sample A (A-PGE2 CM) or CM from PGE2-treated fibroblasts from patient sample I (I-PGE2 CM). Statistics were
generated using a Student’s two-tailed t-test of means; p = 0.03. Error bars, SEM (E) Top, H&E stains and immunohistochemical analysis (E-cadherin,
ER, CK8/18, p53) of tumors (2006). Scale bar, 50 mm. Bottom, quantification of the percentage of p53 positive cells within a given field based on the
tumor sections from (D) Statistics were performed using a Student’s two-tailed t-test of means, p = 0.02).
doi:10.1371/journal.pone.0024605.g003
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Figure 4. Tissue-derived fibroblasts secrete IL-6, which is necessary, but not sufficient, for the expansion of CD44+/CD242/ESA+

cells. (A) Immunoblot for IL-6 expression in CM from tissue derived fibroblasts (from patient samples C, A, G) exposed to either EtOH (vehicle) or
0.5 mM PGE2. (B) CM from various tissue derived fibroblasts treated with either 0.5 mM PGE2 or EtOH (vehicle) were assayed for the levels of IL-6
secretion using a human IL-6 ELISA. Concentration is normalized to the cell number post treatment and plotted as the geometric mean of the fold
induction (in arbitrary units). Error bars, SEM. (C) Quantification of the average percentage of CD44+/CD242/EpCAM+ MCF7 cells after 6 day exposure
to CM from PGE2 or EtOH treated fibroblasts from patient sample A (A-CM), or CM from PGE2 or EtOH treated fibroblasts from patient sample I (I-CM)
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with their observed tumor promoting phenotypes. Moreover, we

failed to identify a correlation between fibroblasts isolated from

invasive carcinomas (either ER+ or ER2) and a high PGE2

secreting, tumor promoting phenotype, as compared to those

isolated from reduction mammoplasty tissues. Our results suggest

that tumor promoting fibroblasts secrete PGE2 and mediate

autocrine PGE2 signaling, thereby activating the increased

secretion of IL-6, which is required for expansion of breast cancer

stem-like cells. In fact, our results suggest that the tumor

promoting ability of fibroblasts associates moreso with PGE2

secretion and signaling than if these fibroblasts are derived from

diseased tissues. The identification of specific markers for these

tumor promoting fibroblasts would likely allow for the observation

of more robust phenotypic discrepancies between various

fibroblast tissue sources, and would possibly discriminate among

patients that would likely benefit from tumor-associated stroma

drug targeting strategies for use as adjuvant therapies in the

treatment of human breast cancers.

Supporting Information

Figure S1 Characterization of patient derived fibro-
blasts from human breast tumor tissues and reduction
mammoplasty tissues. (A) Immunofluorescence results for the

expression of mesenchymal markers vimentin and prolyl-4-

hydroxylase (P4H), and myofibroblast/cancer associated fibroblast

markers aSMA and Caveolin-1, in tissue-derived fibroblasts from

patient samples A, C, E, I, M, N, and K. Nuclei are stained with

DAPI. Scale bar, 50 mm. (B) Immunofluorescence results for the

expression of the breast epithelial marker CK18 in tissue-derived

fibroblasts from patient sample C, which showed high transcript

levels of CK18 in Fig. 1A. MCF7 cells are a positive control.

(TIF)

Figure S2 Tissue-derived fibroblasts express Cox-2
transcript and the prostanoid receptors. (A) Quantitative

RT-PCR for the relative levels of Cox-2 transcript in tissue derived

fibroblasts from patient samples A, N, I, and F. MCF7 and

SUM1315 breast cancer cells serve as negative and positive

controls for Cox-2 expression, respectively. (B) Western blot for

EP1, EP2, EP3 and EP4 expression in lysates extracted from

tissue-derived fibroblasts (patients A and I), MCF7 and HCC1428

breast cancer cell lines.

(TIF)

Figure S3 PGE2 enhances the ability of fibroblasts to
expand CD44+/CD242/ESA+ cells. FACS dot plots of MCF7

cells treated with CM from tissue derived fibroblasts (patient

samples I and A) treated with EtOH (vehicle) or 0.5 mM PGE2.

Cell populations are gated first for EpCAM+, then for CD44+ and

CD242.

(TIF)

Figure S4 Basal levels of IL-6 in various patient derived
fibroblasts. (A) Cytokine array results of CM from PGE2 and

EtOH (vehicle) treated fibroblasts (from patient sample A). Data is

plotted as a normalized fold induction over vehicle. (B)

Quantification of the average basal levels of IL-6 secretion by

various patient-derived fibroblasts using a human IL-6 ELISA. IL-

6 secretion was normalized to the total number of fibroblasts

present at the time of CM harvest.

(TIF)

Table S1 Primer sequences used for quantitative RT-
PCR.

(PDF)

Acknowledgments

The authors wish to thank Annette Shepard-Barry at Tufts Medical Center

in the Histology-Special Procedures Lab for histological and immunohis-

tochemical staining. We also thank Drs. Christine Fillmore, Patricia Keller

and Jessica McCready for many insightful discussions.

Author Contributions

Conceived and designed the experiments: JR PG CK. Performed the

experiments: JR LA IK JH VI. Analyzed the data: JR PG CK. Contributed

reagents/materials/analysis tools: PG SN CK. Wrote the paper: JR CK.

References

1. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6: 392–401.

2. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor

stroma generation and wound healing. N Engl J Med 315: 1650–1659.

3. Bellini A, Mattoli S (2007) The role of the fibrocyte, a bone marrow-derived

mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 87: 858–870.

4. Desmouliere A, Chaponnier C, Gabbiani G (2005) Tissue repair, contraction,

and the myofibroblast. Wound Repair Regen 13: 7–12.

5. Baglole CJ, Ray DM, Bernstein SH, Feldon SE, Smith TJ, et al. (2006) More

than structural cells, fibroblasts create and orchestrate the tumor microenviron-

ment. Immunol Invest 35: 297–325.

6. Silzle T, Randolph GJ, Kreutz M, Kunz-Schughart LA (2004) The fibroblast:

sentinel cell and local immune modulator in tumor tissue. Int J Cancer 108:

173–180.

7. Arendt LM, Rudnick JA, Keller PJ, Kuperwasser C (2010) Stroma in breast

development and disease. Semin Cell Dev Biol 21: 11–18.

8. Bechtel W, McGoohan S, Zeisberg EM, Muller GA, Kalbacher H, et al. (2010)

Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat

Med 16: 544–550.

9. Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts and

mechanism of cardiac fibrosis. J Cell Physiol 225: 631–637.

10. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, et al. (2005)

Stromal fibroblasts present in invasive human breast carcinomas promote tumor

growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:

335–348.

11. Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-

promoting cell type. Cell Cycle 5: 1597–1601.

12. Shimoda M, Mellody KT, Orimo A (2010) Carcinoma-associated fibroblasts are a

rate-limiting determinant for tumour progression. Semin Cell Dev Biol 21: 19–25.

13. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, et al. (1999)

Carcinoma-associated fibroblasts direct tumor progression of initiated human

prostatic epithelium. Cancer Res 59: 5002–5011.

14. Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, et al. (2008)

Cancer-associated stromal fibroblasts promote pancreatic tumor progression.

Cancer Res 68: 918–926.

15. Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-Associated

Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-

in the presence of either goat IgG (control) or 1.5 mg/ml IL-6 neutralizing antibody. Statistics were performed using a Student’s two-tailed t test of
means: A-CM, EtOH vs. PGE2, p = 0.003; A-CM, PGE2 vs. a-IL6, p = 0.0004; I-CM, EtOH vs. PGE2, not significant. Error bars, SEM. (D) Quantification of the
average percentage of CD44+/CD242/EpCAM+ MCF7 cells after 6 day exposure to either 0.1% BSA (vehicle) or 10 ng/ml recombinant human IL-6,
alone or in combination with 0.5 mM PGE2 or EtOH (vehicle). Error bars, SEM. (E) Quantification of MCF7 tumorspheres formed in the presence of
DMEM+0.1% BSA (vehicle) or 10 ng/ml IL-6. Quantification was performed using a Multisizer-3 coulter counter. (F) Western blot of pSTAT3 and total
STAT3 in lysates of MCF7 cells exposed for 30 min to CM from fibroblasts from patient A (A-CM) or fibroblasts from patient I (I-CM) treated with either
EtOH, PGE2, or PGE2 plus 1.5 mg/ml a-IL6. MCF7 cells exposed for 30 min to DMEM+EtOH, PGE2 or 10 ng/ml IL-6 are shown as negative and positive
controls for pSTAT3, respectively.
doi:10.1371/journal.pone.0024605.g004

Heterogeneity of Human Breast Fibroblasts

PLoS ONE | www.plosone.org 12 September 2011 | Volume 6 | Issue 9 | e24605



Promoting Inflammation in an NF-kappaB-Dependent Manner. Cancer Cell 17:

135–147.

16. Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA (2009) Cancer associated

fibroblasts promote tumor growth and metastasis by modulating the tumor
immune microenvironment in a 4T1 murine breast cancer model. PLoS One 4:

e7965.

17. Fries KM, Blieden T, Looney RJ, Sempowski GD, Silvera MR, et al. (1994)

Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in
fibrosis. Clin Immunol Immunopathol 72: 283–292.

18. Jelaska A, Strehlow D, Korn JH (1999) Fibroblast heterogeneity in physiological
conditions and fibrotic disease. Springer Semin Immunopathol 21: 385–395.

19. Ko SD, Page RC, Narayanan AS (1977) Fibroblast heterogeneity and

prostaglandin regulation of subpopulations. Proc Natl Acad Sci U S A 74:

3429–3432.

20. Korn JH, Torres D, Downie E (1984) Clonal heterogeneity in the fibroblast
response to mononuclear cell derived mediators. Arthritis Rheum 27: 174–179.

21. Tipton DA, Stricklin GP, Dabbous MK (1991) Fibroblast heterogeneity in
collagenolytic response to cyclosporine. J Cell Biochem 46: 152–165.

22. Bauer M, Su G, Casper C, He R, Rehrauer W, et al. (2010) Heterogeneity of
gene expression in stromal fibroblasts of human breast carcinomas and normal

breast. Oncogene 29: 1732–1740.

23. Micke P, Ostman A (2005) Exploring the tumour environment: cancer-

associated fibroblasts as targets in cancer therapy. Expert Opin Ther Targets 9:
1217–1233.

24. Sugimoto H, Mundel TM, Kieran MW, Kalluri R (2006) Identification of

fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5:

1640–1646.

25. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:

46–54.

26. Radisky D, Hagios C, Bissell MJ (2001) Tumors are unique organs defined by
abnormal signaling and context. Semin Cancer Biol 11: 87–95.

27. Radisky DC, Kenny PA, Bissell MJ (2007) Fibrosis and cancer: do
myofibroblasts come also from epithelial cells via EMT? J Cell Biochem 101:

830–839.

28. Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ (1995) The origin of

the myofibroblasts in breast cancer. Recapitulation of tumor environment in
culture unravels diversity and implicates converted fibroblasts and recruited

smooth muscle cells. J Clin Invest 95: 859–873.

29. Ronnov-Jessen L, van Deurs B, Celis JE, Petersen OW (1990) Smooth muscle

differentiation in cultured human breast gland stromal cells. Lab Invest 63:
532–543.

30. Webber J, Steadman R, Mason MD, Tabi Z, Clayton A (2010) Cancer
exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70:

9621–9630.

31. Hu M, Peluffo G, Chen H, Gelman R, Schnitt S, et al. (2009) Role of COX-2 in

epithelial-stromal cell interactions and progression of ductal carcinoma in situ of
the breast. Proc Natl Acad Sci U S A 106: 3372–3377.

32. Dotto GP, Weinberg RA, Ariza A (1988) Malignant transformation of mouse

primary keratinocytes by Harvey sarcoma virus and its modulation by

surrounding normal cells. Proc Natl Acad Sci U S A 85: 6389–6393.

33. Keller PJ, Lin AF, Arendt LM, Klebba I, Jones AD, et al. (2010) Mapping the

cellular and molecular heterogeneity of normal and malignant breast tissues and
cultured cell lines. Breast Cancer Res 12: R87.

34. Proia DA, Kuperwasser C (2006) Reconstruction of human mammary tissues in

a mouse model. Nat Protoc 1: 206–214.

35. Ronnov-Jessen L, Petersen OW (1993) Induction of alpha-smooth muscle actin

by transforming growth factor-beta 1 in quiescent human breast gland
fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab

Invest 68: 696–707.

36. Desmouliere A, Rubbia-Brandt L, Abdiu A, Walz T, Macieira-Coelho A, et al.

(1992) Alpha-smooth muscle actin is expressed in a subpopulation of cultured
and cloned fibroblasts and is modulated by gamma-interferon. Exp Cell Res

201: 64–73.

37. Sotgia F, Del Galdo F, Casimiro MC, Bonuccelli G, Mercier I, et al. (2009)

Caveolin-12/2 null mammary stromal fibroblasts share characteristics with
human breast cancer-associated fibroblasts. Am J Pathol 174: 746–761.

38. Witkiewicz AK, Dasgupta A, Sotgia F, Mercier I, Pestell RG, et al. (2009) An

absence of stromal caveolin-1 expression predicts early tumor recurrence and
poor clinical outcome in human breast cancers. Am J Pathol 174: 2023–2034.

39. Trimmer C, Sotgia F, Whitaker-Menezes D, Balliet RM, Eaton G, et al. (2011)
Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors

in the stromal microenvironment: a new genetically tractable model for human

cancer associated fibroblasts. Cancer Biol Ther 11: 383–394.
40. Meric JB, Rottey S, Olaussen K, Soria JC, Khayat D, et al. (2006)

Cyclooxygenase-2 as a target for anticancer drug development. Crit Rev Oncol
Hematol 59: 51–64.

41. Ricciotti E, Fitzgerald GA (2010) Prostaglandins and inflammation. Arterioscler
Thromb Vasc Biol 31: 986–1000.

42. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003)

Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad
Sci U S A 100: 3983–3988.

43. Fillmore CM, Gupta PB, Rudnick JA, Caballero S, Keller PJ, et al. (2010)
Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3

signaling. Proc Natl Acad Sci U S A 107: 21737–21742.

44. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, et al. (2007)
Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis.

Nature 447: 1007–1011.
45. Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, et al. (2007) IL-6

triggers malignant features in mammospheres from human ductal breast
carcinoma and normal mammary gland. J Clin Invest 117: 3988–4002.

46. Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-

kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell
transformation. Cell 139: 693–706.

47. Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, et al. (2010) Autocrine
TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the

evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl

Acad Sci U S A 107: 20009–20014.
48. Proia DA, Kuperwasser C (2005) Stroma: tumor agonist or antagonist. Cell

Cycle 4: 1022–1025.
49. Singh A, Purohit A, Ghilchik MW, Reed MJ (1999) The regulation of aromatase

activity in breast fibroblasts: the role of interleukin-6 and prostaglandin E2.
Endocr Relat Cancer 6: 139–147.

50. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain

stem-like cells that self-renew, give rise to phenotypically diverse progeny and
survive chemotherapy. Breast Cancer Res 10: R25.

51. Iliopoulos D, Hirsch HA, Wang G, Struhl K (2011) Inducible formation of
breast cancer stem cells and their dynamic equilibrium with non-stem cancer

cells via IL6 secretion. Proc Natl Acad Sci U S A 108: 1397–1402.

52. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, et al. (2008) Senescence-
associated secretory phenotypes reveal cell-nonautonomous functions of

oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6: 2853–2868.
53. Trimboli AJ, Cantemir-Stone CZ, Li F, Wallace JA, Merchant A, et al. (2009)

Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461:
1084–1091.

54. Marlow R, Strickland P, Lee JS, Wu X, Pebenito M, et al. (2008) SLITs suppress

tumor growth in vivo by silencing Sdf1/Cxcr4 within breast epithelium. Cancer
Res 68: 7819–7827.

55. Huang M, Li Y, Zhang H, Nan F (2010) Breast cancer stromal fibroblasts
promote the generation of CD44+CD242 cells through SDF-1/CXCR4

interaction. J Exp Clin Cancer Res 29: 80.

56. Katoh H, Hosono K, Ito Y, Suzuki T, Ogawa Y, et al. (2010) COX-2 and
prostaglandin EP3/EP4 signaling regulate the tumor stromal proangiogenic

microenvironment via CXCL12-CXCR4 chemokine systems. Am J Pathol 176:
1469–1483.

57. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, et al. (2009)

Breast cancer cell lines contain functional cancer stem cells with metastatic
capacity and a distinct molecular signature. Cancer Res 69: 1302–1313.

Heterogeneity of Human Breast Fibroblasts

PLoS ONE | www.plosone.org 13 September 2011 | Volume 6 | Issue 9 | e24605


