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Abstract

Over half a century ago, George Zipf observed that more frequent words tend to be older. Corpus
studies since then have confirmed this pattern, with more frequent words being replaced and regularized
less often than less frequent words. Two main hypotheses have been proposed to explain this: that
frequent words change less because selection against innovation is stronger at higher frequencies, or
that they change less because stochastic drift is stronger at lower frequencies. Here, we report the first
experimental test of these hypotheses. Participants were tasked with learning a miniature language
consisting of two nouns and two plural markers. Nouns occurred at different frequencies and were
subjected to treatments that varied drift and selection. Using a model that accounts for participant
heterogeneity, we measured the rate of noun regularization, the strength of selection, and the strength
of drift in participant responses. Results suggest that drift alone is sufficient to generate the elevated
rate of regularization we observed in low-frequency nouns, adding to a growing body of evidence that
drift may be a major driver of language change.
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1. Introduction

George Zipf noted a series of statistical regularities in natural languages (Zipf, 1949). Best
known among these is the power law linking word frequency and rank (Moreno-Sanchez
et al., 2016; Piantadosi, 2014). Another well-known regularity is the negative correlation
between word frequency and length (Kanwal et al., 2017; Mahowald et al., 2013; Pianta-
dosi et al., 2011; Sigurd et al., 2004). Indeed, similar patterns have been found in some forms
of animal communication (McCowan et al., 1999; McCowan et al., 2005; Suzuki et al., 2005).
But Zipf also made the less well-known observation that “the less frequent words contain an
increasing proportion of the later adoptions” (Zipf, 1949, p. 12), meaning that rare words are
more likely to be recent borrowings or coinages. Recent studies have confirmed that frequent
words have lower rates of replacement and regularization (Pagel et al., 2007; Lieberman et al.,
2007; Gray et al., 2018). For example, the word for “two” is a frequently occurring term that
is a cognate across all Indo-European languages; in contrast, words for “tail” are low fre-
quency and are often unrelated. Similarly, high-frequency past-tense verbs in English tend
to retain their irregular form (e.g., go/went) more than less frequently occurring ones (e.g.,
climb/climbed).

However, it is not clear why frequency of use should predict rates of lexical regulariza-
tion and replacement. Zipf hypothesized that this pattern results from a trade-off between
the pressure for successful communication and the pressure for efficiency (Zipf, 1949). That
is, words that occur more frequently serve a greater communicative need and are thus under
stronger pressure not to be replaced or regularized. In cultural evolutionary terms, this is to
say that the pattern is driven by selection. Selection in this context is any directional bias in
the acquisition, processing, or production of language (e.g., a preference for one form over
alternative forms for the same meaning). Several studies have found evidence for selection
in language change (Amato et al., 2018; Sindi & Dale, 2016; Stadler et al., 2016). Selec-
tion could be responsible for the lower rate of regularization among high-frequency words
if selection against innovations is stronger during the acquisition, recall, or production of
high-frequency terms (Pagel et al., 2007).

Although many social, cognitive, and linguistic factors can give rise to selection in this
sense, an important and simple source of selection is relative frequency during language learn-
ing. When two alternative forms for the same meaning occur at different relative frequencies,
both child and adult language learners tend to regularize by eliminating the less frequent of
the two forms (Hudson Kam & Newport, 2005; Hudson Kam & Newport, 2009; Reali &
Griffiths, 2009; Smith & Wonnacott, 2010; Smith et al., 2017). Such a bias in favor of more
frequent forms is itself a source of selection. Relative frequency may also interact with and
bolster the effects of other linguistic or social sources of selection (Labov, 2001). If biases
of this kind are stronger for more frequent words, then this will further contribute to regu-
larization being lower among high-frequency words. In other words, the negative correlation
between word frequency and regularization could be driven primarily by selection.

But another possibility is that the pattern is simply driven by drift, with infrequent words
regularizing and being replaced more by chance because sampling variance is greater at lower
frequencies (Newberry et al., 2017; Reali & Griffiths, 2010). By “drift,” we mean any source
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of unbiased stochasticity, or sampling error, in the acquisition, processing, or production of
language. Several studies have detected signatures of drift in language change (Bentley, 2008;
Hahn & Bentley, 2003; Newberry et al., 2017). A similar mechanism could explain the higher
rate of regularization among low-frequency words. Drift is stronger at lower frequencies as
a consequence of the statistical fact that sampling error is stronger in smaller samples. As
language learners sample a finite set of language-related stimuli, variance in the frequency of
alternative forms that language learners encounter is greater for lower frequency words. As
a result, language learners may be more likely to acquire one form at the expense of another
when words occur at low frequencies. For example, if English speakers were to choose past-
tense forms in proportion to how often they encountered each form during learning, then
one might win out simply as a result of chance leading it to be encountered more often than
others. Over generations, this would lead the population to converge on a single past-tense
form. The process of converging on a single form would be faster among infrequently occur-
ring verbs so that regularization—understood as loss of variation—would happen faster for
rare verbs. Because of the relationship between frequency and sampling error, regulariza-
tion and replacement may thus occur to a greater extent in less frequent words as a result of
drift.

Both hypotheses are plausible, and the few studies on this question have been inconclusive
(Lieberman et al., 2007; Newberry et al., 2017; Pagel et al., 2007). Pagel et al. (2007), for
example, found evidence for the inverse correlation between frequency of use and rate of
change across different parts of speech in four different Indo-European languages (English,
Greek, Spanish, and Russian) but could only speculate on what gives rise to this pattern.
Similarly, Lieberman et al. (2007) found strong support for the existence of this pattern in the
regularization of English past-tense verbs over the past 1,200 years but could not provide an
explanation for the pattern. Likewise examining the regularization of English past-tense verb,
Newberry et al. (2017) were able to detect signatures of selection in some cases (e.g., wove
→ weaved) but not in others (e.g., spilt → spilled). More importantly, however, their study
was not designed to determine whether the overall inverse correlation between frequency of
use and rate of change is due to drift or selection.

Moreover, these studies were based on corpus data. Corpus studies deal with recorded data
from natural languages, but they cannot easily track the entire trajectory of a language or con-
trol the many different factors that affect language change (cf. Galantucci et al., 2012). Fur-
thermore, corpus-based methods for inferring drift and selection can be sensitive to choices of
data binning: A test for selection versus a null hypothesis of neutral drift was shown to depend
on whether a corpus is parsed into time intervals of an equal amount of data or equal duration
of time (Karjus et al., 2020). Different results were also obtained in a binary classification of
drift versus selection when analyzing the same corpus with a deep neural network (Karsdorp
et al., 2020).

A solution is to complement such corpus-based approaches with experimental studies
that permit greater control of relevant factors and that eliminate questions of data binning.
Artificial-language experiments in particular allow the entire trajectory of the language to
be recorded (Roberts, 2017). Such experiments also make it possible to isolate different
linguistic, social, and communicative factors that affect language learning and to control
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and manipulate them (Culbertson & Schuler, 2019; Folia et al., 2010; Kanwal et al., 2017;
Roberts & Sneller, 2020). This allows the problem of potential confounds to be reduced and
causal relationships to be identified more easily. Such experiments are thus a very important
tool for understanding the role of frequency effects in language change.

We here report the first such experiment designed explicitly to quantify the role of drift
and selection in the relationship between word frequency and regularization. The experi-
ment focuses specifically on drift and selection in learning, which is widely considered to
be an important driver of language change (Ferdinand et al., 2019; Kroch, 2005; Lightfoot,
2010; Labov, 2011; Sneller et al., 2019). Indeed, language-learning experiments have already
revealed several factors—e.g., age, memory, and multigenerational transmission—that up-
or down-regulate language change during acquisition (Ferdinand et al., 2019; Hudson Kam
& Newport, 2005; Kirby et al., 2015; Perfors, 2012; Reali & Griffiths, 2009; Samara et al.,
2017; Smith & Wonnacott, 2010). Similar experiments have also examined the role of drift
and selection in the emergence of simple communication systems (Tamariz et al., 2014). But
no experiment to date has investigated if it is drift or selection that drives the negative corre-
lation between frequency of use and regularization.

To study this, we conducted an experiment in which participants were tasked with learning
a miniature artificial language. The language consisted of two nouns and two plural markers.
During language acquisition, participants encountered nouns that occurred at different fre-
quencies and plural markers that were associated with nouns at different relative frequencies.
Participants were therefore subjected to drift and selection of varying strengths. By measur-
ing the regularization of plural marking in the language, we were then able to determine
whether low-frequency nouns did in fact regularize more than high-frequency nouns and,
if so, whether it was drift or selection that was responsible for the greater regularization
of low-frequency nouns. Our experimental setup, therefore, allowed us to test three main
hypotheses: First, that greater regularization of low-frequency words results from stronger
drift on low-frequency words (Hypothesis 1); second, that greater regularization of low-
frequency words results from stronger selection on high-frequency words (Hypothesis 2); and
third, that greater regularization of low-frequency words results from both selection and drift
(Hypothesis 3).

2. Method

Our experiment was pre-registered with the Open Science Foundation (https://osf.io/
72kqa).

2.1. Participants

We recruited 400 participants through Prolific. To be eligible, participants had to report
English as a native language. Participants were informed that this was a study on an alien lan-
guage and were asked to give their consent before taking part in the experiment. Participants
were paid a base rate of $1.00 for participating in the study and told that they would receive a

https://osf.io/72kqa
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50% bonus depending on the accuracy of their answers; in reality, all participants who com-
pleted the study were given the 50% bonus. Data from participants who were more than two
standard deviations in either direction from the mean completion time were discarded. There
were 10 such participants.

2.2. Alien Language

Participants were trained on an artificial language composed of nouns for two different
referents embedded in an English sentence. To facilitate learning, each noun consisted of a
root with two syllables. Each root syllable consisted of a consonant followed by a vowel,
with each of the two consonants matching a consonant in the corresponding English word
(“buko” for book and “hudo” for hand). For each root, participants were asked to learn a
singular and a plural form. The singular form consisted of the unmarked root; the plural was
formed by adding a suffixed marker to the root with two possible variants, “-fip” and “-tay,”
following Smith and Wonnacott (2010). Nouns belonged to one of two frequency classes: the
low-frequency noun was shown six times during the training and testing phases; the high-
frequency noun was shown 18 times. Frequency classes were, therefore, comparable to the
ones used in Kanwal et al.’s (2017) study of another large-scale regularity found by Zipf. For
each participant, plural markers were randomly assigned to noun and nouns were randomly
assigned to frequency class.

2.3. Procedure

Participants interacted with a custom-made website programmed with PennController for
Ibex (Zehr & Schwarz, 2018), an online experiment scripting tool, and hosted on the PCIbex
Farm (doc.pcibex.net/). Instructions were provided on screen before each stage of the exper-
iment. The experiment began with a training phase in which participants were asked to learn
an alien language; we call the language that participants learned the input language. The
training phase was followed by a testing phase in which participants were asked to use the
language; we call the language that participants produced the output language. Participants
passed through the following phases:

1. Training phase
(a) Noun training

Participants were shown a picture depicting a single object (Fig. 1). Below the
image, a caption with the sentence “Here is one buko” or “Here is one hudo”
instructed participants on how to use the singular nouns. After clicking a Next
button, participants were shown an image depicting another object. Each picture
was shown once in random order, with a 300 ms pause between trials. Partici-
pants were then shown the same pictures two more times, alternating between
a trial in which they were shown an object with the corresponding caption and
a trial in which they were shown an object and asked to complete a sentence of
the form “Here is one .” Participants had to enter the correct form of the noun
to move on to the next trial. If the form was correct, participants were told so; if

https://doc.pcibex.net/
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Fig. 1. Training and testing during noun training.

the form was incorrect, a box popped up reminding them of the correct form and
asking them to try again.

(b) Plural training
Participants were shown a picture depicting three instances of the same object.
The objects were the same as the ones shown during noun training. After
clicking a Next button, participants were shown another image. Below each
image, a caption with the sentence “Here are several buko+MARKER” or
“Here are several hudo+MARKER” (where MARKER was either “fip” or “tay”)
instructed participants on how to use the plural nouns. There was variation in
how markers were associated with nouns (see Conditions section). Depend-
ing on the frequency class, each picture was shown either six or 18 times.
Pictures were randomly selected to appear in each trial, with a 300-ms pause
between trials. At random intervals, participants were shown the image of a
singular object and asked to complete the sentence with the correct noun; this
was done for each singular object only once. If the form entered was incor-
rect, a box reminded participants of the correct form and asked them to try
again.

2. Testing phase
Over a series of trials participants were shown pictures depicting three instances of the
same object and with the same frequency as in the plural training phase. At random
intervals, participants were shown the image of a singular object; singular objects were
shown only once. Participants were asked to complete the sentence in each trial and,
therefore, had to enter either the singular or plural form of the noun, depending on
the picture shown. In the plural case, participants were told that the form was correct
provided that it was seven characters long and that it contained one of the two plural
markers at the end. If it was incorrect, participants were asked to try again without
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Fig. 2. Drift and selection conditions. Each circle represents a noun in the input language; colors (white and gray)
represent the two plural markers. In the drift condition, the ratio of plural markers associated with each noun was
1:1. In the selection condition, the ratio of plural markers associated with each noun was 5:1.

being told what the correct form was. In the case of the singular, participants were told
that the form was correct provided that their answer was four characters long. Oth-
erwise, participants were asked to try again without being told what the correct form
was.

2.4. Conditions

As discussed above in the Alien language section, we manipulated noun frequency
as a within-subjects variable such that one noun (the low-frequency noun) was shown
to participants six times in training and the other (the high-frequency noun) was shown
18 times.

We also manipulated the presence of selection as a between-subjects variable by manip-
ulating the relative frequency of plural markers. In the drift condition, plural markers in the
input language occurred at the same relative frequency during plural training: The ratio of
plural markers associated with each noun was 1:1 (see Fig. 2, left). The low-frequency noun,
therefore, occurred with one marker in three trials and with the other marker in the remaining
three trials; the high-frequency noun occurred with one marker in nine trials and with the
other marker in the remaining nine trials. The purpose of the drift condition was to establish
an input language in which there was no directional pressure for regularization due to relative
frequency, as randomization ensured that participants had no stimulus-related reasons for a
bias in learning one or the other marker. If the language changed, it would be as a result of
drift rather than selection.

In the selection condition, plural markers in the input language occurred at different
relative frequencies: The ratio of plural markers associated with each noun was 5:1 (see
Fig. 2, right). The low-frequency noun, therefore, occurred with one marker in five trials
and with the other marker in the remaining trial; the high-frequency noun occurred with
one marker in 15 trials and with the other marker in the remaining three trials. To facilitate
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learning, low- and high-frequency nouns differed with respect to which marker was more
common. For example, if the low-frequency noun occurred five times with “-fip” and only
once with “-tay,” then the high-frequency noun occurred 15 times with “-tay” and three
times with “-fip.” The purpose of the selection condition was to establish an input language
in which there was an asymmetry in the relative frequency of plural markers and thus the
potential for a directional pressure—that is, selection—for one form at the expense of the
other. In particular, we predicted that participants would adopt the more common marker
with a probability greater than expected by chance alone.

A subtlety of the design is worth mentioning here, as the frequency was used both to manip-
ulate the presence of selection and to manipulate the strength of drift. These two distinct uses
of frequency in fact depended on the structure of the meaning space. In particular, the relative
frequency of the nouns was not expected to be a significant source of selection because there
was only one noun corresponding to each meaning, so there was no competition for mean-
ing in the nouns. There was, however, competition between suffixes for indicating plurality,
making the frequency bias a source of selection with respect to them.

2.5. Dependent variable: Regularization

For each noun, the more common marker in the selection condition was designated as the
“primary” marker and the less common plural maker the “secondary” marker. For compari-
son, we arbitrarily labeled markers as “primary” or “secondary” in the drift condition as well.
Following Lieberman et al. (2007), nouns in both conditions that occurred at least once with
both markers were designated as the“irregular” nouns; nouns occurring with a single marker
were termed “regular.” In the input language for both conditions, all nouns were irregular; in
the output language, nouns could be either regular or irregular depending on the behavior of
the participant.

To measure regularization, we calculated a regularization index (RI) for each participant
(Lieberman et al., 2007). The RI was defined as the proportion of regular nouns in the output
language. For each noun, the RI could therefore take a value of either 0 (for an irregular
noun) or 1 (for a regular noun), such that a language with two regular nouns would have an
RI of 1, and a language with one regular and one irregular noun would have an RI of 0.5. RI
values were validated on the basis of conditional entropy, another commonly used measure
of regularization (see Supplementary Material A).

2.6. Pilot experiment

To test the viability of our experimental design, we conducted a pre-registered pilot
experiment using the method described so far on a different sample of 400 participants (
https://osf.io/ryc3j/ ). We report the results of this experiment in Supplementary Material B.
The results revealed heterogeneity in the participant pool with respect to the experimental
task. In the drift condition, the distribution of marker counts was trimodal: Most participants
randomized their choice of markers, but some chose one or other of the markers exclusively
(Supplementary Material, Figure 3 left). In the selection condition, the distribution of marker
counts had a single peak and a long tail: While most participants chose the secondary marker

https://osf.io/ryc3j/
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Fig. 3. Regularization index (RI). The mean RI is the proportion of regular nouns in the output language (error
bars show a 95% confidence interval). Drift: N = 194. Selection: N = 196.

with a probability equal to or less than its initial frequency, many randomized their choice of
markers (Supplementary Material, Figure 3 right). Results from the pilot experiment informed
the statistical analysis plan for our main study, which is reported below.

2.7. Statistical analysis

2.7.1. Distinguishing hypotheses
To distinguish between the three hypotheses, we used a binomial logistic model with noun

regularity (i.e., regular or irregular) as the dependent dichotomous variable and frequency
(i.e., low or high frequency) and selection (i.e., presence or absence) as independent dichoto-
mous variables. In particular, the model took the following form:

ln

(
p

1 − p

)
= b0 + b1F + b2S + b3FS, (1)

where p is the proportion of regular nouns, F indicates frequency class (low: 0; high: 1),
S indicates the absence or presence of selection depending on the condition (absence of
selection, i.e., drift condition: 0; presence of selection, i.e., selection condition: 1), and FS
represents the interaction between frequency class (F ) and selection (S). In this model, b1

measures the main effect of frequency class, b2 measures the main effect of selection, and b3

measures the interaction of frequency class and selection on noun regularization. Hence, if b1

differs from zero but b3 does not, the model supports the hypothesis that low-frequency forms
regularize more because of drift (Hypothesis 1); if b3 differs from zero but b1 does not, the
model supports the hypothesis that low-frequency forms regularize more because of selection
(Hypothesis 2); and if both b1 and b3 differ from zero, the model supports the hypothesis
that low-frequency forms regularize more because of a combination of drift and selection
(Hypothesis 3). Note that b2 corresponds to the effect of the mere presence of selection on
regularization and not the effect of frequency on selection strength or the effect of selection
strength on regularization. Thus, if b2 differs from zero, this does not correspond to any of
the hypotheses we test. But it conforms to the assumption that forms would regularize more
overall in the selection than in the drift condition.
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2.7.2. Manipulation check
We used inferences under a Wright–Fisher model as a manipulation check to confirm the

presence of selection for the primary marker in the selection condition. The Wright–Fisher
model, commonly used in evolutionary biology and shown to be equivalent to models of
iterated learning (Reali & Griffiths, 2010), describes a population of constant size n with
discrete types and discrete generations. In our experiment, the population in question was
the ensemble of markers in a given frequency class (note that “population” here refers to the
population of linguistic entities and not the population of language users). With two types (A
and B), the probability that a population with i markers of type A and n − i markers of type
B transitions to the next generation with k markers of type A and n − k markers of type B is
given by a binomial distribution with parameters n and f (n, s), where f (n, s) is the success
probability. The success probability is a function of s, the selection coefficient that measures
the strength of selection for or against each one of the markers.

In our experiment, a population in the Wright–Fisher model corresponds to the ensemble
of plural markers in a given frequency class. Accordingly, the population size n takes two dif-
ferent values depending on the frequency class: n = 6 in the low-frequency class and n = 18
in the high-frequency class. Marker tokens correspond to individuals, and marker types corre-
spond to types in the Wright–Fisher model. In the selection condition, we treat the secondary
marker as the focal type independently of the particular form that the marker may take (i.e., “-
fip” or “-tay”). In the drift condition, we assign the labels “primary” and “secondary” to plural
markers arbitrarily but in equal proportion to allow for comparisons between conditions. In
both conditions, the input and output languages correspond to two distinct generations of the
Wright–Fisher population.

As our pilot study revealed a heterogeneous participant pool, we first built a model rep-
resenting different types of participants. The model assigned probability q that participants
choose a single marker regardless of input language (“full regularizers”). Further, the model
assigned probability r that participants choose markers according to a binomial distribution
with parameters n and 0.5, where n is the number of trials in which a given noun appears
and 0.5 means that participants randomize their choice of markers (“randomizers”). Finally,
the model assigned probability 1 − q − r that participants choose markers according to the
Wright–Fisher model with selection (“partial regularizers”).

As our population, for the purposes of the Wright–Fisher model, was defined as the ensem-
ble of markers for a given frequency class, the population size n took different values depend-
ing on frequency class (n = 6 or n = 18). The success probability was given by

f (n, s) = i · es

i · es + (n − i)
, (2)

where i is the marker count for a given frequency class, n indicates the frequency class, and
s is the selection coefficient for the secondary marker (i.e., s is positive if participants favor
the secondary marker, negative if participants favor the primary marker, and exactly zero if
participants show no preference for one marker or the other); we take the constant e to the
power of s to ensure that f (n, s) is symmetrical about zero.
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To estimate s using the Wright–Fisher model, we computed the likelihood of transitions
from the initial state of the population (i.e., the input language) to the final state of the popula-
tion (i.e., the output language) given different values of s. The maximum-likelihood estimate
of selection was then the value of the selection coefficient that maximized the sum of the
log-likelihood of transitions observed across participants. In our experiment, we estimated s
together with the composition of the population. The estimate ŝ was, therefore, the value that
maximized the sum of the log-likelihoods together with the proportions of randomizers p̂ and
full regularizers q̂. In particular, ŝ was given by the following expression:

(q̂, r̂, ŝ) = argmax
q,r∈�,s∈[−5,5]

N∑
j=1

log
(
q · P(i j|t = 1)+

r · P(i j|t = 2) + (1 − r − q) · P(i j|t = 3)
)
, (3)

where P(i j|t = k) is the probability of participant j producing an output language with i sec-
ondary markers given that the participant is of type k, t = 1 if participant j is a full regularizer,
t = 2 if participant j is a randomizer, and t = 3 if participant j is a partial regularizer. Here,
� denotes the simplex volume {(q, r) ∈ [0, 1]2 | q + r ≤ 1}. In this way, we simultaneously
obtained ŝ among partial regularizers and the composition (q̂, r̂) of the participant pool; we
limit the estimate of s to the interval between (−5,5) as this included both the point estimate
and confidence intervals for s in the analysis shown below.

The two-tailed 95% confidence interval for ŝ was given by the log-likelihood ratio. Con-
fidence intervals were therefore computed using χ2 values corresponding to this confidence
level with degrees of freedom equal to the difference in dimensionality of the model we spec-
ify and a null model with a single parameter s (in our case, df = 1), as the log-likelihood ratio
is asymptotically chi-squared distributed (Wilks, 1938). Thus, confidence intervals included
values of s satisfying �(s) − �(ŝ) ≤ 1.92, where �(s) is the sum of log-likelihood given s
maximizing over parameters (q, r). Similarly, the two-tailed 95% confidence regions for (q̂,
r̂) included all values of (q, r) satisfying �(q, r) − �(q̂, r̂) ≤ 2.99, where �(q, r) is the sum of
log-likelihood given (q, r), maximizing over the parameter s.

Analysis was conducted using Python (Van Rossum & Drake, 1995) and Julia et al., 2017).
Data and scripts for the experiment are available at https://osf.io/5m9ak/.

3. Results

The rate of regularization was higher for low-frequency nouns in both conditions (Fig. 3).
In particular, RI estimates for low- and high-frequency nouns were 0.42 ± 0.07 and
0.32 ± 0.07, respectively, in the drift condition (N = 194) and 0.71 ± 0.06 and 0.52 ± 0.07
in the selection condition (N = 196). This conforms to the Zipfian pattern of the inverse asso-
ciation between frequency of use and regularization.

To test whether this pattern was statistically significant and to help identify what was driv-
ing it, we used a binomial logistic regression model. The model revealed a negative effect

https://osf.io/5m9ak/
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Table 1
Logit model. The model was given by ln( p

1−p ) = b0 + b1F + b2S + b3FS. Significant results at the 0.05 level are
marked with “*”

β SE p

Intercept (b0) −0.31 0.14 .032∗

Frequency (b1) −0.42 0.21 .047∗

Selection (b2) 1.2 0.21 <.0001∗

Frequency × Selection (b3) −0.39 0.29 .19

Fig. 4. Distribution of primary marker counts. Empirical distribution is shown by gray bars; the mean is shown by
a dashed line. In the drift condition, the distribution was trimodal. In the selection condition, the distribution had
a single peak with a long tail.

of frequency class on noun regularity, with low-frequency nouns being significantly more
likely to regularize across conditions (b1 = −0.42 ± 0.21; p = .047; Table 1). As expected,
the presence of selection had a large positive effect on noun regularity (b2 = 1.2 ± 0.21;
p < .0001). However, this is not to say that there was an effect of frequency on selection or a
combined effect of frequency and selection on regularization. In fact, there was no interaction
between frequency class and selection (b3 = −0.39 ± 0.29; p = .19). Given that frequency
class had a significant effect on regularization but the interaction between frequency class and
selection did not, our results provide support for the hypothesis that the greater regularization
of low-frequency nouns was due to drift rather than selection.

However, this conclusion only holds if selection was in fact present in our experiment.
We, therefore, conducted a manipulation check (estimating selection under a Wright–Fisher
model), to ensure that there was in fact selection against the secondary marker in the selection
condition and no selection in the drift condition. The distribution of marker counts was similar
to that obtained in our pilot study: In the selection condition, the distribution of marker counts
had a single peak and a long tail; in the drift condition, the distribution of marker counts
was trimodal (Fig. 4). We, therefore, sought to determine whether there was selection in the
selection condition and no selection in the drift condition using our population model.
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Fig. 5. Lines indicate the sum of log-likelihoods for the data given the selection coefficient for partial regularizers
in the population model. Circles show maximum-likelihood estimates of the selection coefficient (i.e., the value
of the selection coefficient that maximizes the likelihood of the observed data); error bars show two-tailed 95%
confidence intervals.

In the selection condition, we found evidence of selection against the secondary marker:
Among partial regularizers, ŝ was equal to −2.3 ± (0.9, 0.6) and −2.1 ± (0.3, 0.4) for low-
and high-frequency nouns (Fig. 5). Estimates for low- and high-frequency nouns were similar
in value, indicating that selection was of comparable strength in both frequency classes.

In the drift condition, there was no evidence of selection among partial regularizers in the
low-frequency class: ŝ was −2.1 ± (2.93, 7.1), with the 95% confidence interval spanning
the entire range of selection coefficients sampled (Fig. 5). Contrary to our expectation, how-
ever, our estimate for the selection coefficient was positive in the high-frequency class: ŝ was
1.97 ± (0.4, 0.71). This might seem like an indication that there was selection in the drift con-
dition, which would clash with a central assumption of our analysis plan. But this was likely
not the case. In the drift condition, estimates for the proportion of randomizers in the low-
and high-frequency classes were 0.56 and 0.6 (Fig. 6). Similarly, estimates for the proportion
of full regularizers were 0.37 and 0.31. Both participant types, therefore, made up almost the
entirety of the sample, with partial regularizers comprising only 0.07 and 0.09 in the low- and
high-frequency classes. It is thus likely that our maximum-likelihood algorithm detected pos-
itive selection among partial regularizers in the high-frequency class due to the small number
of partial regularizers in the sample: We estimated that there were very few partial regular-
izers in our sample (namely, 0.09 × 193 ≈ 17), and the chi-squared asymptotic confidence
interval on maximum-likelihood estimates is a poor approximation in small samples. Neg-
ative selection was detected in our pilot study, corroborating this point (see Supplementary
Material B, Figure 4).

In the selection condition, we estimated that partial regularizers made up 0.54 and 0.48 of
the population in the low- and high-frequency classes; the proportion of randomizers was 0.24
and 0.35, and the proportion of full regularizers was 0.2 and 0.17. Together with the finding
that selection was negative in the selection condition, this therefore suggests that selection
against the secondary marker was indeed present in the selection condition but likely absent
in the drift condition.
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Fig. 6. Population composition. Black circles show the maximum-likelihood composition of the population with
proportion p of randomizers, proportion q of full regularizers, and proportion 1 − p − q of partial regularizers;
95% confidence regions are shown in gray.

Since the number of partial regularizers was higher among low-frequency nouns in the
selection condition (0.54 vs. 0.48), and drift should be stronger at low frequencies, these
results provide further support for the hypothesis that low-frequency nouns regularized more
because of drift. Moreover, selection among partial regularizers was approximately equal for
low- and high-frequency nouns in the selection condition: s = −2.3 ± (0.9, 0.6) versus s =
−2.1 ± (0.3, 0.4). This means that the difference in regularization between low- and high-
frequency nouns could not be due to a difference in selection. These results therefore support
the hypothesis that drift alone was responsible for the difference in regularization. This is
consistent with findings based on a comparison between RI across frequency classes in both
conditions and our regression model.

This analysis yielded consistent results when applied to our pilot data (see Supplementary
Material B).

4. Discussion

We conducted an experiment in which participants learned a miniature language with
irregular plural marking, and we manipulated the strength of drift and selection acting on
the markers. We found a difference in regularization between low- and high-frequency nouns
regardless of selection strength. Although use frequencies can span several orders of magni-
tude in natural languages, the small difference between frequency classes in our experiment
was sufficient for the Zipfian pattern to emerge. The absence of an interaction between
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frequency class and selection suggests that this difference was not due to selection. Indeed,
results suggest that drift during language acquisition was sufficient for generating the negative
correlation between word frequency and regularization rate that Zipf first noted in natural
languages (Zipf, 1949). Our study, therefore, adds to a growing body of evidence suggesting
that drift may be a major driver of language change, including patterns of regularization.

Although this was not the primary goal of our study, our results also highlight the risk
of assuming—rather than showing—that participants approach an experimental task as a
homogeneous population. By exploring this in our own data, we were able to identify that
our participant pool was not in fact homogeneous: in the selection condition, most partici-
pants regularized the use of plural markers, but many opted instead to randomize their choice
of markers or to simplify the task by using a single marker throughout; in the drift condi-
tion, most participants randomized their choice of markers but many also simplified the task
by using a single marker. Our experiment was not designed to determine why participants
adopted such disparate strategies, but the results suggest that future work should account for
potential heterogeneity in learning style, which is in part, but not entirely, influenced by the
nature of the data (Hudson Kam & Newport, 2009; Siegelman et al., 2017). There may also
be implications for language change that arise from the observed variability in learning styles,
which remains a topic for future study.

There are several important limitations to our study. First, our experiment focused on only
one source of selection (relative frequency). While we consider that this was a good place
to start—in particular because it provides a purely frequency-based explanation for Zipf’s
observation—it is not the only potential factor driving selection, so it remains possible that
other sources of selection might play a role in the greater regularization of low-frequency
nouns in natural language. For instance, selection might be stronger for high-frequency nouns
if these words function as “anchors” during language acquisition and learning (Frost et al.,
2019). It is also possible that factors such as morpheme length, phonological complexity,
or iconicity might interact with frequency as sources of selection, further complicating the
picture. Nonetheless, even if some other source of selection plays a role in producing the
observed effect, our results suggest that drift is sufficient to produce the effect on its own.

Along similar lines, it is also worth noting that our study focused on the influence of drift
and selection during learning and production. Interaction with other language users, which we
did not incorporate into our task, might provide further sources of selection, such as selection
related to social meaning and identity (Roberts & Fedzechkina, 2018; Sneller & Roberts,
2018) or communicative pressures (Galantucci, 2009; Wade & Roberts, 2020). While our
results suggest that drift in language learning is a sufficient mechanism for generating the
greater regularization of low-frequency terms, its role may be modulated by different forms
of selection under certain circumstances. This would be an interesting focus for future work.

It is likewise important to consider the size of the artificial language. Consisting of two
nouns and two affixes, it was the smallest possible language for our purposes. This was done to
maintain careful control over how the language was learned: Participants were likely to learn
the language in full rather easily, preventing differences in learning success from constituting
a nuisance variable. It also made the experiment short and quick to run, which allowed us to
gather a large sample cheaply and efficiently. A negative consequence, however, is that the
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ease of the learning task might have increased the potential for demand characteristics to play
a role. We consider, however, that the downside of a simple language was outweighed by its
benefits since tight control over marker and noun frequencies was important.

In conclusion, we conducted the first (to our knowledge) experimental investigation of
the role of drift and selection in explaining Zipf’s observation about word frequency and
rate of change. We found that drift was sufficient to explain the pattern and that frequency-
based selection did not play an important role. As this was an experimental study, we were
able to control for and rule out other factors that make it difficult to discern the effect of
drift and selection in corpus-based studies of natural languages—such as the effect of age
on word acquisition, phonology, etc. Future work might expand the paradigm by employ-
ing more complex languages or incorporating more complex social contexts, including direct
communication between participants (Sneller & Roberts, 2018; Wade & Roberts, 2020) or
simulated communication (Buz et al., 2016). While our results suggest that drift in learning
is sufficient to produce the observed relationship between word frequency and regularization,
other language-internal and -external factors might play an important role as well. Future
work could therefore investigate the role of selection of different strengths or compare differ-
ent sources of selection (Tamariz et al., 2014). There are also different possibilities for how
regularization is operationalized. Following Hudson Kam and Newport (2005), Lieberman
et al. (2007), Newberry et al. (2017), Ferdinand et al. (2019), and others, we operationalized
regularization as the loss of competing forms for the same lexical item; it could, however,
be operationalized differently, such as in terms of the loss of competing forms for the same
meaning in the system as a whole. It might be that selection plays a more important role in
such cases. The study we have presented here offers a simple and easily replicable paradigm
for investigation of these and many related questions.
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