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ABSTRACT

Motivation: Determining the functional impact of non-coding
disease-associated single nucleotide polymorphisms (SNPs)
identified by genome-wide association studies (GWAS) is
challenging. Many of these SNPs are likely to be regulatory
SNPs (rSNPs): variations which affect the ability of a transcription
factor (TF) to bind to DNA. However, experimental procedures for
identifying rSNPs are expensive and labour intensive. Therefore,
in silico methods are required for rSNP prediction. By scoring two
alleles with a TF position weight matrix (PWM), it can be determined
which SNPs are likely rSNPs. However, predictions in this manner
are noisy and no method exists that determines the statistical
significance of a nucleotide variation on a PWM score.
Results: We have designed an algorithm for in silico rSNP detection
called is-rSNP. We employ novel convolution methods to determine
the complete distributions of PWM scores and ratios between
allele scores, facilitating assignment of statistical significance to
rSNP effects. We have tested our method on 41 experimentally
verified rSNPs, correctly predicting the disrupted TF in 28 cases.
We also analysed 146 disease-associated SNPs with no known
functional impact in an attempt to identify candidate rSNPs. Of the
11 significantly predicted disrupted TFs, 9 had previous evidence
of being associated with the disease in the literature. These results
demonstrate that is-rSNP is suitable for high-throughput screening of
SNPs for potential regulatory function. This is a useful and important
tool in the interpretation of GWAS.
Availability: is-rSNP software is available for use at: www.genomics
.csse.unimelb.edu.au/is-rSNP
Contact: gmaci@csse.unimelb.edu.au; adam.kowalczyk@nicta.com.au
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Genome-wide association studies (GWAS) aim to find single
nucleotide polymorphisms (SNPs) that are linked to a particular
disease or trait phenotype. Disease-associated SNPs residing
in coding regions, specifically non-synonymous mutations, are
generally easy to interpret in terms of their likely functional impact.
However, unravelling the functional impact of SNPs residing outside
coding regions is more challenging. One appealing functional
role for non-coding disease associated SNPs is that they are
regulatory SNPs (rSNPs). That is, they alter the binding affinity
of a transcription factor (TF) to the DNA, which in turn alters
the expression of certain genes, consequently contributing to the
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disease phenotype. Finding these rSNPs is difficult, since they can
be obscured by the potentially large number of SNPs present in
a linkage-disequilibrium block, and the experimental procedures
involved can be expensive and labour intensive. Therefore, in silico
approaches for identifying candidate rSNPs are required to improve
the efficiency of interpretation of non-coding disease-associated
SNPs.

Previous attempts at finding rSNPs have relied largely on
prediction of TF binding sites that overlap SNPs (Ponomarenko
et al., 2001). This approach typically produces large numbers of
false positives, as many SNPs will not significantly alter the binding
affinity of a TF given the degenerate nature of TF binding sites. An
improvement to this approach looked at the difference in binding
site score between two alleles using a position weight matrix (PWM;
Andersen et al., 2008). The reasoning here is that SNPs generating
‘larger’ PWM score differences are considered more likely to
be rSNPs than those generating ‘smaller’ differences. However,
the paper presenting this method demonstrated that without the
use of additional information such as phylogenetic footprinting,
discovery of rSNPs was not possible considering only differences in
binding score affinities using PWMs (Andersen et al., 2008). More
recently, however, a method which looks at normalizing the score
distributions of PWMs was used so that observed changes were
comparable between PWMs (Manke et al., 2010). In this case the
PWM scores are not used directly, but a modified affinity score is
used to represent the binding affinity. A Fourier transform is used to
calculate the complete distribution of affinity scores, consequently
allowing the computation of a P-value for observed scores. The ratio
of P-values of affinity scores between two alleles can then be used
to determine if the TF binding site is likely to be disrupted. This
approach is shown to be successful through comparison against a
set of known rSNPs. The output of this approach, however, is a
large list of PWMs ranked by the log ratio of the score P-values.
Unfortunately in this case, there is no clear way of an appropriate
cutoff point to distinguish true and false prediction. This makes
interpretation of results difficult, especially when screening large
numbers of SNPs.

In this article, we propose a new technique for in silico rSNP
detection (called is-rSNP). While our approach is similar to that
of Manke et al. (2010), there are some essential differences.
Notably, our approach yields predictions with statistical significance,
facilitating interpretable screening across and comparison between
large numbers of SNPs. Rather than an affinity score (Manke
et al., 2010), we use scores generated from the PWM directly.
This facilitates a simple and efficient approach for calculating the
distribution PWM scores via direct computation of convolution.
This method also allows the computation of distributions of P-value
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ratios. By obtaining this distribution, we are able to determine the
significance of a single base change on the binding affinity of a
TF, rather than simply report the ratio of P-values as in Manke et al.
(2010). By associating a P-value with the ratio, we can satisfactorily
determine smaller, significant sets of predicted disrupted TF binding
sites and provide significance scores of results across a large
number of SNPs. We have tested our method on 41 rSNPs, where
there is experimental evidence showing that the SNP causes a
disruption of a TF binding site. We correctly predict the affected
TF within our significant predictions in 28 of 41 cases, and in 12
cases the violated PWM matching the TF is the most significant
prediction. Furthermore, we have used our algorithm to screen 146
disease-associated SNPs that had been previously been reported as
‘intergenic’, but with little understanding of their functional impact.
Eleven SNPs were predicted to have a significant (P<0.01) change
on at least one PWM, and out of these, nine of the affected TFs were
previously known to have a functional role in causing the disease
phenotype in the literature. [These and other P-values in this article
are corrected by Benjamini–Hochberg procedure for multiple testing
(BH corrected, Benjamini and Hochberg (1995).] This provides
strong evidence that our method is successful in identifying rSNPs
that have a functional impact on the disease and is suitable for
screening large numbers of SNPs. Such an approach is an efficient
and cost-effective method for interpretation of GWAS results.

2 METHODS

2.1 Algorithm overview
We provide a step by step outline of the is-rSNP detection procedure.
Following this, we use a single rSNP and single TF PWM as an example to
further outline our approach. We first provide an algorithm overview:

(1) Given a PWM, score the sequences for Allele 1 and Allele 2. Calculate
the distribution of all scores generated by the PWM and assign a
P-value to each allele score. If the highest score out of the two alleles
is significant (P<0.001) then the TF represented by the PWM is
considered likely to be bound. Proceed to Step 2. If not significant,
jump to Step 3.

(2) Calculate the ratio between the two P-values. Generate the
distribution of all ratios for the given PWM. If the ratio is significant
(P<0.01) compared to random then consider the current SNP a
candidate rSNP.

(3) Repeat Step 1 for each PWM in the database.

(4) Repeat Steps 1 to 3 for each SNP input to is-rSNP.

To clarify further, we provide an example of Steps 1 and 2 using a rSNP
known to violate an OCT-binding sequence (Demars et al., 2010). In this
study, the TF binding site reported to be violated by the rSNP is bound
by OCT4. There is, however, no PWM for OCT4 in TRANSFAC. In this
case, we will consider PWMs for any of the OCT proteins to be a positive
match, as they generally have similar DNA recognition sites. In fact, in this
article we will consider a positive PWM hit to match any protein with the
family (i.e. a positive hit for a STAT1 binding protein could be a PWM
for STAT3). For this example, we will use the PWM for OCT1. Figure 1a
shows a graphical representation of a PWM for OCT1. This is known as
a logo (Crooks et al., 2004) and represents the set of DNA binding sites
recognized by OCT1. The height at each position represents the conservation
of that position in terms of bits and the height of each letter represents the
frequency of observing that base in that position in the binding site. For
example, position 8 always has a T whereas position 11 may have an A or
T. rSNPs that change a base at a conserved position are much more likely to
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Fig. 1. This figure provides an example of the data used at each step of
the is-rSNP algorithm applied to a fetal growth disorder rSNP. (a) Logo
for OCT1. (b) Two binding sites for OCT1 containing a SNP: Allele 1,
position 8=T (top); Allele 2, position 8=C (bottom). (c) Distribution of
scores generated by OCT1 PWM and observed scores for Allele 1 (A1)
and Allele 2 (A2). (d) Distribution of scores generated by OCT1 PWM and
observed scores for Allele 1 and Allele 2, y-axis log scale.

disrupt TF binding than those that change a base at a less conserved position.
As the conservation at each base is encapsulated in a PWM, by scoring each
allele with a PWM we can observe the change in score and hence the change
in binding affinity of the TF. Figure 1b shows the sequences for a rSNP
associated with fetal growth disorder. The top sequence is the wildtype and
the bottom is mutated at position 8 in the disease. In the study (Demars et al.,
2010), OCT4 is shown to be bound to the wildtype sequence, but not bound
in the mutated sequence. This change at position 8 from T to a C (Fig. 1b),
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changes the PWM score for OCT1 from 550 to 495. While these scores do
not mean much on their own, by looking at the entire distribution of scores
generated by the PWM (Fig. 1c), we can begin to model the score difference
statistically. Figure 1c shows that the allele 1 (T) score resides in the tail of
the distribution of observed scores and is therefore likely to be bound by
OCT1. In fact, the probability of observing a higher score is P<0.0001. The
probability of observing a higher score than allele 2 is an order of magnitude
less at P<0.001. However, what we would like to know is if this difference
is significant. Looking at Figure 1c, these scores do not seem to be different,
however, by altering the y-axis to a log scale, this difference appears to be
significant (Fig. 1d). We can in fact test this statistically. As the P-value for
each score is representative of the rank of the score within the distribution
of all scores, we can take the ratio of the P-values as a single measurement
of the difference in binding affinity between two alleles. Furthermore, we
can compute the distribution of all ratio’s of P-values for all possible SNPs,
and then determine the significance of the observed ratio (probability of
observing a higher ratio). In this example, the observed ratio has P<0.001,
therefore we conclude that an OCT1 binding site is violated by this SNP.

2.2 Algorithm details
Given a PWM for a TF, if we assume that the current SNP under consideration
is an rSNP, then we would like to determine the most likely position in which
the TF is bound across the SNP. Therefore, we use a sliding window approach
to step across the SNP at each position equal to the width of the PWM, and
considering the maximum score output by the PWM to be the likely binding
site. For each window encompassing the SNP, we compute the change in the
affinity of binding according to the preselected PWM and then estimate the
significance of this change. The method of allocating of the significance is
critical and requires a few design choices to be made. We explain the idea
in the simplified setting of DNA sequence being iid drawn from the uniform
distribution on the space of the four bases first, then we highlight changes
required for a more realistic setting when there is a bias in the sequence
composition. Finally, we describe computational algorithms which allow for
a robust implementation of the whole procedure.

Given a fixed PWM, the first step is to calibrate its scores. The calibration
consists in allocation of the rank to each score in the sequence of all possible
PWM scores (for every possible setting for the DNA sequence), sorted from
the highest to the lowest value. Next, given two scores, for different values
of the SNP base, we find the ratio of those ranks. This ratio is again rank-
calibrated in the space of all possible such ratios for the PWM in question
and for all possible SNP variations. This final rank is converted to the value
between 0 and 1, by dividing it by the total number of such ratios.

The above procedure needs some adjustment if we are to take into account
the biases in the distribution of bases. The simple counting procedures need
to be replaced by the respective cumulative distributions, equivalent to the
counting in the uniform case. Also, due to the large number of possible
base combinations and some of the small values of extreme probabilities,
it is convenient to use logarithms, so the ratio to rank calibrated ranked
scores becomes a difference of logs of cumulated probabilities. These
are some minor issues, the major challenge is to design a computational
procedure which allow for robust quantification of the tails of distributions
in question, which cannot by computed directly by naive implementation or
even estimated by Monte Carlo simulation. Fortunately, we show that they
are computable in a rigorous, though indirect form.

2.3 Generating the distribution of all PWM scores
Let us consider a PWM, w=[w(j,i)]4×n and its score

Sn(�b) :=
n∑

i=1

w(bi,i) (1)

for the n-tuple �b= (b1,...,bn)∈B
n, where B :={1,2,3,4}≡{A,C,G,T}

represents the space of four DNA bases. Assuming a prior probability
distribution p(b), b=1,...,4 on B and each nucleotide bi sampled

independently from B, we view the score Sn(�b) as a random variable (RV)
on B

n with the product probability distribution.
With a rounding and appropriate affine transformation of the weights,

the computation of the distribution of Sn is reducible to the special case of
non-negative integer weights (Supplementary Materials)

w(j,i)∈{0,1,2,...,U}.
In general, the computation of the distribution of the score (1) is known
to be an non-deterministic polynomial-time (NP)-hard problem, subsuming
the standard NP-hard benchmark of ‘sum of the subset’ (Touzet and Varre,
2007). However, in our special case of integer values of finite magnitude it
has linear complexity (Pisinger, 1999) and this is what we are leveraging
here.

Now we concentrate on determination of distribution of RV Sn:

p∗,n(x) :=P[Sn =x]=
∑

�b
p(b1)p(b2)···p(bn), (2)

where x∈{0,1,2,...,nU}, the sum is over all �b= (bi)∈B
n such that

w(b1,1)+···+w(bn,n)=x,

and p∗,n(x) :=0, if no such �b exists.
The sum (2) involves 4n terms, which in the case of larger motifs, say

n=30, results in the number 4n ≈1018 of terms being too many for a naive,
direct computation. However, the whole evaluation simplifies if performed
recurrently. Namely, for the distribution of the partial sum of the first j terms,
we have:

p∗,j(x)=
∑

b∈B

p(b)p∗,j−1
(
x−w(b,j)

)
. (3)

for 2≤ j≤n. This allows for efficient evaluation of p∗,n by finding first all
intermediate distributions p∗,j , j=1,...,n−1. The whole computation can
be performed with ≤2n(U +1)(n+2) multiplications and twice as many
additions and with minimal memory requirement of n(U +1) registers for
the storing the values of the distribution. For completeness, we present the
explicit algorithm in the Supplementary Materials.1

2.4 Generating the distribution of the ratio of two
calibrated PWM scores

Knowledge of the distribution of Sn allows us to calibrate the scores using
their P-values x �→P[Sn ≥x]. This is a form of ranking of all the possible
score values, from the highest to the lowest, accounting for the varying
probability of different scores being attained with different frequency. It is
convenient to introduce the following ‘log-rank’ function:

ρ(x) :=−log10 P[Sn ≥x]=−log10

nU∑

x′=x

p∗,n(x′), (4)

for any x∈{0,1,...,nU}.
In the case of a SNP changing the i-th nucleotide bi of �b to c, we may

observe a significant change in the score (1) from Sn(�b) to

S(i)
n (�b,c) :=w(c,i)+

∑

j �=i

w(bj,j),

reflected in the change of log-rank:

�ρ0 :=ρ
(
Sn(�b)

)−ρ
(
S(i)

n (�b,c)
)=−log10

P[Sn ≥Sn(�b)]
P[Sn ≥S(i)

n (�b,c)]
.

This may signify a rSNP, but the change needs to be calibrated in order to
assess its significance. To that end, we evaluate the distribution of the RV of
all possible single base changes:

�ρ(�b,i,c1,c2) :=ρ
(
S(i)

n (�b,c1)
)−ρ

(
S(i)

n (�b,c2)
)
,

where nucleotides b1,...,bn,c1,c2 are drawn independently from B according
to our prior distribution and position i is drawn uniformly from {1,...,n}.
1The similar procedures have been proposed in the past, e.g. NMksite
algorithm (Claverie and Audic, 1996); and study (Touzet and Varre, 2007).
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Table 1. This table shows the results of applying is-rSNP to four known rSNPs

rSNP: AF125183:6153 chr1:208055893 chr4:74825920 chr1:21489833
Study: Demars et al. (2010) Rahimov et al. (2008) Hacking et al. (2004) Funke-Kaiser et al. (2003)
Disease/Trait: Fetal growth disorder Cleft lip RSV-induced bronchiolitis Blood pressure regulation
Disrupted TF: OCT4 AP-2α CEBPβ E2F2

is-rSNP output Matrix TF P-value Matrix TF P-value Matrix TF P-value Matrix TF P-value

1 M00135 Oct-1 0.0002 M01208 FLI1 0.0001 M01361 HOXC10 0.0016 M00426 E2F 0.0011
2 M00248 Oct-1 0.0006 M00032 c-Ets-1 0.0005 M01256 REST 0.0017 M00068 HEN1 0.0013
3 M01476 POU2F3 0.0006 M00074 c-Ets-1 0.0006 M01329 HOXC11 0.0021 M00965 LXR 0.0014
4 M00332 Whn 0.0010 M00453 IRF-7 0.0009 M00109 CEBPβ 0.0340 M00058 HEN1 0.0015
5 M00138 Oct-1 0.0017 M00261 Olf-1 0.0012 – – – M00427 E2F 0.0026
6 M01195 TBX22 0.0018 M00007 Elk-1 0.0013 – – – M00193 NF-1 0.0027
7 M00464 POU3F2 0.0023 M00341 GABP 0.0021 – – – M00766 LXR 0.0035
8 M01262 TBX18 0.0024 M01045 AP-2α 0.0021 – – – M00056 myogenin 0.0047
9 M00342 Oct-1 0.0030 M00467 Roaz 0.0024 – – – M01242 MTF1 0.0050
10 M00704 TEF-1 0.0065 M00800 AP-2 0.0026 – – – M00425 E2F 0.0059
11 – – – – – – – – – M00050 E2F 0.0062
12 – – – – – – – – – M00738 E2F-4:DP-1 0.0087
13 – – – – – – – – – M00751 AML1 0.0104
14 – – – – – – – – – M00740 Rb:E2F-1:DP-1 0.0122
15 – – – – – – – – – M00516 E2F 0.0133
16 – – – – – – – – – M00918 E2F 0.0139
17 – – – – – – – – – M01200 CTCF 0.0264

Successful matches between the predicted TF and the TF reported to be disrupted in the original studies are highlighted in bold. Only is-rSNP predictions BH corrected P<0.05 are
reported for each rSNP.

Note that for every v∈R, we have

P[�ρ=v ] := 1

n

n∑

i=1

∑

c1,c2∈B

∑

x

p(c1)p(c2)P
[∑

j �=i

w(bj,j)=x
]

= 1

n

n∑

i=1

∑

c1,c2∈B

∑

x

p(c1)p(c2)p∗,n\i(x), (5)

where the third sum is over values x∈{0,1,...,(n−1)U} such that

ρ(x+w(c1,i))−ρ(x+w(c2,i))=v,

and p∗,n\i is the distribution of scores of
∑

j �=i w(bj,j) of the PWM with
i-th column neglected, which can be easily computed by a straightforward
adaptation of the recurrence (3). (The probability :=0 if no such x exists.)

Our final algorithm computes the distribution of �ρ with granularity
δ>0, see Supplementary Materials for details. For δ=0.01 and the
whole TRANSFAC v2009.4 database of approximately 1300 PWMs, this
computation can be completed in under 4 h on a single CPU machine and
only needs to be computed once.

3 RESULTS
We evaluated the performance of is-rSNP on two types of data. First,
we compiled a set of 41 known rSNPs [4 from the literature and 37
from OregAnno (Montgomery et al., 2006)] for which there was
empirical evidence showing the impact of the allelic variation on
the binding of a functionally critical TF. We ran is-rSNP on each of
these SNPs to see if the correct TF was identified. We also analysed
the same data using sTRAP (Manke et al., 2010) and compared the
output with is-rSNP. Secondly, we extracted 146 disease-associated
SNPs from the published catalogue of GWASs (Hindorff et al.,
2010) that had been classified as ‘intergenic’, and screened them
for potential rSNPs. The goal here was to see if the TF predicted by

is-rSNP as being disrupted had prior evidence of being associated
with the disease. If this association was present, it would suggest that
our predicted rSNPs are likely to have a functional impact on the
disease via a disease-associated TF. Note: a comparison with sTRAP
was not done using this data as the lack of statistical significance
associated with predictions output by sTRAP makes it unsuitable
for this type of analysis.

3.1 Evaluating is-rSNP using known rSNPs
Table 1 shows the results of applying is-rSNP to four different rSNPs.
Each of these rSNPs has previous empirical evidence to show that
the nucleotide variation disrupts the binding of a particular TF.
is-rSNP was used to screen each SNP with all human PWMs in
the TRANSFAC (Matys et al., 2006) database. This resulted in a
ranked list of PWMs that have a significant change in PWM score
between the alleles. For each rSNP, the predictions were thresholded
at BH corrected P<0.05 and are reported in Table 1. In each of
four cases there is a match between the predicted disrupted TF and
the TF reported to be disrupted in the original studies (highlighted
in bold). In the case of the fetal growth disorder rSNP (Demars
et al., 2010), and the blood pressure regulation rSNP (Funke-Kaiser
et al., 2003), the most significant hit matches the reported TF. An
interesting point to note is that there are multiple positive hits for
Oct1, Ap2 and E2F. This is due to the fact that many matrices are
similar for the same TF family. These multiple matrices provide
additional evidence for a bona fide binding site. In addition to
these four rSNPs, we also analysed 37 known rSNPs extracted from
OregAnno (Montgomery et al., 2006). Out of those 41 (=4+37),
28 SNPs had the matching TF bound (PWM score P<0.001 BH
corrected) to one of the alleles, and in each of these cases a significant
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Fig. 2. This figure compares output of is-rSNP and sTRAP after analysis of
28 known rSNPs filtered for significant TF binding, i.e. having a PWM score
with P≤0.001 for one of the alleles for the matching TF. In addition, the
output of a modified version of is-rSNP with no filtering of significant PWM
binding sites and P-value thresholding is compared with sTRAP output on
41 known rSNPs. In this graph, smaller values are better. The black line
represents the mean value of the top-ranked correct predictions, the box
edges represent the first and third quartile and the whiskers extend to the
most extreme observation. In addition, each data point is plotted beneath its
respective box plot, with jitter. Note that the x-axis is log scale.

(P<0.05, BH corrected) change in binding score was predicted by
is-rSNP. Therefore, is-rSNP correctly identified 28 out of the 41
known rSNPs.

Using the 41 known rSNPs, we aimed to compare the utility of the
output of is-rSNP versus sTRAP. To do this we compared the rank
of the first correct prediction in the lists output by each algorithm
for each SNP. The idea here is that the closer a correct prediction
is to the top of the output list, the easier and more efficient it is to
interpret and test predictions experimentally. (Note the webserver
of sTRAP uses a different version of TRANSFAC which may
interfere with the comparison; however, due to the previous version
of TRANSFAC not being available, we reasoned that as we were
comparing the utility of predictions from a user point of view, it was
still sufficient to make a comparison.) We first compared the output
of both algorithms on only the 28 SNPs having scores with P<0.05
for correct prediction. Figure 2 shows that is-rSNP consistently
predicts the correct TF at a better rank than sTRAP over the 28
SNPs (P<0.01, Mann–Whitney U-test).

We next wanted to compare the performance of is-rSNP and
sTRAP without a P-value threshold and without binding site filtering
(removing the requirement of the TF having to be significantly bound
to at least one of the SNP sequences). This allowed comparison
over all 41 SNPs. Figure 2 shows that is-rSNP outputs predictions
at a better average rank than sTRAP over the 41 SNPs, albeit not
consistently better (P=0.13, Mann–Whitney U-test). From this we
can conclude that main advantage of is-rSNP lies in both the filtering
of significant TF binding sites and its ability to provide consistently
more interpretable output through P-value thresholding. Moreover,
a P-value rank has two main advantages over the log-ratio rank
used by sTRAP: first, a log-ratio ranked list does not provide a

sensible point of cutoff with respect to expected numbers of false
positives, whereas a P-value allows a cutoff with a known expected
number of false positives; secondly, a P-value associated with each
log-ratio facilitates interpretable output for multiple rSNP scanning.
Using a P-value means that predictions across multiple SNPs can
be combined into a single ranked list. This makes is-rSNP suitable
for large-scale SNP screening.

3.2 Searching for candidate rSNPs in a database of
disease-associated SNPs

The published catalogue of GWASs (Hindorff et al., 2010) contains
a summary of disease-and trait-associated SNPs reported in the
literature. Many of these, while shown to be strongly associated with
the disease or trait, do not have any known functional relationship
and are annotated as ‘intergenic’ (not being associated with a gene).
It is possible that many of these SNPs are rSNPs. Therefore, we used
is-rSNP to predict TF binding sites that are likely to be disrupted
using 146 ‘intergenic’ of these disease-associated SNPs. Out of the
146, 11 SNPs were predicted to have a significant (P<0.01) impact
on a TF binding site. These predictions are reported in Table 2. To
test if these predictions were likely to be biologically relevant, we
looked for evidence in the literature that the TF predicted had prior
evidence of being associated with the disease. Of the 11 predicted
rSNPs, 8 showed prior evidence that the disrupted TF plays a role
in the disease. In addition, we also used expression profiling of
each of the diseases, to see if genes differentially expressed in the
disease were enriched for binding sites of the predicted TF (See
Supplementary Materials for details). The enrichment, if shown,
would provide additional evidence that the predicted TF plays a
critical role in the disease and the rSNP is therefore likely to be
the causal SNP. In seven cases, genes differentially expressed in the
disease had binding site enrichment for the disrupted TF.

4 DISCUSSION
Personalized medicine aspires to develop a panel of targeted drugs
that can correct imbalances in biochemical and cell biological
processes that lead to disease states. For example, cancers that arise
from BRCA1 mutations are specifically prone to PARP inhibitors.
To exploit disease-associated SNPs to derive novel drug targets,
insight to the mechanistic link between the allelic variation and
the disease is required. This link is particularly difficult to derive
when a SNP is positioned between genes. Also attenuating progress
in the field is the immense difficulty to functionally validate the
biological impact of single base substitution in a regulatory element
in the genome, as knock-in experiments are very expensive and
labour intensive. Thus, identifying in silico means to assess the
likelihood of allelic variation to impact the function of a given
TF on a specific target gene could accelerate the progress from
GWAS to personalized medicine. This work offers to capitalize on
the central dogma of transcription regulation, and identify novel
links between targetable TFs and disease states, if their cognate
binding to critical targets in the genome is affected by the DNA
sequence variation. We show here that it is possible with high
degree of confidence to identify novel TF-disease links through the
comparison of the allelic variation with the sequence constraints of
all known TFs. Beyond reproducing 28 validated cases, we further
identify 11 such links (Table 2, threshold P<0.01), from among
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Table 2. This table provides a summary of the results output when is-rSNP was used to identify candidate rSNPs in a set of intergenic disease-associated
SNPs

Disease/Trait SNP Variation
(Normal/Disease
or
Common/Rareb)

Causes
Gain/Loss
of TFBS

Matrix Predicted TF Score
change
P-value
(BH
corrected)

Prior evidence of predicted TF
implicated in disease

TFBS
enrichment
P-value in
disease-
associated
genes

ALL (childhood) rs11155133 A/G Gain M00159 C/EBP 0.0075 Koschmieder et al. (2009) 0.1348
AIDS rs4118325 A/G Loss M00069 YY1a 0.0023 Sadowski et al. (2008) 0.5129
AIDS rs4118325 A/G Loss M01035 YY1a 0.0038 Sadowski et al. (2008) 0.5129
Amyotrophic lateral sclerosis rs16984239 C/Ab Gain M01261 HNF3A 0.0445 0.7821
HIV-1 control rs13394720 C/Tb Gain M00373 Pax-4 0.0047 0.9077
HIV-1 control rs17027625 C/Tb Loss M00701 SMAD3 0.0087 Eldeen et al. (2006) 0.7292
Major CVD rs499818 G/Ab Loss M01197 ELF5 0.0074 0.3752
Parkinson’s disease rs1480597 G/Ab Loss M01224 P50:RELA-P65 0.0064 Wintermeyer et al. (2002) 0.0282
Parkinson’s disease rs1480597 G/Ab Loss M00007 Elk-1 0.0070 Iwata et al. (2001) 0.0028
Prostate cancer rs16901979 C/A Loss M01591 Tal-1 0.0088 Ellett et al. (2009) 0.0190
Schizophrenia rs9512730 G/Cb Gain M00469 AP-2alphaa 0.0028 Duan et al. (2003) 0.0300
Schizophrenia rs9512730 G/Cb Gain M00470 AP-2gammaa 0.0068 Duan et al. (2003) 0.0300
Type 2 diabetes rs9300039 A/C Loss M00233 MEF-2 0.0090 McGee and Hargreaves (2006) 6.1e-08
Ulcerative colitis rs668853 A/G Gain M01223 P50:P50 0.0011 Sartor (2006) 0.0262

aAs there are multiple matrices for a single TF, the same TF may be reported for the same SNP. These SNPs show particularly strong evidence for altering the TFBS.
bWhen the risk is allele is not known, the variation is ordered by frequency: common/rare.
Only results that show a significant (BH corrected P<0.01) change in TF binding affinity between the alleles are included. Columns 1 and 2 provide information about the disease
and associated SNP. Columns 3 and 4 state the base change between normal and disease state and whether this results in a loss or gain in binding site. Columns 5–7 outline the TF
predicted to be disrupted by the allele and the P-value associated with the change. Column 8, if present, contains a reference to prior evidence that the predicted TF is known to be
associated with the disease. The final column provides the P-value of the enrichment of TF binding sites around genes shown to be differentially expressed in the disease, significant
values (BH corrected P < 0.05) are highlighted in bold.

146 published disease-associated SNPs, 8 for which the disrupted
TF is reported to be associated with the disease in the literature.
Following on from these significant predictions, further rSNPs for
the same disease and same TF can be identified (YY1:AIDS/HIV,
OCT1:Asthma, Supplementary Table 1, threshold P<0.05). This is
a proof of principle that the aim of is-rSNP is achievable, however,
we envisage a few improvements to is-rSNP that would increase its
value significantly.

Only 5 of the 11 SNPs in Table 2 showed both forms of evidence
of the predicted disrupted TF being associated with the disease.
This is not unexpected as most of the GWAS studies use bulk
genotyping arrays, therefore it is likely that the reported disease-
associated SNP is not in fact the causative SNP, but rather belongs
to the same linkage-disequilibrium block as the causative SNP.
In this case, it may be sensible to process not only the disease-
associated SNP with is-rSNP, but neighbouring SNPs as well. As
mentioned previously, many of the matrices in TRANSFAC are
similar or duplicated amongst TFs and TF families. This results
in severe multiple testing correction to P-values when scanning
multiple SNPs with a database of PWMs. If a non-redundant
database can be used, this may result in many more significant
rSNP predictions. Also, the method could be employed on more
empirically derived TF-binding datasets than TRANSFAC (Matys
et al., 2006), such as ChIP-Seq data, or a panel of 500 protein
bound DNA elements, derived from in vivo by digital genomic
footprinting (Hesselberth et al., 2009). Focusing on regions of
chromatin histone modifications, potentially indicative of regulatory
modules (Hon et al., 2009; Visel et al., 2009; Won et al., 2009),

may also improve predictions. For example, we found that of the
11 disease-associated SNPs reported in Table 2, 9 are overlapping
with tri-methylated lysine 27 of histone H3, a histone mark
that represents chromatin silencing events, related to progenitor–
differentiation axis, and regulated by polycomb group proteins. This
unexpected result may represent some so far unappreciated gradient
of penetrance of alleles, based on their chromatin accessibility,
such as the case with imprinting, where only one of the copies of
DNA is available to TF binding (and the impact of a rare allele on
phenotype would be pseudo haplotype). Whatever the mechanistic
basis for the H3K27Me3 link with disease-associated intergenic
SNPs, this information may become useful for future versions of
is-rSNP and for genotyping projects that use massively parallel
sequencing. The data we present here offers numerous novel links
between known, and in most cases targetable, TFs and specific
cohorts of patients for defined disease, each of which becomes a
hypothesis basis for novel clinical trials of personalized medicine.
In addition, a major contingency in the interpretation of intergenic
SNPs, which is the identification of the target gene responsible for
the control of the disease, may be assisted by the knowledge of
which TF binding is affected by the rSNP. Within any region in
the genome among neighbouring genes there is likely a known
target of a TF, implicating that target gene in the control of the
disease, even when there is a large distance between the rSNP
and the target (Fullwood et al., 2009). Of course further validation
of the methodology is required before patients are addressed with
novel drugs, but the method clearly deserves more investigation
and development. In its current form, it is suitable for screening
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large sets of potential rSNPs, and provides output which can be
interpreted with an idea of the statistical significance of each
predicted rSNP.
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